首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Acanthamoeba spp. are free-living amebae associated with amebic keratitis and chronic granulomatous amebic encephalitis. The present studies were undertaken to compare the pathogenicity of three species of Acanthamoeba in B6C3F1 mice after intranasal challenge with Acanthamoeba-induced cytopathogenicity for different macrophage populations. The ability of murine macrophage cell lines and activated murine peritoneal macrophages to lyse Acanthamoeba has been assessed by coincubating macrophages with 3H-uridine labeled amebae. Conversely, destruction of macrophages by Acanthamoeba was determined by measuring the release of chro-mium-51 from radiolabeled macrophages. Acanthamoeba culbensoni , which is highly pathogenic for mice, destroys macrophage cultures in vitro. Activated primary peritoneal macrophages were more resistant to Acanthamoeba -mediated destruction than macrophage cell lines activated in vitro. Activated macrophages were capable of limited destruction of Acanthamoeba polyphaga and Acanthamoeba castellanii. Acanthamoeba -specific antibodies increased the amebicidal activity of activated macrophages. Macrophage-mediated destruction was by contact-dependent cytolysis and by ingestion of amebae. Conditioned medium obtained from macrophage cultures after treatment with lipopolysaccharide and interferon gamma was neither cytolytic nor cytostatic for Acanthamoeba spp. Purified recombinant cytokines including tumor necrosis factor α. interleukin 1α, and interleukin 1β, alone or in combination, were not cytolytic for Acanthamoeba trophozoites.  相似文献   

2.
This study describes some of the parameters of the cellular immune response elicited in mice by inoculation of the nonpathogenic protozoan parasite, Leishmania enriettii. Incubation in vitro of leishmania-infected mouse peritoneal macrophages with spleen cells from syngeneic leishmania-immune animals resulted in activation of the phagocytes, leading to intracellular parasite destruction. Activation required interaction of sensitized lymphocytes with parasite antigen released or displayed by infected macrophages. The effect was dependent both on the dose of parasites used for in vivo priming and on the number of spleen cells cocultivated with parasitized macrophages. The activating capacity of lymphocytes was abrogated by anti-Thy-1 antiserum treatment and was retained in the effluent cells after nylon-wool separation. Activation was followed by lysis of part of the macrophage monolayer. Destruction of the phagocytes did not appear to result from the activation process per se and may represent a cytotoxic activity of sensitized lymphocytes for macrophages bearing parasite antigen on their surface.  相似文献   

3.
The multitude and abundance of macrophage-derived mediators in rheumatoid arthritis and their paracrine/autocrine effects identify macrophages as local and systemic amplifiers of disease. Although uncovering the etiology of rheumatoid arthritis remains the ultimate means to silence the pathogenetic process, efforts in understanding how activated macrophages influence disease have led to optimization strategies to selectively target macrophages by agents tailored to specific features of macrophage activation. This approach has two advantages: (a) striking the cell population that mediates/amplifies most of the irreversible tissue destruction and (b) sparing other cells that have no (or only marginal) effects on joint damage.  相似文献   

4.
Macrophages have been proposed as the major effector cell in T cell-mediated xenograft rejection. To determine their role in this response, NOD-SCID mice were transplanted with fetal pig pancreas (FPP) before reconstitution with CD4(+) T cells from BALB/c mice. Twelve days after CD4(+) T cell reconstitution, purified macrophages (depleted of T cells) were isolated from CD4(+) T cell-reconstituted FPP recipient mice and adoptively transferred to their nonreconstituted counterparts. After adoptive macrophage transfer, FPP recipient mice transferred with macrophages from CD4(+) T cell-reconstituted mice demonstrated xenograft destruction along with massive macrophage infiltration at day 4 and complete graft destruction at day 8 postmacrophage transfer. By contrast, FPP recipients that received macrophages from nonreconstituted mice showed intact FPP xenografts with few infiltrating macrophages at both days 4 and 8 after macrophage transfer. The graft-infiltrating macrophages showed increased expression of their activation markers. Depletion of endogenous macrophages or any remaining CD4(+) T cells did not delay graft rejection in the macrophage-transferred FPP recipients, whereas depletion of transferred macrophages with clodronate liposomes prevented graft rejection. Our results show that macrophages primed by FPP and activated by CD4(+) T cells were attracted from the peripheral circulation and were capable of specific targeting and destruction of FPP xenografts. This suggests that in xenograft rejection, there are macrophage-specific recognition and targeting signals that are independent of those received by T cells.  相似文献   

