首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lathyrus sativus L. (Grass pea) is the source for cheap and nutritious food choice in drought and famine susceptible zones in greater part of North India and Africa. The non-protein amino acid β-N-oxalyl-L-α,β-diaminopropionic acid (β-ODAP) has been known for decades for its potent neurotoxic effect, causing irreversible neurodegenerative disease “neurolathyrism”, present in both seed and leaf of Lathyrus sativus L. and other species in varying proportions. It is crucial to establish a rapid as well as reliable detection methodology for β-ODAP content in various Lathyrus plants. Currently available HPLC based methods involve multi-step derivatization of the sample. To overcome this, we have developed β-ODAP analysis method by HPLC without any prior derivatization. This method is statistically significant in the range of 2 to 100μg/ml and exhibited linear response with r 2 > 0.99. Limit of detection and quantitation of the later method was determined to be 5.56 μg/ml and 16.86 μg/ml, respectively. In addition to this, a TLC based method has also been developed. The limit of detection of β-ODAP is 0.6μg and for its substrate, L-1,2-diaminopropionic acid is 5μg. Both HPLC and TLC methods were validated by conducting in-vitro bioconversion test to detect the presence of biocatalyst in plant extract. This method is economical, rapid and simple.  相似文献   

2.
Intraperitoneal administration of β-N-oxalyl-l-αβ-diaminopropionic acid, the neurotoxin from Lathyrus sativus, to 12-day-old rats causes typical convulsions within 10min. There is a striking accumulation of glutamine in the brain, and chronic ammonia toxicity is indicated. There are no changes in the amounts of urea, aspartic acid and glutamic acid in the brain. Adult rats, even when injected with a dose of excess of β-N-oxalyl-l-αβ-diaminopropionic acid, do not develop symptoms, and there are no changes in the amounts of glutamine or ammonia in the brain. A significant concentration of β-N-oxalyl-l-αβ-diaminopropionic acid can be detected in the brain of the young rat but not in that of the adult animal. It is concluded that β-N-oxalyl-l-αβ-diaminopropionic acid interferes with the ammonia-generating or -fixing mechanisms in the brain and leads to chronic ammonia toxicity.  相似文献   

3.
Grass pea (Lathyrus sativus L.) is a grain legume commonly grown in Asia and Africa for food and forage. It is a highly nutritious and robust crop, capable of surviving both droughts and floods. However, it produces a neurotoxic compound, β-N-oxalyl-L-α,β-diaminopropionic acid (β-ODAP), which can cause a severe neurological disorder when consumed as a primary diet component. While the catalytic activity associated with β-ODAP formation was demonstrated more than 50 years ago, the enzyme responsible for this activity has not been identified. Here, we report on the identity, activity, 3D structure, and phylogenesis of this enzyme—β-ODAP synthase (BOS). We show that BOS belongs to the benzylalcohol O-acetyltransferase, anthocyanin O-hydroxycinnamoyltransferase, anthranilate N-hydroxycinnamoyl/benzoyltransferase, deacetylvindoline 4-O-acetyltransferase superfamily of acyltransferases and is structurally similar to hydroxycinnamoyl transferase. Using molecular docking, we propose a mechanism for its catalytic activity, and using heterologous expression in tobacco leaves (Nicotiana benthamiana), we demonstrate that expression of BOS in the presence of its substrates is sufficient for β-ODAP production in vivo. The identification of BOS may pave the way toward engineering β-ODAP–free grass pea cultivars, which are safe for human and animal consumption.  相似文献   

4.
Non-protein amino acids, often isomers of the standard 20 protein amino acids, have defense-related functions in many plant species. A targeted search for jasmonate-induced metabolites in cultivated rice (Oryza sativa) identified (R)-β-tyrosine, an isomer of the common amino acid (S)-α-tyrosine in the seeds, leaves, roots, and root exudates of the Nipponbare cultivar. Assays with 119 diverse cultivars showed a distinct presence/absence polymorphism, with β-tyrosine being most prevalent in temperate japonica cultivars. Genetic mapping identified a candidate gene on chromosome 12, which was confirmed to encode a tyrosine aminomutase (TAM1) by transient expression in Nicotiana benthamiana and in vitro enzyme assays. A point mutation in TAM1 eliminated β-tyrosine production in Nipponbare. Rice cultivars that do not produce β-tyrosine have a chromosome 12 deletion that encompasses TAM1. Although β-tyrosine accumulation was induced by the plant defense signaling molecule jasmonic acid, bioassays with hemipteran and lepidopteran herbivores showed no negative effects at physiologically relevant β-tyrosine concentrations. In contrast, root growth of Arabidopsis thaliana and other tested dicot plants was inhibited by concentrations as low as 1 μM. As β-tyrosine is exuded into hydroponic medium at higher concentrations, it may contribute to the allelopathic potential of rice.  相似文献   

