首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Junction sequences generated by ''one-ended transposition''.   总被引:7,自引:1,他引:6       下载免费PDF全文
In the presence of the cognate transposase, plasmids containing a single inverted repeat (IR) sequence of Tn21 or of Tn1721 can fuse efficiently with other plasmids ('one-ended transposition'). The junctions across the sequences of donor and recipient DNA in recombinants generated by this process have been determined. These show that the segment of donor DNA starts precisely at the IR sequence (it is variable at the other end), and is flanked by a direct repeat of host DNA (usually 5bp) that was present only once in the original host sequence. These are characteristics of recombinants generated by transposition of Tn21 and Tn1721 themselves, suggesting that the mechanism of one-ended transposition is very similar to that of the corresponding entire elements.  相似文献   

2.
The frequencies of one-ended transposition and normal transposition of derivatives of Tn21 that contain mutant inverted-repeat sequences (IRs) have been measured. In general, there was a linear relationship between the log of the frequency of one-ended transposition of a mutant IR and the log of the frequency of normal transposition of an element flanked by a wild-type IR at one end and by the mutant IR at the other. This implied that one-ended and normal transposition share the rate-limiting step that determines the frequency of transposition and that both IRs are involved in the rate-limiting step in normal transposition. Surprisingly, it was found that only the outer 18 base pairs of the IR of Tn21 engaged accurately in both one-ended and normal transposition, at about 1% of the frequency of the wild-type IR.  相似文献   

3.
In order to better understand the interaction between the inverted repeats (IRs) of the transposon Tn3 and Tn3 transposase, we have looked at the effects of mutations within the IRs on binding of transposase and transposition immunity. Binding of transposase to mutated IRs was measured using a site-specific nitrocellulose filter binding assay and by DNase I protection studies. Transposition immunity was measured in vivo using a transposition mating-out assay. The most important determinants for binding of transposase are present within the inside 21 base-pairs of the IR and several single base-pair mutations significantly reduce binding. Base-pair mutations which do not effect binding have strong negative effects on transposition immunity indicating that simple binding of transposase to the IR is not sufficient for the establishment of transposition immunity.  相似文献   

4.
J Amemura  H Ichikawa  E Ohtsubo 《Gene》1990,88(1):21-24
A series of mutant terminal inverted repeats (IRs), having 2 bp substitutions at various sites within the 38-bp IR sequence of the ampicillin-resistance transposon Tn3, were tested for transposition immunity to Tn3. Mutations within region 1-10 in the IR did not affect transposition immunity, while mutations within region 13-38 inactivated the immunity function. These two regions corresponded to domain A which was not bound specifically by Tn3 transposase and to domain B which was bound by the transposase, respectively. This indicates that specific binding of transposase to domain B within the IR sequence is responsible for transposition immunity.  相似文献   

5.
M C Lett  P M Bennett  D J Vidon 《Gene》1985,40(1):79-91
A new transposon coding for mercury resistance (HgR), Tn3926, has been found in a strain of Yersinia enterocolitica, YE138A14. The element has a size of 7.8 kb and transposes to conjugative plasmids belonging to different incompatibility groups. A restriction map has been established. DNA-DNA hybridization indicates that Tn3926 displays homology with both Tn501 and Tn21; the greatest homology is shown with the regions of these transposons that encode HgR. Weaker homology is observed between Tn3926 sequences and those regions of Tn501 and Tn21 that encode transposition functions. Complementation experiments indicate that the Tn3926 transposase mediates transposition of Tn21, albeit somewhat inefficiently, but not of Tn501, while the resolvase mediates resolution of transposition cointegrates formed via Tn21, Tn501, or Tn1721.  相似文献   

6.
The complete (6,449-bp) nucleotide sequence of the first-described natural transposon of Listeria monocytogenes, designated Tn5422, was determined. Tn5422 is a transposon of the Tn3 family delineated by imperfect inverted repeats (IRs) of 40 bp. It contains two genes which confer cadmium resistance (M. Lebrun, A. Audurier, and P. Cossart, J. Bacteriol. 176:3040-3048, 1994) and two open reading frames that encode a transposase (TnpA) and a resolvase (TnpR) of 971 and 184 amino acids, respectively. The cadmium resistance genes and the transposition genes are transcribed in opposite directions and are separated by a putative recombination site (res). The structural elements presumed to be involved in transposition of Tn5422 (IRs, transposase, resolvase, and res) are very similar to those of Tn917, suggesting a common origin. The transposition genes were not induced by cadmium. Analysis of sequences surrounding Tn5422 in nine different plasmids of L. monocytogenes indicated that Tn5422 is a functional transposon, capable of intramolecular replicative transposition, generating deletions. This transposition process is probably the reason for the size diversity of the L. monocytogenes plasmids. Restriction analysis and Southern hybridization revealed the presence of Tn5422 in all the plasmid-mediated cadmium-resistant L. monocytogenes strains tested but not in strains encoding cadmium resistance on the chromosome.  相似文献   