5.
After a subcutaneous injection of 100000 purified amastigotes of an isolate from a diffuse case of cutaneous leishmaniasis caused by the MHOM/BR/76/Ma-5 strain of Leishmania amazonensis, three inbred mouse strains developed a progressive nodular lesion, which evolved to an ulcerated lesion. Based on these data, mice of BALB/c, C57BL/6 or C57BL/10 could be classified as susceptible. The majority of mice developed metastases in the footpads, ear, tail, nose and oral mucosa. Amputation of the members related to the primary lesion was frequent. Experiments using the limiting dilution analysis showed that there was no correlation between lesion and parasite load. It has been demonstrated that these mouse strains could be considered excellent models for mucocutaneous leishmaniasis when infected with L. amazonensis. Metastatic lesions caused destruction of the nasal region with many parasitized macrophages under the epithelial surface of the nasal mucosa. Bone destruction occurred with an extensive inflammatory reaction presenting macrophages heavily parasitized by amastigotes. The parasites also spread to the periodontal ligament and other structures of the oral cavity, which could induce a severe inflammatory process. This study indicates that both nasal and oral lesions in mice infected by L. amazonensis were characterized by an inflammatory reaction with the presence of a high parasite load within macrophages.  相似文献   

6.
Macrophages are pivotal cells in interactions of man and leishmania. Leishmanial disease results from intracellular infection of macrophages: parasitized cells are seen in smears or biopsy specimens of lesions; macrophages cultured in vitro support replication of parasites. Paradoxically, parasite destruction is also mediated by macrophages, which become highly cytotoxic after exposure to immune lymphocytes or their lymphokine (LK) products. The precise molecular mechanisms by which lymphocytes or LK induce macrophage activation for leishmanicidal activity, however, are not yet known. We analyzed interactions of leishmania amastigotes with human monocytes cultured in vitro as a nonadherent cell pellet. Leishmania donovani and L. major replicated in freshly isolated monocytes. Monocytes treated with greater than 200 IU/ml of the LK, human Interferon-gamma (IFN-gamma), destroyed tumor cells and L. donovani, but not L. major. Phorbol myristate acetate, endotoxic bacterial lipopolysaccharide, and recombinant human IFN-alpha and IFN-beta did not induce cytotoxicity. The time course for induction of cytotoxicity contrasted sharply with that of previously described monocyte antileishmanial activity: IFN-gamma induced cytotoxicity even when added after infection with L. donovani; induction of cytotoxicity did not require that IFN-gamma be present throughout the period of culture after infection: a 30-min preinfection pulse of IFN-gamma was sufficient to induce 70% of maximal activity; and freshly isolated monocytes and cells cultured for up to 4 days in vitro prior to infection and IFN-gamma treatment were equally responsive to IFN-gamma. These studies provide convincing evidence for intracellular cytotoxicity for L. donovani by freshly isolated human monocytes. This system provides an important base for further analysis of induction and expression of cytotoxic mechanisms against leishmania and other intracellular organisms that cause human disease.  相似文献   