5.
The carotenoid biosynthetic pathway was genetically manipulated using the recombinant PAC (Phytoene synthase-2A-Carotene desaturase) gene in Korean soybean (Glycine max L. cv. Kwangan). The PAC gene was linked to either the β-conglycinin (β) or CaMV-35S (35S) promoter to generate β-PAC and 35S-PAC constructs, respectively. A total of 37 transgenic lines (19 for β-PAC and 18 for 35S-PAC) were obtained through Agrobacterium-mediated transformation using the modified half-seed method. The multi-copy insertion of the transgene was determined by genomic Southern blot analysis. Four lines for β-PAC were selected by visual inspection to confirm an orange endosperm, which was not found in the seeds of the 35S-PAC lines. The strong expression of PAC gene was detected in the seeds of the β-PAC lines and in the leaves of the 35S-PAC lines by RT-PCR and qRT-PCR analyses, suggesting that these two different promoters function distinctively. HPLC analysis of the seeds and leaves of the T2 generation plants revealed that the best line among the β-PAC transgenic seeds accumulated 146 µg/g of total carotenoids (approximately 62-fold higher than non-transgenic seeds), of which 112 µg/g (77%) was β-carotene. In contrast, the level and composition of the leaf carotenoids showed little difference between transgenic and non-transgenic soybean plants. We have therefore demonstrated the production of a high β-carotene soybean through the seed-specific overexpression of two carotenoid biosynthetic genes, Capsicum phytoene synthase and Pantoea carotene desaturase. This nutritional enhancement of soybean seeds through the elevation of the provitamin A content to produce biofortified food may have practical health benefits in the future in both humans and livestock.  相似文献   

6.

Background and Aims

α-Amylase in grass caryopses (seeds) is usually expressed upon commencement of germination and is rarely seen in dry, mature seeds. A heat-stable α-amylase activity was unexpectedly selected for expression in dry annual ryegrass (Lolium rigidum) seeds during targeted selection for low primary dormancy. The aim of this study was to characterize this constitutive activity biochemically and determine if its presence conferred insensitivity to the germination inhibitors abscisic acid and benzoxazolinone.

Methods

α-Amylase activity in developing, mature and germinating seeds from the selected (low-dormancy) and a field-collected (dormant) population was characterized by native activity PAGE. The response of seed germination and α-amylase activity to abscisic acid and benzoxazolinone was assessed. Using an alginate affinity matrix, α-amylase was purified from dry and germinating seeds for analysis of its enzymatic properties.

Key Results

The constitutive α-amylase activity appeared late during seed development and was mainly localized in the aleurone; in germinating seeds, this activity was responsive to both glucose and gibberellin. It migrated differently on native PAGE compared with the major activities in germinating seeds of the dormant population, but the enzymatic properties of α-amylase purified from the low-dormancy and dormant seeds were largely indistinguishable. Seed imbibition on benzoxazolinone had little effect on the low-dormancy seeds but greatly inhibited germination and α-amylase activity in the dormant population.

Conclusions

The constitutive α-amylase activity in annual ryegrass seeds selected for low dormancy is electrophoretically different from that in germinating seeds and its presence confers insensitivity to benzoxazolinone. The concurrent selection of low dormancy and constitutive α-amylase activity may help to enhance seedling establishment under competitive conditions.  相似文献   

7.
Genetically modified (GM) cowpea seeds expressing αAI-1, an α-amylase inhibitor from the common bean, have been shown to be immune against several bruchid species. Effective control of such pests by growing GM cowpea could promote the spread of bruchid species that are αAI-1 tolerant. Consequently, the sustainability of bruchid pest control could be increased by combining GM seeds and hymenopteran parasitoids. However, there are concerns that αAI-1 could interfere with the biological control provided by parasitoids. Here, we assessed the impact of GM cowpea seeds expressing αAI-1 on the αAI-1-tolerant bruchid Zabrotes subfasciatus and its parasitoid Dinarmus basalis. αAI-1 in cowpea seeds did not increase resistance to Z. subfasciatus or affect the mortality rate of Z. subfasciatus larvae. Parasitism of Z. subfasciatus by D. basalis and fitness of D. basalis offspring were not affected by the presence of αAI-1. Thus, αAI-1-expressing cowpeas and parasitoids should be compatible for the control of bruchid pests.  相似文献   

