首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Agrobacterium-mediated transformation is widely used in transgenic plant englnserlng and has been proven to be a powerful tool for insertional mutagenesis of the plant genome.The transferred DNA (T-DNA) from Agrobacterlum is Integrated into the plant genome through illegitimate recombination between the T-DNA and the plant DNA.Contrasting to the canonical insertion,here we report on a locus showing a complex mutation associated with T-DNA insertion at the BRI 1 gene in Arabidopsis thaliana.We obtained a mutant line,named salade for its phenotype of dwarf stature and proliferating rosette,Molecular charactedzation of this mutant revealed that in addition to T-DNA a non.T.DNA-Iocalized transposon from bacteda was inserted in the Arabidopsis genome and that a region of more than 11.5 kb of the Arebidopsis genome was deleted at the insertion site.The deleted region contains the brassinosteroid receptor gene BRI 1 and the transcdption factor gene WRKY13.Our finding reveals non-canonical T-DNA insertion,implicating horizontal gene transfer and cautioning the use of T-DNA as mutagen in transgenic research.  相似文献   

3.
4.
The results of genetic and molecular genetic analysis of line 176 of Arabidopsis thaliana with reduced hypocotyls obtained from a previously obtained collection of insertion mutants, are presented. The examined mutation proved to be recessive and based on a single insertion of the T-DNA vector pLD3 into the A. thaliana genome. Computer-aided analysis of the DNA region adjacent to the left border of the insertion revealed a putative site of T-DNA insertion, the 2.5-kb At2g09920 gene located in the long arm of chromosome 2, near the centromere.  相似文献   

5.
6.
Ordered collections of Arabidopsis thaliana lines containing mapped T-DNA insertions have become an important resource for plant scientists performing genetic studies. Previous reports have indicated that T-DNA insertion lines can have chromosomal translocations associated with the T-DNA insertion site, but the prevalence of these rearrangements has not been well documented. To determine the frequency with which translocations are present in a widely-used collection of T-DNA insertion lines, we analyzed 64 independent lines from the Salk T-DNA mutant collection. Chromosomal translocations were detected in 12 of the 64 lines surveyed (19%). Two assays were used to screen the T-DNA lines for translocations: pollen viability and genome-wide genetic mapping. Although the measurement of pollen viability is an indirect screen for the presence of a translocation, all 11 of the T-DNA lines showing an abnormal pollen phenotype were found to contain a translocation when analyzed using genetic mapping. A normal pollen phenotype does not, however, guarantee the absence of a translocation. We observed one T-DNA line with normal pollen that nevertheless had a translocation based on genetic mapping results. One additional phenomenon that we observed through our genetic mapping experiments was that the T-DNA junctions on the 5'- and 3'-sides of a targeted gene can genetically separate from each other in some cases. Two of the lines in our survey displayed this 'T-DNA borders separate' phenomenon. Experimental procedures for efficiently screening T-DNA lines for the presence of chromosomal abnormalities are presented and discussed.  相似文献   

7.
Plesch G  Kamann E  Mueller-Roeber B 《Gene》2000,249(1-2):83-89
This report describes the use of promoter trap lines from the model plant Arabidopsis thaliana to clone regulatory sequences that mediate guard-cell-specific reporter gene expression. Stomatal guard cells represent a highly differentiated cell type within the epidermis of green tissues of higher plants. They control the stomatal aperture in response to different endogenous and environmental signals in order to optimize carbon fixation while minimizing water loss. We screened available promoter trap lines for guard-cell-specific activation of a beta-glucuronidase (uidA) reporter gene in order to obtain marker lines for guard-cell development and to gain access to regulatory pathways leading to gene expression which is restricted to this cell type. From two lines identified we successfully cloned upstream regulatory sequences. For one line, guard-cell-specific promoter activity was confirmed by re-introducing the uidA gene, fused to the newly identified regulatory sequences, into the Arabidopsis nuclear genome. However, DNA sequences downstream of the uidA/T-DNA insertion sites in the original promoter trap lines revealed no obvious coding regions in the corresponding orientation, indicating that we have probably identified 'cryptic' promoters, being active in guard cells.  相似文献   

