首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Saccharomyces cerevisiae is a model eukaryotic organism for classical genetics and genomics, and yet its ecology is still largely unknown. In this work, a population genetic analysis was performed on five yeast populations isolated from wine-making areas with different enological practices using simple sequence repeats and restriction fragment length polymorphism of mitochondrial DNA as molecular markers on 292 strains. In accordance with other studies, genome size estimation suggests that native S. cerevisiae strains are mainly homothallic and diploids. Analysis of mtDNA data showed that yeast populations from nonindustrial areas have 40% higher genetic diversity than populations isolated from industrial areas, demonstrating that industrial enological practices are likely to affect native yeast populations negatively by reducing its biodiversity. On the other hand, genetic differentiation analysis based on their microsatellite showed no correlation between genetic and geographic distance and a nonsignificant value when a Mantel test was applied. Finally, in the five populations studied, positive inbreeding ( F is) values from 0.4 to 0.75, a low but significant level of linkage disequilibrium and a high number of multilocus genotypes were detected. These results strongly advocate that sexual reproduction is frequent enough to erase clonal signature in natural populations and that self-fertilization is the main mating system.  相似文献   

2.
AIMS: The wide use of yeast inoculum for wine fermentations permit the spreading of commercial Saccharomyces strains in wine areas all over the world. To study the impact of this practice on the autochthonous yeast populations it is necessary to have tools that permit the evaluation of the geographical origin of native isolates and differentiate them from commercial strains. METHODS AND RESULTS: Electrophoretic karyotyping and mitochondrial DNA restriction analysis were used to characterize the genome of native S. cerevisiae isolates associated to wine from three countries in South America. Both methods revealed differences in the genomic structure between these populations, in addition to differences between sub-populations collected in wine-producing areas in Chile. CONCLUSIONS: Our data support that molecular polymorphism analysis may be useful to evaluate the geographical origin of native isolates of yeast strains for industrial use. Furthermore, these findings are in agreement with the idea of a clonal mode of reproduction of wine yeasts in natural environments. SIGNIFICANCE AND IMPACT OF THE STUDY: This study permits the characterization of native yeast isolates in relation to their geographical origin. This procedure could be used as a tool for evaluating if a native isolate derives from the region were it was collected or if it is a strain derived from a commercial strain by microevolution.  相似文献   

3.
Selfish DNA poses a significant challenge to genome stability and organismal fitness in diverse eukaryotic lineages. Although selfish mitochondrial DNA (mtDNA) has known associations with cytoplasmic male sterility in numerous gynodioecious plant species and is manifested as petite mutants in experimental yeast lab populations, examples of selfish mtDNA in animals are less common. We analyzed the inheritance and evolution of mitochondrial DNA bearing large heteroplasmic deletions including nad5 gene sequences (nad5Δ mtDNA), in the nematode Caenorhabditis briggsae. The deletion is widespread in C. briggsae natural populations and is associated with deleterious organismal effects. We studied the inheritance patterns of nad5Δ mtDNA using eight sets of C. briggsae mutation-accumulation (MA) lines, each initiated from a different natural strain progenitor and bottlenecked as single hermaphrodites across generations. We observed a consistent and strong drive toward higher levels of deletion-bearing molecules in the heteroplasmic pool of mtDNA after ten generations of bottlenecking. Our results demonstrate a uniform transmission bias whereby nad5Δ mtDNA accumulates to higher levels relative to intact mtDNA in multiple genetically diverse natural strains of C. briggsae. We calculated an average 1% per-generation transmission bias for deletion-bearing mtDNA relative to intact genomes. Our study, coupled with known deleterious phenotypes associated with high deletion levels, shows that nad5Δ mtDNA are selfish genetic elements that have evolved in natural populations of C. briggsae, offering a powerful new system to study selfish mtDNA dynamics in metazoans.  相似文献   