8.
Physical dormancy, a structural feature of the seed coat known as hard seededness, is an important characteristic for adaptation of plants against unstable and unpredictable environments. To dissect the molecular basis of qHS1, a quantitative trait locus for hard seededness in soybean (Glycine max (L) Merr.), we developed a near-isogenic line (NIL) of a permeable (soft-seeded) cultivar, Tachinagaha, containing a hard-seed allele from wild soybean (G. soja) introduced by successive backcrossings. The hard-seed allele made the seed coat of Tachinagaha more rigid by increasing the amount of β-1,4-glucans in the outer layer of palisade cells of the seed coat on the dorsal side of seeds, known to be a point of entrance of water. Fine-mapping and subsequent expression and sequencing analyses revealed that qHS1 encodes an endo-1,4-β-glucanase. A single-nucleotide polymorphism (SNP) introduced an amino acid substitution in a substrate-binding cleft of the enzyme, possibly reducing or eliminating its affinity for substrates in permeable cultivars. Introduction of the genomic region of qHS1 from the impermeable (hard-seeded) NIL into the permeable cultivar Kariyutaka resulted in accumulation of β-1,4-glucan in the outer layer of palisade cells and production of hard seeds. The SNP allele found in the NIL was further associated with the occurrence of hard seeds in soybean cultivars of various origins. The findings of this and previous studies may indicate that qHS1 is involved in the accumulation of β-1,4-glucan derivatives such as xyloglucan and/or β-(1,3)(1,4)-glucan that reinforce the impermeability of seed coats in soybean.  相似文献   

9.
Fatty Acid Synthetase of Spinacia oleracea Leaves   总被引:6,自引:4,他引:2       下载免费PDF全文
The molecular organization of fatty acid synthetase system in spinach (Spinacia oleracea L. var. Viroflay) leaves was examined by a procedure similar to that employed for the safflower system (Carthamus tinctorius var. UC-1). The crude extract contained all the component activities (acetyl-CoA:ACP transacylase, malonyl-CoA:ACP transacylase, β-ketoacyl-ACP synthetase, β-ketoacyl-ACP reductase, β-hydroxyacyl-ACP dehydrase, and enoyl-ACP reductase [I]) involved in the synthesis of fatty acids, but enoyl-ACP reductase (II) present in safflower seeds extract could not be detected spectrophotometrically. By polyethylene glycol fractionation followed by several chromatographic procedures, i.e. Sephadex G-200, hydroxyapatite, and blue-agarose, the component enzymes were clearly separated from one another. Properties of β-ketoacyl-ACP reductase, β-hydroxyacyl-ACP dehydrase, and enoyl-ACP reductase (I) from spinach were compared with the same enzymes in safflower seeds and Escherichia coli.  相似文献   

10.
Bean (Phaseolus vulgaris L.) seeds contain a putative plant defense protein that inhibits insect and mammalian but not plant α-amylases. We recently (J Moreno, MJ Chrispeels [1989] Proc Natl Acad Sci USA 86:7885-7889) presented strong circumstantial evidence that this α-amylase inhibitor (αAI) is encoded by an already-identified lectin gene whose product is referred to as lectin-like-protein (LLP). We have now made a chimeric gene consisting of the coding sequence of the lectin gene that encodes LLP and the 5′ and 3′ flanking sequences of the lectin gene that encodes phytohemagglutinin-L. When this chimeric gene was expressed in transgenic tobacco (Nicotiana tabacum), we observed in the seeds a series of polypeptides (Mr 10,000-18,000) that cross-react with antibodies to the bean α-amylase inhibitor. Most of these polypeptides bind to a pig pancreas α-amylase affinity column. An extract of the seeds of the transformed tobacco plants inhibits pig pancreas α-amylase activity as well as the α-amylase present in the midgut of Tenebrio molitor. We suggest that introduction of this lectin gene (to be called αai) into other leguminous plants may be a strategy to protect the seeds from the seed-eating larvae of Coleoptera.  相似文献   