8.
9.
Receptor-like kinases (RLKs) constitute a large family of signal perception molecules in Arabidopsis. The largest group of RLKs is the leucine-rich repeat (LRR) class that has been described to function in development and defense. Of these, CLAVATA1 (CLV1) and ERECTA (ER) receptors function in maintaining shoot meristem homeostasis and organ growth, but LRR RLKs with similar function in the root remain unknown. For the interaction of Arabidopsis with the oomycete pathogen Hyaloperonospora arabidopsidis the involvement of LRR RLKs has not been demonstrated. A set of homozygous T-DNA insertion lines mutated in LRR RLKs was investigated to assess the potential role of these receptors in root meristem maintenance and compatibility. One mutant line, rlk902, was discovered that showed both reduced root growth and resistance to downy mildew in a recessive manner. The phenotypes of this mutated line could not be rescued by complementation, but are nevertheless linked to the T-DNA insertion. Microarray studies showed that gene expression spanning a region of approximately 84 kb upstream of the mutated gene was downregulated. The results suggest T-DNA mediated trans-repression of multiple genes upstream of the RLK902 locus links both phenotypes.  相似文献   

10.
Agrobacterium transfer DNA (T-DNA) is an effective plant mutagen that has been used to create sequence-indexed T-DNA insertion lines in Arabidopsis thaliana as a tool to study gene function. Creating T-DNA insertion lines requires a dependable method for locating the site of insertion in the genome. In this protocol, we describe an adapter ligation-mediated PCR method that we have used to screen a mutant library and identify over 150,000 T-DNA insertional mutants; the method can also be applied to map individual mutants. The procedure consists of three steps: a restriction enzyme-mediated ligation of an adapter to the genomic DNA; a PCR amplification of the T-DNA/genomic DNA junction with primers specific to the adapter and T-DNA; and sequencing of the T-DNA/genomic junction to enable mapping to the reference genome. In most cases, the sequenced genomic region extends to the T-DNA border, enabling the exact location of the insert to be identified. The entire process takes 2 weeks to complete.  相似文献   

11.
The results of genetic and molecular genetic analysis of line 176 of Arabidopsis thaliana with reduced hypocotyls obtained from a previously developed collection of insertion mutants, are presented. The examined mutation proved to be recessive and based on a single insertion of the T-DNA vector pLD3 into the A. thaliana genome. Computer-aided analysis of the amplified in TAIL-RCR DNA region adjacent to the left border of the insertion revealed a putative site of T-DNA insertion, the 2.5-kb At2g09920 gene located in the long arm of chromosome 2, near the centromere.Translated from Genetika, Vol. 41, No. 2, 2005, pp. 166–170.Original Russian Text Copyright © 2005 by Ogarkova, Tomilov, Tomilova, Pogorelko, Tarasov.  相似文献   

12.
SUMMARY: GABI-Kat SimpleSearch is a database of flanking sequence tags (FSTs) of T-DNA mutagenized Arabidopsis thaliana lines that were generated by the GABI-Kat project. Sequences flanking the T-DNA insertion sites were aligned to the A.thaliana genome sequence, annotated with information about the FST, the insertion site and the line from which the FST was derived. A web interface permits text-based as well as sequence-based searches for relevant insertions. GABI-Kat SimpleSearch aims to help biologists to quickly find T-DNA insertion mutants for their research. AVAILABILITY: http://www.mpiz-koeln.mpg.de/GABI-Kat/  相似文献   