4.
Diversity among 130 strains of Bacillus polymyxa was studied; the bacteria were isolated by immunotrapping from nonrhizosphere soil (32 strains), rhizosphere soil (38 strains), and the rhizoplane (60 strains) of wheat plantlets growing in a growth chamber. The strains were characterized phenotypically by 63 auxanographic (API 50 CHB and API 20B strips) and morphological features, serologically by an enzyme-linked immunosorbent assay, and genetically by restriction fragment length polymorphism (RFLP) profiles of total DNA in combination with hybridization patterns obtained with an rRNA gene probe. Cluster analysis of phenotypic characters by the unweighted pair group method with averages indicated four groups at a similarity level of 93%. Clustering of B. polymyxa strains from the various fractions showed that the strains isolated from nonrhizosphere soil fell into two groups (I and II), while the third group (III) mainly comprised strains isolated from rhizosphere soil. The last group (IV) included strains isolated exclusively from the rhizoplane. Strains belonging to a particular group exhibited a similarity level of 96%. Serological properties revealed a higher variability among strains isolated from nonrhizosphere and rhizosphere soil than among rhizoplane strains. RFLP patterns also revealed a greater genetic diversity among strains isolated from nonrhizosphere and rhizosphere soil and therefore could not be clearly grouped. The RFLP patterns of sorbitol-positive strains isolated from the rhizoplane were identical. These results indicate that diversity within populations of B. polymyxa isolated from nonrhizosphere and rhizosphere soil is higher than that of B. polymyxa isolated from the rhizoplane. It therefore appears that wheat roots may select a specific subpopulation from the soil B. polymyxa population.  相似文献   

5.
AIMS: To guarantee the endemic genetic background of the isolates obtained in yeast isolation programs, it is necessary to differentiate between endemic and commercial strains because the progressive use of commercial yeast in wine areas around the world would affect the autochthonous yeast populations. METHODS AND RESULTS: Mitochondrial DNA restriction analysis, electrophoretic karyotyping and random amplification of polymorphic DNA (RAPD) were evaluated as experimental approaches to correlate genomic polymorphism and geographic origin of native wine yeast strains. The three molecular methods were capable of detecting a European commercial strain among native Chilean strains; however, RAPD proved to have the best performance. CONCLUSIONS: The molecular polymorphism analysis is useful to evaluate the geographical origin of native yeast isolates and confirms or refutes the genetic background of currently marketed strains. SIGNIFICANCE AND IMPACT OF THE STUDY: This study permits a genetic characterization of native yeast populations and confirms its utility as a tool for evaluating if a native isolate derives from the region where it was collected, permitting, furthermore, to develop studies on the evolution of native yeast populations and to evaluate the effect of introduced yeasts on these populations.  相似文献   

6.
Jennifer Schleit  Simon C. Johnson  Christopher F. Bennett  Marissa Simko  Natalie Trongtham  Anthony Castanza  Edward J. Hsieh  Richard M. Moller  Brian M. Wasko  Joe R. Delaney  George L. Sutphin  Daniel Carr  Christopher J. Murakami  Autumn Tocchi  Bo Xian  Weiyang Chen  Tao Yu  Sarani Goswami  Sean Higgins  Mollie Holmberg  Ki‐Soo Jeong  Jin R. Kim  Shannon Klum  Eric Liao  Michael S. Lin  Winston Lo  Hillary Miller  Brady Olsen  Zhao J. Peng  Tom Pollard  Prarthana Pradeep  Dillon Pruett  Dilreet Rai  Vanessa Ros  Minnie Singh  Benjamin L. Spector  Helen Vander Wende  Elroy H. An  Marissa Fletcher  Monika Jelic  Peter S. Rabinovitch  Michael J. MacCoss  Jing‐Dong J. Han  Brian K. Kennedy  Matt Kaeberlein 《Aging cell》2013,12(6):1050-1061
Dietary restriction (DR) increases lifespan and attenuates age‐related phenotypes in many organisms; however, the effect of DR on longevity of individuals in genetically heterogeneous populations is not well characterized. Here, we describe a large‐scale effort to define molecular mechanisms that underlie genotype‐specific responses to DR. The effect of DR on lifespan was determined for 166 single gene deletion strains in Saccharomyces cerevisiae. Resulting changes in mean lifespan ranged from a reduction of 79% to an increase of 103%. Vacuolar pH homeostasis, superoxide dismutase activity, and mitochondrial proteostasis were found to be strong determinants of the response to DR. Proteomic analysis of cells deficient in prohibitins revealed induction of a mitochondrial unfolded protein response (mtUPR), which has not previously been described in yeast. Mitochondrial proteotoxic stress in prohibitin mutants was suppressed by DR via reduced cytoplasmic mRNA translation. A similar relationship between prohibitins, the mtUPR, and longevity was also observed in Caenorhabditis elegans. These observations define conserved molecular processes that underlie genotype‐dependent effects of DR that may be important modulators of DR in higher organisms.  相似文献   