11.
The production of trimethylamine (TMA) from quaternary amines such as l-carnitine or γ-butyrobetaine (4-(trimethylammonio)butanoate) by gut microbial enzymes has been linked to heart disease. This has led to interest in enzymes of the gut microbiome that might ameliorate net TMA production, such as members of the MttB superfamily of proteins, which can demethylate TMA (e.g., MttB) or l-carnitine (e.g., MtcB). Here, we show that the human gut acetogen Eubacterium limosum demethylates γ-butyrobetaine and produces MtyB, a previously uncharacterized MttB superfamily member catalyzing the demethylation of γ-butyrobetaine. Proteomic analyses of E. limosum grown on either γ-butyrobetaine or dl-lactate were employed to identify candidate proteins underlying catabolic demethylation of the growth substrate. Three proteins were significantly elevated in abundance in γ-butyrobetaine-grown cells: MtyB, MtqC (a corrinoid-binding protein), and MtqA (a corrinoid:tetrahydrofolate methyltransferase). Together, these proteins act as a γ-butyrobetaine:tetrahydrofolate methyltransferase system, forming a key intermediate of acetogenesis. Recombinant MtyB acts as a γ-butyrobetaine:MtqC methyltransferase but cannot methylate free cobalamin cofactor. MtyB is very similar to MtcB, the carnitine methyltransferase, but neither was detectable in cells grown on carnitine nor was detectable in cells grown with γ-butyrobetaine. Both quaternary amines are substrates for either enzyme, but kinetic analysis revealed that, in comparison to MtcB, MtyB has a lower apparent Km for γ-butyrobetaine and higher apparent Vmax, providing a rationale for MtyB abundance in γ-butyrobetaine-grown cells. As TMA is readily produced from γ-butyrobetaine, organisms with MtyB-like proteins may provide a means to lower levels of TMA and proatherogenic TMA-N-oxide via precursor competition.  相似文献   

12.
Brazilian native fruits are unmatched in their variety, but a poorly explored resource for the development of food and pharmaceutical products. The aim of this study was to evaluate the phenolic composition as well as the antioxidant and anti-inflammatory activities of the extracts of leaves, seeds, and pulp of four Brazilian native fruits (Eugenia leitonii, Eugenia involucrata, Eugenia brasiliensis, and Eugenia myrcianthes). GC—MS analyses of the ethanolic extracts showed the presence of epicatechin and gallic acid as the major compounds in these fruits. Antioxidant activity was measured using synthetic DPPH free-radical scavenging, β-carotene bleaching assay, and reactive oxygen species (ROO·, O2·, and HOCl). The fruit extracts also exhibited antioxidant effect against biologically relevant radicals such as peroxyl, superoxide, and hypochlorous acid. In general, the pulps were the fruit fractions that exhibited the lowest antioxidant activities, whereas the leaves showed the highest ones. The anti-inflammatory activity was assessed in an in vivo model using the carrageenan-induced neutrophil migration assay, which evaluates the inflammatory response in the acute phase. The pulp, seeds, and leaves of these fruits reduced the neutrophil influx by 40% to 64%. Based on these results, we suggest that the anti-inflammatory activity of these native fruits is related to the modulation of neutrophil migration, through the inhibition of cytokines, chemokines, and adhesion molecules, as well as to the antioxidant action of their ethanolic extracts in scavenging the free-radicals released by neutrophils. Therefore, these native fruits can be useful to produce food additives and functional foods.  相似文献   

13.
The pink or red ketocarotenoids, canthaxanthin and astaxanthin, are used as feed additives in the poultry and aquaculture industries as a source of egg yolk and flesh pigmentation, as farmed animals do not have access to the carotenoid sources of their wild counterparts. Because soybean is already an important component in animal feed, production of these carotenoids in soybean could be a cost-effective means of delivery. In order to characterize the ability of soybean seed to produce carotenoids, soybean cv. Jack was transformed with the crtB gene from Pantoea ananatis, which codes for phytoene synthase, an enzyme which catalyzes the first committed step in the carotenoid pathway. The crtB gene was engineered together in combinations with ketolase genes (crtW from Brevundimonas sp. strain SD212 and bkt1 from Haematococcus pluvialis) to produce ketocarotenoids; all genes were placed under the control of seed-specific promoters. HPLC results showed that canthaxanthin is present in the transgenic seeds at levels up to 52 μg/g dry weight. Transgenic seeds also accumulated other compounds in the carotenoid pathway, such as astaxanthin, lutein, β-carotene, phytoene, α-carotene, lycopene, and β-cryptoxanthin, whereas lutein was the only one of these detected in non-transgenic seeds. The accumulation of astaxanthin, which requires a β-carotene hydroxylase in addition to a β-carotene ketolase, in the transgenic seeds suggests that an endogenous soybean enzyme is able to work in combination with the ketolase transgene. Soybean seeds that accumulate ketocarotenoids could potentially be used in animal feed to reduce or eliminate the need for the costly addition of these compounds.  相似文献   