7.
Mitosis of resident macrophages in the adult rat testis   总被引:2,自引:0,他引:2  
Resident macrophages are maintained at a comparatively high, yet stable, tissue concentration in the adult rat testis. After destruction of Leydig cells by ethane dimethane sulphonate treatment, the number of resident macrophages increases briefly and then decreases to below normal values, but returns to normal after the reappearance of Leydig cells. The mechanisms by which the adult testicular macrophage population is maintained, either by monocyte recruitment or by mitosis of the resident macrophages, have not been examined. An immunohistochemical dual labelling approach using a specific monoclonal antibody for resident macrophages, ED2, and markers of mitotic activity (bromodeoxyuridine incorporation and expression of the proliferating cell nuclear antigen) was used to investigate resident macrophage proliferation in Bouin's-fixed paraffin wax-embedded adult rat testes. Detection of the normally fixation sensitive antigen recognized by ED2 was achieved by using a decreased fixation time and antigen retrieval. Peaks of resident macrophage mitotic activity were observed during the phases of macrophage proliferation immediately after ethane dimethane sulphonate treatment and during the recovery phase associated with Leydig cell restoration. These data demonstrate that resident macrophages have the capacity to proliferate within the adult rat testis and, thus, this population of resident macrophages is maintained, at least in part, by mitotic division in situ.  相似文献   

8.
9.
Macrophages from P/J mice demonstrated both quantitative and qualitative defects in lymphokine (LK)-induced activated macrophage antileishmanial effector reactions: a) these cells recognized the same LK signals that generated resistance to infection in responsive C3H/HeN macrophages, but more signal was required to observe maximal activity; b) LK-induced intracellular destruction of Leishmania tropica by P/J macrophages was minimal (less than 20%), and was induced by only one of three LK signals that regulate antimicrobial activities in C3H/HeN macrophages. The defective microbicidal activity of P/J macrophages observed with LK activation in vitro could also be demonstrated in vivo. Macrophages from P/J mice exposed to the macrophage-activating agent Mycobacterium bovis strain BCG in vivo were capable of restricting the intracellular replication of L. tropica but could not eliminate intracellular parasites, even with further incubation with LK during the 72-hr culture period. The defect of P/J macrophages for intracellular destruction of L. tropica, then, occurred in the activation sequence before the triggering stage that characterizes the macrophage defect of C3H/HeJ mice. Genetic regulation of the P/J macrophage defect appears to be by a single autosomal gene, with defective microbicidal activity as a recessive trait in these animals.  相似文献   

10.
The expression of macrophage antitumor activity and the production of prostaglandins (PG) by operationally defined macrophage populations differed under varying culture conditions. Culture conditions that caused increased PGE2 production by activated macrophages resulted in an inhibition of their tumoricidal activity. In contrast, production of high levels of PGE2 by resident and elicited macrophages was associated with an increase in antitumor activity. The activation of resident or elicited cells by lipopolysaccharide (LPS) could be blocked by indomethacin. Treatment of these macrophages with PGE2 alone also resulted in their activation and subsequent tumor cell destruction. Activation of resident and elicited macrophages by LPS appears to be mediated by PGE2.  相似文献   

11.
Murine lymphocytes, neutrophils, macrophages and eosinophils were assayed for lysophospholipase in order to determine the cellular source of the enzyme. The eosinophil was the only cell that demonstrated a positive reaction for the enzyme. The role of other cells and/or antigen in production of the enzyme by the eosinophil was also investigated. Results demonstrated that eosinophils cultured with both Trichinella spiralis antigen and other leukocytes (lymphocytes and/or macrophages) yielded enzyme activities significantly greater than did eosinophils cultured alone or with only antigen. More specific experiments showed that T-lymphocytes were the cells responsible for influencing the eosinophils' production of lysophospholipase in the presence of antigen, and that their influence was enhanced by the presence of macrophages. These results suggest that increased lysophospholipase activity present in parasitized tissue is not only due to an increased number of eosinophils infiltrating parasitized tissues, but is also due to each eosinophil synthesizing more of the enzyme for release. The necessity for antigen and other cells suggests a need for cell cooperation in the production of the enzyme, specifically T-lymphocytes and macrophage interaction with the eosinophil.  相似文献   