7.
From a plasmid carrying the tnpA gene and one inverted repeat sequence (IR) of transposon Tn3, plasmids containing a structure characteristic of transposons, i.e., two IRs flanking a tnpA gene, were generated spontaneously in vivo. They appear to have arisen either through the formation of a “staggered” head-to-head dimer or by so-called one-ended transposition. These putative transposons could indeed transpose to, or form cointegrates with, a recipient plasmid. Based on these findings it is proposed that a primeval transposase gene and its target site evolved first, and subsequently gave rise to a “fully-fledged” transposon by head-to-head dimerization or one-ended transposition. Received: 30 October 1998 / Accepted: 1 April 1999  相似文献   

8.
Two domains in the terminal inverted-repeat sequence of transposon Tn3   总被引:4,自引:0,他引:4  
H Ichikawa  K Ikeda  J Amemura  E Ohtsubo 《Gene》1990,86(1):11-17
Tn3 and related transposons have terminal inverted repeats (IR) of about 38 bp that are needed as sites for transposition. We made mini-Tn3 derivatives which had a wild-type IR of Tn3 at one end and either the divergent IR of the Tn3-related transposon, gamma delta or IS101, or a mutant IR of Tn3 at the other end. We then examined both in vivo transposition (cointegration between transposition donor and target molecules) of these mini-Tn3 elements and in vitro binding of Tn3-encoded transposase to their IRs. None of the elements with an IR of gamma delta or IS101 mediated cointegration efficiently. This was due to inefficient binding of transposase to these IR. Most mutant IR also interfered with cointegration, even though transposase bound to some mutant IR as efficiently as it did to wild type. This permitted the Tn3 IR sequence to be divided into two domains, named A and B, with respect to transposase binding. Domain B, at positions 13-38, was involved in transposase binding, whereas domain A, at positions 1-10, was not. The A domain may contain the sequence recognized by some other (e.g., host) factor(s) to precede the actual cointegration event.  相似文献   

9.
Binding of the Tn3 transposase to the inverted repeats of Tn3   总被引:4,自引:0,他引:4  
The transposase protein and the inverted repeat sequences of Tn3 are both essential for Tn3 cointegrate formation and transposition. We have developed two assays to detect site-specific binding of transposase to the inverted repeats: (1) a nitrocellulose filter binding assay in which transposase preferentially retains DNA fragments containing inverted repeat sequences, and (2) a DNase 1 protection assay in which transposase prevents digestion of the inverted repeats by DNase 1. Both assays show that transposase binds directly to linear, duplex DNA containing the inverted repeats. The right inverted repeat of Tn3 binds slightly more strongly than the left one. Site-specific binding requires magnesium but does not require a high energy cofactor.  相似文献   

10.
In order to study the transposase enzymes of Class II prokaryotic transposable elements, we have constructed genes encoding hybrid transposase proteins. This was done by recombination in vivo between the tnpA genes of transposons Tn501 and Tn21. These hybrid genes can complement in trans a transposition-defective mutant of Tn501. The structures of the products of this complementation indicate whether the specificity of the hybrid transposase in recognising the 38 bp terminal inverted repeats is that of Tn501 or that of Tn21. The determinant of this specificity is in the N-terminal region of the transposase protein, between amino acids 28 and 216. The predicted amino acid sequences so far determined of transposases from the Class II family reveal an area of homology in this region.  相似文献   