14.
1. l-αγ-Diaminobutyric acid is metabolized in Xanthomonas sp. to aspartic β-semialdehyde, aspartic acid and oxaloacetic acid. 2. Aspartic β-semialdehyde is formed from diaminobutyric acid by a pyruvate-dependent γ-transamination. 3. The transaminase has a pH optimum of 9 and exhibits a high degree of substrate specificity, as analogues of diaminobutyric acid and pyruvate are inert in the system. The transaminase is inhibited by carbonyl-binding agents such as hydroxylamine. 4. Aspartic acid is formed from aspartic β-semialdehyde by an NAD+-dependent dehydrogenation. 5. The dehydrogenase has a pH optimum of 8·5 and is a thiol enzyme. It is specific for aspartic β-semialdehyde but analogues of NAD+ such as 3-acetylpyridine–adenine dinucleotide and deamino-NAD are partly active in the system. 6. The significance of these reactions is discussed in relation to diaminobutyric acid metabolism in plants and mammalian systems.  相似文献   

15.
We obtained carrot (Daucus carota) cells possessing the 5′-noncoding sequence of the ORF12 gene (roIC) of TL-DNA of the Ri plasmid and a structural gene of bacterial β-glucuronidase by Agrobacterium-mediated transformation. When such cells were cultured in medium containing 2,4-dichlorophenoxyacetic acid, substantial reduction in β-glucuronidase activity was observed. Upon transferring the cells from a 2,4-D-containing medium to one devoid of 2,4-dichlorophenoxyacetic acid, enhanced expression of β-glucuronidase in somatic embryo development was recorded. Activation by gibberillic acid and suppression by abscisic acid of β-glucuronidase activities, in concord with embryogenesis, were also noted.  相似文献   

16.
An N-carbamoyl-β-alanine amidohydrolase of industrial interest from Agrobacterium tumefaciens C58 (βcarAt) has been characterized. βcarAt is most active at 30°C and pH 8.0 with N-carbamoyl-β-alanine as a substrate. The purified enzyme is completely inactivated by the metal-chelating agent 8-hydroxyquinoline-5-sulfonic acid (HQSA), and activity is restored by the addition of divalent metal ions, such as Mn2+, Ni2+, and Co2+. The native enzyme is a homodimer with a molecular mass of 90 kDa from pH 5.5 to 9.0. The enzyme has a broad substrate spectrum and hydrolyzes nonsubstituted N-carbamoyl-α-, -β-, -γ-, and -δ-amino acids, with the greatest catalytic efficiency for N-carbamoyl-β-alanine. βcarAt also recognizes substrate analogues substituted with sulfonic and phosphonic acid groups to produce the β-amino acids taurine and ciliatine, respectively. βcarAt is able to produce monosubstituted β2- and β3-amino acids, showing better catalytic efficiency (kcat/Km) for the production of the former. For both types of monosubstituted substrates, the enzyme hydrolyzes N-carbamoyl-β-amino acids with a short aliphatic side chain better than those with aromatic rings. These properties make βcarAt an outstanding candidate for application in the biotechnology industry.  相似文献   

17.

Background/Aims

H. pylori CagL amino acid polymorphisms such as Y58/E59 can increase integrin α5β1 expression and gastric cancer risk. Hypochlorhydria during chronic H. pylori infection promotes gastric carcinogenesis. The study test whether CagL-Y58/E59 isolates may regulate integrin α5β1 to translocate CagA via the type IV secretory system even under adverse pH conditions, and whether the integrin α5β1 expression primed by H. pylori is a pH-dependent process involving hypochlorhydria in a vicious cycle to promote gastric carcinogenesis.

Methods

The expressions of integrin α5 and β1, CagA phosphorylation, IL-8, FAK, EGFR, and AKT activation of AGS cells exposed to CagL-Y58/E59 H. pylori, isogenic mutants, and different H. pylori CagL amino acid replacement mutants under different pH values were determined. Differences in the pepsinogen I/II ratio (indirectly indicating gastric acidity) and gastric integrin α5β1 expression were compared among the 172 H. pylori-infected patients with different cancer risks.

Results

Even under adversely low pH condition, H. pylori CagL-Y58/E59 still keep active integrin β1 with stronger binding affinity, CagA translocation, IL-8, FAK, EGFR, and AKT activation than the other mutants (p<0.05). The in vitro assay revealed higher priming of integrin α5β1 by H. pylori under elevated pH as hypochlorhydria (p<0.05). In the H. pylori-infected patients, the gastric integrin α5β1 expressions were higher in those with pepsinogen I/II ratio <6 than in those without (p<0.05).

