首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Improved approaches to the problem of heterozygote detection for phenylketonuria (PKU) were developed in this study. The discrimination was based on 85 obligate heterozygotes and 45 controls who were neither pregnant nor on birth control medication. The best separation between hetrozygotes and normals was achieved with a linear discriminant function involving the logarithms of the serum concentrations of phenylalanine, tyrosine, and tryptophan. The theoretical overlap area between the distributions of heterozygotes and controls based on the above function, was 3.75%. In the 19 obligate hetrozygotes and 13 controls who were either pregnant or on birth control medication, the best separation was achieved with a linear discriminant function involving the logarithms of the serum concentrations of phenylalanine and tyrosine. The theoretical overlap area was 8.23%. The genetic accuracy of the discriminant function was confirmed by testing the results with parental-child exclusions, segregation analysis, and the frequency of heterozygosity in nonrelated collateral spouses. Finally, there was evidence suggesting that the antihypertensive agent, aldomet, alters serum tyrosine and tryptophan levels.  相似文献   

2.
Phenylketonuria is an inherited disorder of metabolism of the amino acid phenylalanine caused by a deficit of the enzyme phenylalanine hydroxylase. It is treated with a low-protein diet containing a low content of phenylalanine to prevent mental affection of the patient. Because of the restricted intake of high-biologic-value protein, patients with phenylketonuria may have lower than normal serum concentrations of pre-albumin, selenium, zinc and iron. The objective of the present study was to assess the compliance of our phenylketonuric (PKU) and hyperphenylalaninemic (HPA) patients; to determine the concentration of serum pre-albumin, selenium, zinc and iron to discover the potential correlation between the amount of proteins in food and their metabolic control. We studied 174 patients of which 113 were children (age 1–18), 60 with PKU and 53 with HPA and 61 were adults (age 18–42), 51 with PKU and 10 with HPA. We did not prove a statistically significant difference in the concentration of serum pre-albumin, zinc and iron among the respective groups. We proved statistically significant difference in serum selenium concentrations of adult PKU and HPA patients (p?=?0.006; Mann–Whitney U test). These results suggest that controlled low-protein diet in phenylketonuria and hyperphenylalaninemia may cause serum selenium deficiency in adult patients.  相似文献   

3.
M Sutnick  W Grover  M Patel 《Life sciences》1974,15(11):1945-1953
In patients with untreated classical phenylketonuria, elevated plasma levels of pyruvate, lactate, phenylalanine and phenylpyruvate were observed. After about 10 days on a low-phenylalanine diet, the levels of pyruvate, lactate and phenylpyruvate in plasma of treated patients returned to normal; the concentrations of phenylalanine in plasma were markedly lowered. In plasma from hyperphenylalaninemic subjects, phenylpyruvate was not detectable; pyruvate and lactate were within normal limits. Phenylpyruvate at a concentration of about 1 mM inhibited pyruvate carboxylation by human and rat liver homogenates by about 50%; phenylalanine had no effect on this process. The values of apparent Km for pyruvate and Ki for phenylpyruvate of human liver pyruvate carboxylase were approximately 0.27 mM and 1.4 mM, respectively. These studies suggest an impairment in hepatic pyruvate metabolism in untreated phenylketonuric patients.  相似文献   

4.
During routine screening procedures for amino-acid disorders by thin-layer chromatography, a 16-year-old boy was found to have phenylketonuria and cystinuria. A phenylalanine and a cystine loading were carried out. The patient was found to be homozygous for phenylketonuria and heterozygous for cystinuria type II. His father was heterozygous for phenylketonuria and cystinuria, while his mother proved to be heterozygous only for phenylketonuria.  相似文献   

5.
Experience with over 6000 Guthrie tests is presented. This test is a screening procedure for phenylketonuria using small amounts of blood spotted on a filter paper which are tested by a bacterial “inhibition assay”. Certain technical aspects of the test (e.g. relation between the concentration of phenylalanine in the blood and extent of the bacterial growth zones produced, type of filter paper, size of the blood spot on the paper) were investigated. It was shown that the Guthrie test clearly distinguishes between subjects with normal plasma phenylalanine levels and patients with untreated phenylketonuria.Applications of the Guthrie test in screening a mental hospital population, admissions to a penitentiary and newborn babies are described.  相似文献   