7.
1. The genetic variation of the endangered freshwater fish Ladigesocypris ghigii, endemic to the island of Rhodes (Greece), was investigated for nine populations, originating from seven different stream systems and a reservoir, both at the mtDNA and nuclear level, in order to suggest conservation actions. 2. Both restriction fragment length polymorphism analysis of five segments of mitochondrial DNA (ND‐5/6, COI and 12S‐16S rRNA) amplified by polymerase chain reaction, and random amplified polymorphic DNA analysis, revealed extremely low levels of intra‐population polymorphism. It is highly likely that the low intra‐population variability is the result of successive bottleneck events evident in shrinkage and expansion of the populations year after year, which may have led to a complete loss of several genotypes and haplotypes, and an increased degree of inbreeding. 3. Inter‐population genetic structuring was high, with fixation of haplotypes within six of the nine populations and fixation of alleles within populations originating from different waterbodies. It is probable that all haplotypes and/or alleles found were initially represented in all populations. However, because of the long time of isolation coupled with successive bottleneck and subsequent genetic drift, common mtDNA haplotypes and alleles among the populations may have become rare or extinct through stochastic lineage loss. 4. Although nucleotide divergence among haplotypes was very shallow, half of the haplotypes recorded (three of six), resulted from nucleotide changes on the 12S–16S rRNA segments, which are the most conserved part of the mitochondrial genome. This fact may indicate that the observed genetic variation did not necessarily result only from the retention of ancestral polymorphism, but may have arisen through mutation and complete lineage sorting over a relatively small number of generations, once the populations had become isolated from one another. 5. Our data suggest that two of the L. ghigii populations may be on independent evolutionary trajectories. Considering that each population appears so far well adapted within each site, all populations should be managed and conserved separately.  相似文献   

8.
Biological invasions generally start from low initial population sizes, leading to reduced genetic variation in nuclear and especially mitochondrial DNA. Consequently, genetic approaches for the study of invasion history and population structure are difficult. An extreme example is the Mediterranean fruit fly, Ceratitis capitata (Medfly), for which successive invasions during this century have resulted in a loss of 60% of ancestral genetic variation in isozymes and 75% of variation in mitochondrial DNA. Using Medflies as an example, we present a new approach to invasion genetics that measures DNA sequence variation within introns from multiple nuclear loci. These loci are so variable that even relatively recently founded Medfly populations within California and Hawaii retain ample genetic diversity. Invading populations have only lost 35% of the ancestral genetic variation. Intron variation will allow high-resolution genetic characterization of invading populations in both natural and managed systems, although non-equilibrium methods of analysis may be necessary if the genetic diversity represents sorting ancestral polymorphism.  相似文献   

9.
From a sample of 122 natural isolates of Neurospora intermedia collected recently from around the world, five variants had erratic stop-start growth patterns reminiscent of the phenotype of "stopper" laboratory extranuclear mutants of Neurospora crassa. Like laboratory isolated mutants, the natural "stopper" variants were sterile as protoperithecial parents and transmitted the variant growth phenotypes very inefficiently, if at all, as male parents. Heterokaryon tests could not be made because of strain incompatibilities. Four of the variants have mitochondrial cytochrome aa3 and b deficiencies. These four variants are all defective in mitochondrial ribosome assembly and have abnormal ratios of large to small subunits. Restriction enzyme analyses revealed some similarity of N. intermedia to N. crassa mtDNA. One normal and four variant strains had additional DNA in comparison to a standard normal strain. Cumulatively, the results indicate that the genetic alterations which cause stopper phenotypes of these natural isolates of N. intermedia are of mitochondrial rather than nuclear origin.  相似文献   