Conclusions

H. pylori CagL-Y58/E59 prime higher integrin under adverse pH and may involve to enhance hypochlorhydria vicious cycle for gastric carcinogenesis, and thus require an early eradication.  相似文献   

18.
Seeds of Pisum sativum L. cv Finale and Lathyrus odoratus L. cv Spencer were germinated aseptically in moistened sand in the dark. At several stages, the amino acid composition of the exudate and of the corresponding roots was analyzed. A number of common amino acids, including homoserine, were exuded by the growing seedling root in an early stage and were partly reabsorbed later. A number of uncommon amino acids, including several isoxazolin-5-one derivatives, uracil alanines, l-γ-glutamyl-d-alanine, and α-aminoadipic acid were exuded at different rates.  相似文献   

19.
Reactive arthritis is the development of sterile joint inflammation as a sequel to a remote infection, often in the gut. We have previously shown that a low dose of S. enteritidis inoculated to streptomycin-pretreated mice generates a self-limiting enterocolitis suitable for studying reactive arthritis. Here we show that consumption of Lactobacillus casei prior to infection abolishes intestinal and joint inflammation triggered by Salmonella. BALB/c mice were sacrificed after infection; intestinal and joint samples were analyzed for histological changes and expression of cytokines. TNF-α was measured by ELISA and the expression of IL-1β, IL-6, IL-10, IL-17, IL-23 and TGF-β was assessed by qPCR. L. casei consumption prevented Salmonella-induced synovitis, the increment of TNF-α in knees and the increase of IL-17 expression in popliteal and inguinal lymph nodes. At intestinal level consumption of L. casei drastically diminished S. enteritidis invasiveness and shortened splenic persistence of the pathogen. Bacterial loads recovered at days 2 and 5 from Peyer’s patches were 10-fold lower in mice fed with L. casei. In accordance, we found that the augment in gut permeability induced during enterocolitis was decreased in those animals. Consumption of L. casei prior to infection failed to increase anti- inflammatory molecules such as IL-10 and TGF-β in the intestine. On the other hand, consumption of L. casei abrogated the expression of TNF-α, IL-17, IL-23, IL-1β and IL-6 in cecum and mesenteric lymph nodes. These cytokines are needed for differentiation of immune cells involved in the development of reactive arthritis such as Th17 and γδ T cells. Trafficking of these inflammatory cells from the gut to the joints has been proposed as a mechanism of generation of reactive arthritis. Our results suggest that L. casei consumption prevents Salmonella-induced synovitis by altering the intestinal milieu necessary for differentiation of cells involved in the generation of joint inflammation.  相似文献   

20.
Although a large number of key odorants of Swiss-type cheese result from amino acid catabolism, the amino acid catabolic pathways in the bacteria present in these cheeses are not well known. In this study, we compared the in vitro abilities of Lactobacillus delbrueckii subsp. lactis, Lactobacillus helveticus, and Streptococcus thermophilus to produce aroma compounds from three amino acids, leucine, phenylalanine, and methionine, under mid-pH conditions of cheese ripening (pH 5.5), and we investigated the catabolic pathways used by these bacteria. In the three lactic acid bacterial species, amino acid catabolism was initiated by a transamination step, which requires the presence of an α-keto acid such as α-ketoglutarate (α-KG) as the amino group acceptor, and produced α-keto acids. Only S. thermophilus exhibited glutamate dehydrogenase activity, which produces α-KG from glutamate, and consequently only S. thermophilus was capable of catabolizing amino acids in the reaction medium without α-KG addition. In the presence of α-KG, lactobacilli produced much more varied aroma compounds such as acids, aldehydes, and alcohols than S. thermophilus, which mainly produced α-keto acids and a small amount of hydroxy acids and acids. L. helveticus mainly produced acids from phenylalanine and leucine, while L. delbrueckii subsp. lactis produced larger amounts of alcohols and/or aldehydes. Formation of aldehydes, alcohols, and acids from α-keto acids by L. delbrueckii subsp. lactis mainly results from the action of an α-keto acid decarboxylase, which produces aldehydes that are then oxidized or reduced to acids or alcohols. In contrast, the enzyme involved in the α-keto acid conversion to acids in L. helveticus and S. thermophilus is an α-keto acid dehydrogenase that produces acyl coenzymes A.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号