13.
14.
15.
Tax FE  Vernon DM 《Plant physiology》2001,126(4):1527-1538
T-DNA insertion mutants have become a valuable resource for studies of gene function in Arabidopsis. In the course of both forward and reverse genetic projects, we have identified novel interchromosomal rearrangements in two Arabidopsis T-DNA insertion lines. Both rearrangements were unilateral translocations associated with the left borders of T-DNA inserts that exhibited normal Mendelian segregation. In one study, we characterized the embryo-defective88 mutation. Although emb88 had been mapped to chromosome I, molecular analysis of DNA adjacent to the T-DNA left border revealed sequence from chromosome V. Simple sequence length polymorphism mapping of the T-DNA insertion demonstrated that a >40-kbp region of chromosome V had inserted with the T-DNA into the emb88 locus on chromosome I. A similar scenario was observed with a prospective T-DNA knockout allele of the LIGHT-REGULATED RECEPTOR PROTEIN KINASE (LRRPK) gene. Whereas wild-type LRRPK is on lower chromosome IV, mapping of the T-DNA localized the disrupted LRRPK allele to chromosome V. In both these cases, the sequence of a single T-DNA-flanking region did not provide an accurate picture of DNA disruption because flanking sequences had duplicated and inserted, with the T-DNA, into other chromosomal locations. Our results indicate that T-DNA insertion lines--even those that exhibit straightforward genetic behavior--may contain an unexpectedly high frequency of rearrangements. Such duplication/translocations can interfere with reverse genetic analyses and provide misleading information about the molecular basis of mutant phenotypes. Simple mapping and polymerase chain reaction methods for detecting such rearrangements should be included as a standard step in T-DNA mutant analysis.  相似文献   

16.
17.
The use of Agrobacterium for gene targeting in plants has been investigated. Leaf protoplasts of five transgenic tobacco lines, containing a T-DNA insertion with a defective npt-II gene at different positions in the plant genome, were transformed via Agrobacterium with a T-DNA containing a npt-II repair gene. After selection for kanamycin resistance and PCR analysis six recombinants were derived from four of the target lines. The recombination frequencies were similar for the different target lines with one recombinant from approximately 3×105 transformants. Apparently gene targeting is more or less independent of the location of the target construct in the plant genome. Molecular analysis revealed that gene targeting had occurred in five of the six recombinant lines. However precise recombination had occurred in only one line, while in the other four lines restoration of the npt-II gene was accompanied by a deletion of part of the target locus. The sixth recombinant line showed restoration of the npt-II gene of the incoming T-DNA construct which was inserted in the plant genome at a position closely linked to the target locus. The different recombination products favour a model in which recombination is via gene conversion followed by reintegration of the synthesized DNA via homologous or illegitimate recombination rather than a reciprocal exchange of DNA between two cross-overs.  相似文献   

18.
19.
From a T-DNA tagged Arabidopsis population, a line, M-57 showing GUS (beta-glucuronidase) expression in the vascular regions of young roots was identified. Southern analysis revealed presence of a single T-DNA insert. Using inverse PCR, the plant sequence flanking the T-DNA insertion was cloned. The insertion was identified to be in the intergenic area between loci At4G13940 and At4G13930, coding for SAHH (S-Adenosyl-l-Homocysteine Hydrolase) and SHMT (Serine Hydroxy Methyl Transferase) genes, respectively. A 452-bp fragment immediately upstream of the T-DNA insertion when cloned and mobilized as a GUS fusion was capable of driving a similar root-specific expression of reporter gene in transgenic Arabidopsis plants and their progenies. This cryptic promoter element does not show the presence of any known root-specific promoter element.  相似文献   

20.
Mirza B 《Genetika》2005,41(12):1601-1607
In the experiment reported here, effect of the nature of T-DNA integration region on the activity of the transgenes was studied by using a colour marker gene in Arabidopsis thaliana. For this purpose a pale homozygous ch-42 mutant was transformed with the wild-type copy of the gene (CH-42) using kanamycin resistance gene as a selectable marker. Two independent lines were identified in which CH-42 transgene was inactive. The T-DNA flanking sequences were recovered from these inactive and two active lines. These flanking sequences were used to examine copy number and DNA methylation of the T-DNA insertion site in active and inactive lines. Southern blots produced by using MspI/HpaII digested genomic DNA showed signs of methylation in both inactive lines. Furthermore, in one of the inactive line the T-DNA flanking sequence probe hybridized to highly repetitive sequence. The results suggest some correlation between silencing of the transgene and methylation of its insertion region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号