12.
Sporozoites of Plasmodium berghei and Plasmodium knowlesi, incubated in normal serum readily interact with peritoneal macrophages of mice or rhesus monkeys, respectively. Interiorization of the sporozoite requires that both serum and macrophages be obtained from an animal susceptible to infection by the malaria parasite. Serum requirements for sporozoite attachment to the macrophage are less specific. Phagocytosis is not essential for the parasites to become intracellular. Our findings indicate that active penetration of the sporozites into the macrohages does occur. Antibodies present in the serum of sporozoite-immunized mice are important in determining the fate of both the intracellular sporozoites and the macrophages containing the parasite. Sporozoites coated with antibodies degenerate within vacuoles of the macrophages, which have no morphologic alteration. Sporozoites incubated in normal serum do not degenerate within macrophages, but the parasitized macrophages become morphologically altered and are destroyed. Preliminary experiments indicate that sporozoites appear to interact with rat Kupffer cells in the same way as with the peritoneal mouse macrophages. It is postulated that Kupffer cells play a dual role in sporozoite-host cell interaction. In normal animals these cells might serve to localize the sporozoites in the immediate vicinity of the hepatocytes. In the immunized animals, macrophages would remove and destroy the antibody-coated parasites, thus contributing to sporozoite-induced resistance.  相似文献   

13.
The local accumulation of macrophages at sites of neoplasms may be a critical event in immunologically mediated tumor killing. Individuals with neoplasms, however, have been noted to have depressed monocyte chemotactic responsiveness in vitro. To determine the effect of neoplasms on macrophage migration, mice were implanted subcutaneously with either sarcoma or hepatoma cells and their macrophage migratory function quantified in vivo and in vitro. The ability of tumor-bearing animals to mobilize macrophages to an inflammatory site in vivo was depressed by as much as 61% by 6 days after tumor implantation. The in vitro chemotactic responsiveness of macrophages recovered from the peritoneal cavities of tumor-bearing animals was also markedly depressed. Macrophage migration was not affected by implantation of normal syngeneic or allogeneic tissues. In addition, the accumulation of polymorphonuclear leukocytes in vivo was not depressed in tumor-bearing animals. These findings suggest that neoplasms themselves may depress the host's ability to localize macrophages at inflammatory sites in vivo and thereby hinder immunologically mediated tumor destruction.  相似文献   

14.
The human marrow produces approximately 1010 monocytes daily, and this production must be balanced by a similar rate of destruction. Monocytes/macrophages can undergo apoptosis after activating CD4+ T cells, suggesting one mechanism that may contribute to macrophage homeostasis. Previous reports indicate that Fas-Fas ligand interactions are the principle molecules mediating this response. However, D10, an Iak-restricted cloned Th2 line, will similarly induce apoptosis in Ag-presenting macrophages, and D10 cells lack Fas ligand. To confirm that D10 cells kill macrophages through Fas-independent pathways, D10 cells were shown to kill MRL lpr/lpr (Iak) macrophages in an Ag-dependent fashion, indicating additional mechanisms. Recent reports demonstrate that TNF-related apoptosis-inducing ligand (TRAIL), interacting with Apo2, and TNF-like weak inducer of apoptosis (TWEAK), interacting with Apo3, will induce apoptosis in some cells. Using Abs to TRAIL and an Apo3-IgG Fc fusion protein, we demonstrated that D10 cells express both TRAIL and TWEAK. The Apo3 fusion protein, but not human IgG, inhibited D10-induced macrophage apoptosis, as did anti-TRAIL. Further studies demonstrated that AE7, a cloned Th1 line, and splenic T cells express TWEAK, TRAIL, and Fas ligand, and inhibiting these molecules also inhibited macrophage killing. These results indicate that D10 cells induce macrophage apoptosis through TRAIL- and TWEAK-dependent pathways. Because normal T cells also express these molecules, these results support the concept that T cells have multiple pathways by which to induce macrophage apoptosis. These pathways may be important in immune processes such as macrophage homeostasis as well as in down-regulation of immune responses and elimination of macrophages infected with intracellular organisms.  相似文献   