11.
The self-transmissible plasmid pUO1 from Delftia acidovorans strain B carries two haloacetate-catabolic transposons, TnHad1 and TnHad2, and the mer genes for resistance to mercury. The complete 67,066-bp sequence of pUO1 revealed that the mer genes were also carried by two Tn402/Tn5053-like transposons, Tn4671 and Tn4672, and that the pUO1 backbone regions shared 99% identity to those of the archetype IncP-1beta plasmid R751. Comparison of pUO1 with three other IncP-1beta plasmids illustrated the importance of transposon insertion in the diversity and evolution of this group of plasmids. Mutational analysis of the four outermost residues in the inverted repeats (IRs) of TnHad2, a Tn21-related transposon, revealed a crucial role of the second residue of its IRs in transposition.  相似文献   

12.
Y Sugino  M Morita 《The EMBO journal》1992,11(5):1965-1971
The structures of two plasmids, one found in one of the transformants with putative products of an in vitro DNA rearrangement reaction containing the Tn3 transposase, and another found as a spontaneous tnpA negative derivative of an overproducer of the Tn3 transposase, have been elucidated. They both had shown non-conventional results in restriction enzyme analysis. For the determination of the structures, we used restriction enzyme analysis, denaturation and renaturation experiments, and DNA nucleotide sequencing. The structures turned out to be 'staggered' head-to-head dimers of the original monomer plasmids, containing gigantic inverted repeats separated by two identical spacers which are also in inverted orientations themselves. Two alternative models for the mode of origin of such a structure, a bimolecular model and a unimolecular one, are discussed. The circumstances in which these two plasmids occurred suggest possible involvement of the Tn3 transposase in their generation.  相似文献   

13.
Recent studies have indicated that the evolutionarily common catabolic gene clusters are loaded on structurally diverse toluene-catabolic (TOL) plasmids and their residing transposons. To elucidate the mechanisms supporting the diversification of catabolic plasmids and transposons, we determined here the complete 107,929 bp sequence of pWW53, a TOL plasmid from Pseudomonas putida MT53. pWW53 was found to belong to the IncP-7 incompatibility group that play important roles in the catabolism of several xenobiotics. pWW53 carried two distinct transposase-resolvase gene clusters (tnpAR modules), five short terminal inverted repeats (IRs), and three site-specific resolution (res) sites that are all typical of class II transposons. This organization of pWW53 suggested the four possible transposable regions, Tn4657 to Tn4660. The largest 86 kb region (Tn4657) spanned the three other regions, and Tn4657 and Tn4660 (62 kb) covered all of the 36 xyl genes for toluene catabolism. Our subsequent transposition experiments clarified that the three transposons, Tn4657 to Tn4659, indeed exhibit their transposability, and that pWW53 also generated another 37 kb toluene-catabolic transposon, Tn4656, which carried the two separated and inversely oriented segments of pWW53: the tnpRA-IR module of Tn4658 and a part of xyl gene clusters on Tn4657. The Tn4658 transposase was able to mediate the transposition of Tn4658, Tn4657, and Tn4656, while the Tn4659 transposase catalyzed only the transposition of Tn4659. Tn4656 was formed by the Tn4658 resolvase-mediated site-specific inversion between the two inversely oriented res sites on pWW53. These findings and comparison with other catabolic plasmids clearly indicate multiple copies of transposition-related genes and sites on one plasmid and their recombination activities contribute greatly to the diversification of plasmid structures as well as wide dissemination of the evolutionary common gene clusters in various plasmids.  相似文献   

14.
Mutational analysis of the inverted repeats of Tn3   总被引:1,自引:0,他引:1  
The transposase protein and the terminal inverted repeat sequences of the prokaryotic transposon Tn3 are essential for transposition. In order to determine the sequences within the inverted repeat necessary for transposition and interaction with transposase, we have constructed a series of mini-Tn3s in which specific mutations have been introduced into the inverted repeats. The effects of these mutations on transposition have been assayed in vivo using a mating-out transposition assay. Several single base-pair mutations within the transposase binding site reduce transposition frequency. Mutations that affect transposition show a greater effect when present in both inverted repeats than when present in only one inverted repeat.  相似文献   