10.
Understanding a wider range of genotype–phenotype associations can be achieved through ecological and evolutionary studies of traditional laboratory models. Here, we conducted the first large‐scale geographic analysis of genetic variation within and among wild zebrafish (Danio rerio) populations occurring in Nepal, India, and Bangladesh, and we genetically compared wild populations to several commonly used lab strains. We examined genetic variation at 1832 polymorphic EST‐based single nucleotide polymorphisms (SNPs) and the cytb mitochondrial gene in 13 wild populations and three lab strains. Natural populations were subdivided into three major mitochondrial DNA clades with an average among‐clade sequence divergence of 5.8%. SNPs revealed five major evolutionarily and genetically distinct groups with an overall FST of 0.170 (95% CI 0.105–0.254). These genetic groups corresponded to discrete geographic regions and appear to reflect isolation in refugia during past climate cycles. We detected 71 significantly divergent outlier loci (3.4%) and nine loci (0.5%) with significantly low FST values. Valleys of reduced heterozygosity, consistent with selective sweeps, surrounded six of the 71 outliers (8.5%). The lab strains formed two additional groups that were genetically distinct from all wild populations. An additional subset of outlier loci was consistent with domestication selection within lab strains. Substantial genetic variation that exists in zebrafish as a whole is missing from lab strains that we analysed. A combination of laboratory and field studies that incorporates genetic variation from divergent wild populations along with the wealth of molecular information available for this model organism provides an opportunity to advance our understanding of genetic influences on phenotypic variation for a vertebrate species.  相似文献   

11.
Because of the extreme ecological and environmental changes along an urban–rural gradient, it has been proposed that urbanised and non-urbanised populations of the same species may be distinctly isolated. There is evidence that urban populations have become significantly different from the original forest populations in several aspects. However, little is known about the extent to which urban and non-urban populations are genetically isolated from each other. We tested the hypothesis of genetic differentiation by comparing the genomic DNA of an urban and a nearby forest-living European blackbird (Turdus merula) population. The present results suggest that, based on amplified fragment length polymorphism analysis, the urban population studied is very similar to a forest population at neutral genetic markers. Thus, despite indications of obvious functional genetic adaptation, the hypothesis of an overall genetic differentiation between our urban and forest populations could not be supported.Eberhard Gwinner died on 7 September 2004  相似文献   

12.
Brettanomyces sp. and its ascosporogenous sexual state, Dekkera sp., have been well documented as spoilage microorganisms, usually associated with barrel-aged red wines. In this report, we describe the genetic characterization, on the basis of DNA content per cell, electrophoretic karyotyping, and mitochondrial DNA restriction patterns, of a Dekkera yeast strain isolated from sherries and of a number of other Brettanomyces and Dekkera strains. By using a genomic DNA fragment of the isolated Dekkera strain, we developed a two-step PCR method which directs the specific amplification of target DNA from this strain and from other Brettanomyces-Dekkera strains. The method efficiently amplified the target DNA from intact cells, obviating DNA isolation, and yielded a detection limit of fewer than 10 yeast cells in contaminated samples of sherry.  相似文献   

13.
The hybrid nature of lager-brewing yeast strains has been known for 25 years; however, yeast hybrids have only recently been described in cider and wine fermentations. In this study, we characterized the hybrid genomes and the relatedness of the Eg8 industrial yeast strain and of 24 Saccharomyces cerevisiae/Saccharomyces kudriavzevii hybrid yeast strains used for wine making in France (Alsace), Germany, Hungary, and the United States. An array-based comparative genome hybridization (aCGH) profile of the Eg8 genome revealed a typical chimeric profile. Measurement of hybrids DNA content per cell by flow cytometry revealed multiple ploidy levels (2n, 3n, or 4n), and restriction fragment length polymorphism analysis of 22 genes indicated variable amounts of S. kudriavzevii genetic content in three representative strains. We developed microsatellite markers for S. kudriavzevii and used them to analyze the diversity of a population isolated from oaks in Ardèche (France). This analysis revealed new insights into the diversity of this species. We then analyzed the diversity of the wine hybrids for 12 S. cerevisiae and 7 S. kudriavzevii microsatellite loci and found that these strains are the products of multiple hybridization events between several S. cerevisiae wine yeast isolates and various S. kudriavzevii strains. The Eg8 lineage appeared remarkable, since it harbors strains found over a wide geographic area, and the interstrain divergence measured with a (δμ)(2) genetic distance indicates an ancient origin. These findings reflect the specific adaptations made by S. cerevisiae/S. kudriavzevii cryophilic hybrids to winery environments in cool climates.  相似文献   