15.
To investigate how CD8+ T cells interact with beta cells and local inflammatory cells in islets, we have isolated CD8+ T cell clones from nonobese diabetic (NOD) spleen that recognize and destroy both islets and the NOD insulinoma cell line NIT-1. The clones destroyed NOD islets with pre-existing inflammation better than islets without signs of inflammation. Islets from NOD-scid mice were destroyed only poorly, but that could be improved by adding IL-7 to the assay. Anti-IFN-gamma Abs inhibited destruction of infiltrated islets. Single islets were effective stimulators of IFN-gamma production by cloned CD8+ T cells, which varied >50-fold depending on the degree of islet infiltration. This effect of the islet mononuclear infiltrate could be mimicked by adding spleen cells to NIT-1 cells, which augmented IFN-gamma production above the level stimulated by NIT-1 cells alone. The enhancing effect of spleen cells could be attributed to their macrophage subpopulation and was not MHC restricted, although recognition of islet Ag by cloned CD8+ T cells and subsequent islet destruction was restricted to islets expressing H-2Db molecules. An inhibitor of inducible NO synthase inhibited destruction of inflamed islets by cloned CD8+ T cells. We propose that macrophages in inflamed islets provide a form of bystander costimulation of beta cell-specific CD8+ T cells. CD8+ T cells respond to Ag and costimulation by producing IFN-gamma that activates macrophages. Activated macrophages facilitate islet destruction by CD8+ T cells through a NO synthesis-dependent pathway.  相似文献   

16.
The possibility that macrophages mediate surveillance against the development of neoplasms has been reciving increasing support. The acquisition, by neoplastic cells, of the capacity to subvert macrophage function may be an important mechanism by which they escape destruction by the host and become established tumors. Indeed, animals implanted with syngeneic neoplasms developed depressed macrophage migratory ability in vivo and chemotactic responsiveness in virto. It therefore seemed plausible that neoplasms might be capable of producing inhibitors of macrophage function. The present report describes the identification of such a low molecular weight (6,000 to 10,000), heat-stable inhibitor of murine macrophage accumulation in vivo and chemotaxis in vitro. The inhibitor of macrophages was present in four different murine neoplasms, but not present in normal liver, spleen, or inflammatory exudate cells and did not affect PMN chemotaxis in vitro. When given with low numbers of neoplastic cells, the inhibitor increased both the frequency of tumor development and rate of tumor growth. By producing inhibitors of macrophage function, neoplasms may escape initial host surveillance mechanisms.  相似文献   

17.
Monocytes and macrophages link the innate and adaptive immune systems and protect the host from the outside world. In inflammatory disorders their activation leads to tissue damage. Galectins have emerged as central regulators of the immune system. However, if they regulate monocyte/macrophage physiology is still unknown.Binding of Gal-1, Gal-2, Gal-3 and Gal-4 to monocytes/macrophages, activation, cytokine secretion and apoptosis were determined by FACS, migration by Transwell system and phagocytosis by phagotest. Supernatants from macrophages co-cultured with galectins revealed their influence on T-cell function.In our study Gal-1, Gal-2, Gal-4, and partly Gal-3 bound to monocytes/macrophages. Galectins prevented Salmonella-induced MHCII upregulation. Cytokine release was distinctly induced by different galectins. T-cell activation was significantly restricted by supernatants of macrophages co-cultured in the presence of Gal-2 or Gal-4. Furthermore, all galectins tested significantly inhibited monocyte migration. Finally, we showed for the first time that galectins induce potently monocyte, but not macrophage apoptosis.Our study provides evidence that galectins distinctively modulate central monocyte/macrophage function. By inhibiting T-cell function via macrophage priming, we show that galectins link the innate and adaptive immune systems and provide new insights into the action of sugar-binding proteins.  相似文献   