6.
Mouse Models of Human Phenylketonuria   总被引:15,自引:0,他引:15       下载免费PDF全文
A. Shedlovsky  J. D. McDonald  D. Symula    W. F. Dove 《Genetics》1993,134(4):1205-1210
Phenylketonuria (PKU) results from a deficiency in phenylalanine hydroxylase, the enzyme catalyzing the conversion of phenylalanine (PHE) to tyrosine. Although this inborn error of metabolism was among the first in humans to be understood biochemically and genetically, little is known of the mechanism(s) involved in the pathology of PKU. We have combined mouse germline mutagenesis with screens for hyperphenylalaninemia to isolate three mutants deficient in phenylalanine hydroxylase (PAH) activity and cross-reactive protein. Two of these have reduced PAH mRNA and display characteristics of untreated human PKU patients. A low PHE diet partially reverses these abnormalities. Our success in using high frequency random germline point mutagenesis to obtain appropriate disease models illustrates how such mutagenesis can complement the emergent power of targeted mutagenesis in the mouse. The mutants now can be used as models in studying both maternal PKU and somatic gene therapy.  相似文献   

7.
The bulk of indole‐3‐acetic acid (IAA) in plants is found in the form of conjugated molecules, yet past research on identifying these compounds has largely relied on methods that were both laborious and inefficient. Using recent advances in analytical instrumentation, we have developed a simple yet powerful liquid chromatography–mass spectrometry (LC–MS)‐based method for the facile characterization of the small IAA conjugate profile of plants. The method uses the well‐known quinolinium ion (m/z 130.0651) generated in MS processes as a signature with high mass accuracy that can be used to screen plant extracts for indolic compounds, including IAA conjugates. We reinvestigated Glycine max (soybean) for its indoles and found indole‐3‐acetyl‐trytophan (IA‐Trp) in addition to the already known indole‐3‐acetyl‐aspartic acid (IA‐Asp) and indole‐3‐acetyl‐glutamic acid (IA‐Glu) conjugates. Surprisingly, several organic acid conjugates of tryptophan were also discovered, many of which have not been reported in planta before. These compounds may have important physiological roles in tryptophan metabolism, which in turn can affect human nutrition. We also demonstrated the general applicability of this method by identifying indolic compounds in different plant tissues of diverse phylogenetic origins. It involves minimal sample preparation but can work in conjunction with sample enrichment techniques. This method enables quick screening of IAA conjugates in both previously characterized as well as uncharacterized species, and facilitates the identification of indolic compounds in general.  相似文献   

8.
After the oral administration of large doses of tyrosine, tryptophan, or phenylalanine to rats, increased plasma levels of these amino acids can be observed. These levels can be further elevated, approximately 2-fold, by administering along with the amino acids, inhibitors of aromatic-l-amino acid decarboxylase. The inhibitors, by themselves, do not alter control plasma levels of the aromatic amino acids. This effect of the inhibitors appears to be specific for amino acids which are substrates of the decarboxylase since they did not further elevate plasma levels of leucine or valine after oral loading of these amino acids. Elevation of plasma tyrosine could also be observed after inhibition of the decarboxylase when tyrosine was administered intraperitoneally or in rats pretreated with antimicrobial agents, indicating that inhibition of decarboxylation by intestinal bacteria was not responsible for the effects. It was shown that the decarboxylase inhibitors do not act by simultaneously inhibiting other major routes of metabolism, such as transamination in the case of tyrosine. These findings indicate that, when tissue levels of tyrosine, phenylalanine, or tryptophan are elevated, decarboxylation becomes a major route for their metabolism.  相似文献   

9.
—High circulating levels of phenylalanine caused depletions of threonine, valine, methionine, isoleucine, leucine, histidine, tryptophan, and tyrosine in immature and adult rat brains. The branched-chain amino acids were most affected. Their reductions ranged between 38–64 per cent of control values when phenylalanine was administered either parenterally or in the diet. The pattern of cerebral amino acid depletions found in phenylalanine-injected infant rats was similar to that of the adults. Phenylalanine loading caused depletions in serum amino acid levels in adult rats, but in infant rats the serum levels were either unchanged or somewhat elevated. Tyrosine, when administered to adult rats either parenterally or via the diet, caused cerebral depletions in essential amino acids, but the depletions were not as striking as with phenylalanine. In both the infant and adult rat, brain-blood ratios of most of the essential amino acids were significantly reduced by phenylalanine loading.  相似文献   