15.
Various xenobiotic-degrading genes on many catabolic plasmids are often flanked by two copies of an insertion sequence, IS1071. This 3.2-kb IS element has long (110-bp) terminal inverted repeats (IRs) and a transposase gene that are phylogenetically related to those of the class II transposons. However, the transposition mechanism of IS1071 has remained unclear. Our study revealed that IS1071 was only able to transpose at high frequencies in two environmental beta-proteobacterial strains, Comamonas testosteroni and Delftia acidovorans, and not in any of the bacteria examined which belong to the alpha- and gamma-proteobacteria. IS1071 was found to have the functional features of the class II transposons in that (i) the final product of the IS1071 transposition was a cointegrate of its donor and target DNA molecules connected by two directly repeated copies of IS1071, one at each junction; (ii) a 5-bp duplication of the target sequence was observed at the insertion site; and (iii) a tnpA mutation of IS1071 was efficiently complemented by supplying the wild-type tnpA gene in trans. Deletion analysis of the IS1071 IR sequences indicated that nearly the entire region of the IRs was required for its transposition, suggesting that the interaction between the transposase and IRs of IS1071 might be different from that of the other well-characterized class II transposons.  相似文献   

16.
The transposons Tn21, Tn501, and Tn1721 are related to Tn3. Transposition-deficient mutants (tnpA) of these elements were used to test for complementation of transpostion. Transposition of tnpA mutants of Tn501 and Tn1721 was restored by the presence in trans of Tn21, Tn501, and Tn1721, but transposition of a tnpA mutant of Tn21 was restored in trans only by Tn21 itself. Tn3 did not complement transposition of Tn21, Tn501, or Tn1721, and these elements did not complement transposition of Tn3.  相似文献   

17.
18.
One-ended transposition of Tn21 generates recombinants usually containing a whole copy of the donor replicon plus a short duplication of it (S. M?tsch, R. Schmitt, P. Avila, F. de la Crue, E. Ward, and J. Grinsted, Nucleic Acids Res. 13:3335-3342, 1985). This work shows that recombinants containing less than a whole copy of the donor replicon (hereafter called short recombinants) could also be detected when plasmid donors which contained two selectable genetic markers were used. Short recombinants were produced at the same frequency from TnpR+ donor molecules as from TnpR- donor molecules in a RecA- background. Therefore, they were not resolution products of larger recombinants. This result invalidates a previous hypothesis to explain one-ended transposition, that is, that one-ended transposition arises from the use of secondary ends by the transposition apparatus. On the other hand, it suggests that one-ended transposition of Tn21 occurs via a simple insertion mechanism.  相似文献   

19.
The inverted repeat (IR) sequences delimiting the left and right ends of many naturally active mariner DNA transposons are non-identical and have different affinities for their transposase. We have compared the preferences of two active mariner transposases, Mos1 and Mboumar-9, for their imperfect transposon IRs in each step of transposition: DNA binding, DNA cleavage, and DNA strand transfer. A 3.1 Å resolution crystal structure of the Mos1 paired-end complex containing the pre-cleaved left IR sequences reveals the molecular basis for the reduced affinity of the Mos1 transposase DNA-binding domain for the left IR as compared with the right IR. For both Mos1 and Mboumar-9, in vitro DNA transposition is most efficient when the preferred IR sequence is present at both transposon ends. We find that this is due to the higher efficiency of cleavage and strand transfer of the preferred transposon end. We show that the efficiency of Mboumar-9 transposition is improved almost 4-fold by changing the 3′ base of the preferred Mboumar-9 IR from guanine to adenine. This preference for adenine at the reactive 3′ end for both Mos1 and Mboumar-9 may be a general feature of mariner transposition.  相似文献   

20.
The effects of DNA methyltransferases on Tn3 transposition were investigated. The E. coli dam (deoxyadenosine methylase) gene was found to have no effect on Tn3 transposition. In contrast, Tn3 was found to transpose more frequently in dcm+ (deoxycytosine methylase) cells than in dcm- mutants. When the EcoRII methylase gene was introduced into dcm- cells (E. coli strain GM208), the frequency of Tn3 transposition in GM208 was dramatically increased. The EcoRII methylase recognizes and methylates the same sequence as does the dcm methylase. These results suggest that deoxycytosine methylase modified DNA may be a preferred target for Tn3 transposition. Experiments were also performed to determine whether the Tn3 transposase was involved in DNA modification. Plasmid DNA isolated from dcm- E. coli containing the Tn3 transposase gene was susceptible to ApyI digestion but resistant to EcoRI digestion, suggesting that Tn3 transposase modified the dcm recognition sequence. In addition, restriction enzymes TaqI, AvaII, BglI and HpaII did not digest this DNA completely, suggesting that the recognition sequences of TaqI, AvaII, BglI and HpaII were modified by Tn3 transposase to a certain degree. The type(s), the extent and mechanism(s) of this modification remain to be investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号