18.
Mice treated up to 31 weeks previously with intraperitoneal BCG yielded peritoneal macrophages with decreased phagocytosis of starch granules, latex beads, graphite dust and formalinized Listeria monocytogenes, with or without opsonin, compared to macrophages from untreated mice. These assays were selected to allow quantitative determinations of the rate or extent of particle uptake under nonrate-limiting conditions. Phagocytosis could be depressed to a similar degree by the prior addition of either starch granules or BCG to normal adherent peritoneal cell cultures in vitro. However, with these two particles, two different mechanisms of inhibition of subsequent phagocytosis appeared to be at work. Inhibition of phagocytosis by prior exposure to large amounts of starch granules appeared to consist largely of mechanical interference, as if through the preemption of intracellular space. In contrast, inhibition by prior uptake of BCG occurred with very small amounts of BCG and appeared gradually with time after uptake of BCG. The ability of a “macrophage activating agent” to inhibit selected functions of parasitized cells may help to explain some of the discordant results obtained by others studying phagocytosis by “activated” macrophages. Such agents may simultaneously enhance some macrophage functions and depress others.  相似文献   

19.
Despite the recognition that humoral rejection is an important cause of allograft injury, the mechanism of Ab-mediated injury to allograft parenchyma is not well understood. We used a well-characterized murine hepatocellular allograft model to determine the mechanism of Ab-mediated destruction of transplanted liver parenchymal cells. In this model, allogeneic hepatocytes are transplanted into CD8-deficient hosts to focus on CD4-dependent, alloantibody-mediated rejection. Host serum alloantibody levels correlated with in vivo allospecific cytotoxic activity in CD8 knockout hepatocyte rejector mice. Host macrophage depletion, but not CD4(+) T cell, NK cell, neutrophil, or complement depletion, inhibited in vivo allocytotoxicity. Recipient macrophage deficiency delayed CD4-dependent hepatocyte rejection and inhibited in vivo allocytotoxicity without influencing alloantibody production. Furthermore, hepatocyte coincubation with alloantibody and macrophages resulted in Ab-dependent hepatocellular cytotoxicity in vitro. These studies are consistent with a paradigm of acute humoral rejection in which CD4(+) T cell-dependent alloantibody production results in the targeting of transplanted allogeneic parenchymal cells for macrophage-mediated cytotoxic immune damage. Consequently, strategies to eliminate recipient macrophages during CD4-dependent rejection pathway may prolong allograft survival.  相似文献   

20.
Emerging evidence has shown an imbalance in M1/M2 macrophage polarization to play an essential role in osteoarthritis (OA) progression. However, the underlying mechanistic basis for this polarization is unknown. RNA sequencing of OA M1-polarized macrophages found highly expressed levels of pentraxin 3 (PTX3), suggesting a role for PTX3 in OA occurrence and development. Herein, PTX3 was found to be increased in the synovium and articular cartilage of OA patients and OA mice. Intra-articular injection of PTX3 aggravated, while PTX3 neutralization reversed synovitis and cartilage degeneration. No metabolic disorder or proteoglycan loss were observed in cartilage explants when treated with PTX3 alone. However, cartilage explants exhibited an OA phenotype when treated with culture supernatants of macrophages stimulated with PTX3, suggesting that PTX3 did not have a direct effect on chondrocytes. Therefore, the OA anti-chondrogenic effects of PTX3 are primarily mediated through macrophages. Mechanistically, PTX3 was upregulated by miR-224-5p deficiency, which activated the p65/NF-κB pathway to promote M1 macrophage polarization by targeting CD32. CD32 was expressed by macrophages, that when stimulated with PTX3, secreted abundant pro-inflammation cytokines that induced severe articular cartilage damage. The paracrine interaction between macrophages and chondrocytes produced a feedback loop that enhanced synovitis and cartilage damage. The findings of this study identified a functional pathway important to OA development. Blockade of this pathway and PTX3 may prevent and treat OA.Subject terms: Osteoarthritis, Extracellular signalling molecules  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号