14.
The composition of wine yeast populations, present during spontaneous fermentation of musts from two wine-producing areas of Greece (Amyndeon and Santorini) and followed for two consecutive years, were studied using a range of molecular techniques. Internal Transcribed Spacer (ITS) ribotyping was convincingly applied for yeast species identification, proving its usefulness as a reliable tool for the rapid characterization of species composition in yeast population studies. Restriction Fragment Length Polymorphism (RFLP) of mitochondrial DNA (mtDNA) was shown to be a convenient criterion for the detection of intraspecies genetic diversity of both Saccharomyces and non-Saccharomyces isolate populations. Similarly, polymorphism of amplified delta interspersed element sequences provided an additional criterion for S. cerevisiae strain differentiation. Comparative analysis of S. cerevisiae genetic diversity, using mtDNA restriction patterns and delta-amplification profiles, showed a similar discriminative power of the two techniques. However, by combining these approaches it was possible to distinguish/characterize strains of the same species and draw useful conclusions about yeast diversity during alcoholic fermentation. The most significant findings in population dynamics of yeasts in the spontaneous fermentations were (i) almost complete absence of non-S.cerevisiae species from fermentations of must originating from the island Santorini, (ii) a well recorded strain polymorphism in populations of non-Saccharomyces species originating from Amyndeon and (iii) an unexpected polymorphism concerning S. cerevisiae populations, much greater than ever reported before in similar studies with wine yeasts of other geographical regions.  相似文献   

15.
Understanding of the genetic basis for susceptibility and resistance is still lacking for most aquatic host–parasite systems, for instance, for phytoplankton and their fungal parasites. Fungal parasites can have significant effects on phytoplankton populations, mainly through their ability to decimate algal host populations during epidemics. We used random amplified polymorphic DNA (RAPD) and amplified fragment length polymorphism (AFLP) analysis to study levels of genetic variation within a population of the freshwater diatom Asterionella formosa Hassall in relation to parasitism by the obligate, host‐specific, fungal parasite Zygorhizidium planktonicum Canter. The level of genetic variation within the A. formosa population in Lake Maarsseveen, The Netherlands was found to be high despite the presumed absence or very low frequency of sexual reproduction in this species, the limited gene flow, and the severity of parasite attack that would purge the population from susceptible genotypes. RAPD analysis revealed four distinct banding patterns, with 3 of 21 markers (14%) being polymorphic. In AFLP analysis, every single isolate of A. formosa showed a unique banding pattern, and 120 of the 210 AFLP markers (57%) were found to be polymorphic. Furthermore, character compatibility analysis revealed that sexual reproduction may be one of the mechanisms that generates and maintains genetic variation in the A. formosa population in Lake Maarsseveen. The presence of genetic variation in A. formosa was reflected in infection experiments, which showed that genetically different A. formosa strains differed in their susceptibility to various Z. planktonicum strains and that parasite strains differed in their ability to infect particular host strains.  相似文献   

16.
Tang T  Zhong Y  Jian S  Shi S 《Annals of botany》2003,92(3):409-414
Amplified fragment length polymorphism (AFLP) markers were used to investigate the genetic variations within and among nine natural populations of Hibiscus tiliaceus in China. DNA from 145 individuals was amplified with eight primer pairs. No polymorphisms were found among the 20 samples of a marginal population of recent origin probably due to a founder effect. Across the other 125 individuals, 501 of 566 bands (88.5%) were polymorphic, and 125 unique AFLP phenotypes were observed. Estimates of genetic diversity agreed with life history traits of H. tiliaceus and geographical distribution. AMOVA analysis revealed that most genetic diversity resided within populations (84.8%), which corresponded to results reported for outcrossing plants. The indirect estimate of gene flow based on phiST was moderate (Nm=1.395). Long-distance dispersal of floating seeds and local environments may play an important role in shaping the genetic diversity of the population and the genetic structure of this species.  相似文献   

17.
Genetic isolation of populations is a potent force that helps shape the course of evolution. However, small populations in isolation, especially in fragmented landscapes, are known to lose genetic variability, suffer from inbreeding depression and become genetically differentiated among themselves. In this study, we assessed the genetic diversity of lion-tailed macaques (Macaca silenus) inhabiting the fragmented landscape of Anamalai hills and examined the genetic structure of the species across its distributional range in the Western Ghats. We sequenced around 900 bases of DNA covering two mitochondrial regions–hypervariable region-I and partial mitochondrial cytochrome b–from individuals sampled both from wild and captivity, constructed and dated phylogenetic trees. We found that the lion-tailed macaque troops in the isolated forest patches in Anamalai hills have depleted mitochondrial DNA diversity compared to troops in larger and continuous forests. Our results also revealed an ancient divergence in the lion-tailed macaque into two distinct populations across the Palghat gap, dating to 2.11 million years ago. In light of our findings, we make a few suggestions on the management of wild and captive populations.  相似文献   

18.
DNA-based genetic markers are needed to augment existing allozyme markers in the assessment of genetic diversity of wild giant clam populations. The dearth of polymorphic mitochondrial DNA regions amplified from known universal polymerase chain reaction (PCR) primers has led us to search other regions of the genome for viable sources of DNA polymorphism. We have designed tridacnid-specific PCR primers for the amplification of internal transcribed spacer regions. Sequences of the first internal transcribed spacer segment (ITS-1) revealed very high polymorphism, showing 29% variation arising from base substitutions alone. Preliminary restriction analysis of the ITS regions using 8 restriction enzymes revealed cryptic changes in the DNA sequence. These mutations are promising as marker tools for differentiating geographically separated populations. Such variation in the ITS region can possibly be used for population genetic analysis. Received February 1, 2000; accepted May 8, 2000.  相似文献   

19.
The quest to discover the variety of ecological niches inhabited by Saccharomyces cerevisiae has led to research in areas as diverse as wineries, oak trees and insect guts. The discovery of fungal communities in the human gastrointestinal tract suggested the host's gut as a potential reservoir for yeast adaptation. Here, we report the existence of yeast populations associated with the human gut (HG) that differ from those isolated from other human body sites. Phylogenetic analysis on 12 microsatellite loci and 1715 combined CDSs from whole-genome sequencing revealed three subclusters of HG strains with further evidence of clonal colonization within the host's gut. The presence of such subclusters was supported by other genomic features, such as copy number variation, absence/introgressions of CDSs and relative polymorphism frequency. Functional analysis of CDSs specific of the different subclusters suggested possible alterations in cell wall composition and sporulation features. The phenotypic analysis combined with immunological profiling of these strains further showed that sporulation was related with strain-specific genomic characteristics in the immune recognition pattern. We conclude that both genetic and environmental factors involved in cell wall remodelling and sporulation are the main drivers of adaptation in S. cerevisiae populations in the human gut.  相似文献   

20.
Some yeast strains possess a sequence-specific endonuclease, Endo.SceI, which is a heterodimeric enzyme localized in mitochondria. The larger subunit (75 kDa) of Endo.SceI, encoded by a nuclear gene (ENS1), is transported from the cytosol into the mitochondria. In this study, we determined the partial amino acid sequence of the smaller subunit (50 kDa) of Endo.SceI. The determined sequence matched well the partial sequence deduced from a mitochondrial open reading frame (RF3). The RF3 locus is known to exhibit polymorphism since this reading frame in some yeast strains is supposed to encode a maturase-like protein, whereas in other strains, the frame is interrupted by GC clusters, which thus break the frame. Southern blot analysis of various yeast strains showed that the continuity of RF3 is correlated with the presence of Endo.SceI activity. These data indicate that the continuous RF3 sequence is a functional gene (ENS2) coding for the smaller subunit of Endo.SceI. The results of cytoduction, by which the continuous RF3 sequence was transferred into a yeast strain lacking mitochondrial DNA, confirmed this conclusion. This study suggests the involvement of Endo.SceI in genetic recombination of mitochondrial DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号