10.
Abstract Batch culture incubations were used to investigate the effects of pH (6.8 or 5.5) and carbohydrate (starch) availability on dissimilatory aromatic amino acid metabolism in human fecal bacteria. During growth on peptide mixtures, tyrosine and phenylalanine fermentations occurred optimally at pH 6.8, while individual metabolic reactions were inhibited by up to 80% in the presence of 10 g l−1 starch. Tryptophan metabolites were not detected in these experiments. When free amino acids replaced peptides, phenol production was increased during carbohydrate fermentation, although formation of p-cresol, another tyrosine metabolite was strongly inhibited. Phenylpropionate, which is produced from phenylalanine, was unaffected by starch. Tryptophan was fermented in these studies, although indole production was reduced in the starch fermentors. The importance of different fermentation substrates (casein, peptide mixtures, free amino acids) on aromatic amino acid metabolism was investigated in incubations of material taken from the proximal bowel. The phenylalanine metabolites, phenylacetate and phenylpropionate, were the principal phenolic compounds formed from all three substrates. Phenol was the major tyrosine metabolite produced in casein and peptide fermentations, while hydroxyphenylpropionate was a more important tyrosine product from free amino acids. Indole was the sole product of tryptophan metabolism, but was formed only from the free amino acid. Bacterial metabolism of individual phenolic and indolic compounds was also investigated. Phenol, p-cresol, phenylacetate, phenylpropionate, 4-ethylphenol, indole, indoleacetate, and indolepropionate were not metabolized by colonic bacteria. However, hydroxyphenylacetate was hydrolyzed to p-cresol, while hydroxyphenylpropionate was transformed into phenylpropionate. Indolepyruvate was either converted to indoleacetate or metabolized into indole. Indolepropionate, and to a lesser degree indoleacetate were produced from indolelactate. These data show that human colonic anaerobes are able to extensively degrade either free or peptide-bound aromatic amino acids, with the concomitant formation of toxic metabolic products. These processes are controlled to a significant degree by environmental factors such as pH and carbohydrate availability, and this ultimately influences the types and amounts of fermentation products that can be formed in different regions of the large bowel. Received: 25 January 1996; Accepted: 8 May 1996  相似文献   

11.
Phenylketonuria (PKU) is a metabolic disorder caused by impaired phenylalanine hydroxylase (PAH). This condition results in hyperphenylalaninemia and elevated levels of abnormal phenylalanine metabolites, among which is phenylacetic acid/phenylacetate (PA). In recent years, PA and its analogs were found to have anticancer activity against a variety of malignancies suggesting the possibility that PKU may offer protection against cancer through chronically elevated levels of PA. We tested this hypothesis in a genetic mouse model of PKU (PAHenu2) which has a biochemical profile that closely resembles that of human PKU. Plasma levels of phenylalanine in homozygous (HMZ) PAHenu2 mice were >12-fold those of heterozygous (HTZ) littermates while tyrosine levels were reduced. Phenylketones, including PA, were also markedly elevated to the range seen in the human disease. Mice were subjected to 7,12 dimethylbenz[a]anthracene (DMBA) carcinogenesis, a model which is sensitive to the anticancer effects of the PA derivative 4-chlorophenylacetate (4-CPA). Tumor induction by DMBA was not significantly different between the HTZ and HMZ mice, either in total tumor development or in the type of cancers that arose. HMZ mice were then treated with 4-CPA as positive controls for the anticancer effects of PA and to evaluate its possible effects on phenylalanine metabolism in PKU mice. 4-CPA had no effect on the plasma concentrations of phenylalanine, phenylketones, or tyrosine. Surprisingly, the HMZ mice treated with 4-CPA developed an unexplained neuromuscular syndrome which precluded its use in these animals as an anticancer agent. Together, these studies support the use of PAHenu2 mice as a model for studying human PKU. Chronically elevated levels of PA in the PAHenu2 mice were not protective against cancer.  相似文献   

12.
Phenylketonuria treatment mainly consists of a phenylalanine-restricted diet but still results in suboptimal neuropsychological outcome, which is at least partly based on cerebral monoamine deficiencies, while, after childhood, treatment compliance decreases. Supplementation of large neutral amino acids (LNAAs) was previously demonstrated in young phenylketonuria mice to target all three biochemical disturbances underlying brain dysfunction in phenylketonuria. However, both its potential in adult phenylketonuria and the comparison with the phenylalanine-restricted diet remain to be established. To this purpose, several LNAA supplements were compared with a severe phenylalanine-restricted diet with respect to brain monoamine and amino acid concentrations in adult C57Bl/6 Pah-enu2 mice. Adult phenylketonuria mice received a phenylalanine-restricted diet, unrestricted diet supplemented with several combinations of LNAAs or AIN-93M control diet for 6 weeks. In addition, adult wild-type mice on AIN-93M diet served as controls. The severe phenylalanine-restricted diet in adult phenylketonuria mice significantly reduced plasma and brain phenylalanine and restored brain monoamine concentrations, while brain concentrations of most nonphenylalanine LNAAs remained subnormal. Supplementation of eight LNAAs was similarly effective as the severe phenylalanine-restricted diet to restore brain monoamines, while brain and plasma phenylalanine concentrations remained markedly elevated. These results provide biochemical support for the effectiveness of the severe phenylalanine-restricted diet and showed the possibilities of LNAA supplementation being equally effective to restore brain monoamines in adult phenylketonuria mice. Therefore, LNAA supplementation is a promising alternative treatment to phenylalanine restriction in adult phenylketonuria patients to further optimize neuropsychological functioning.  相似文献   

13.
Abstract— The transamination between amino acids and aliphatic and aromatic keto acids has been investigated in homogenates of human and rat brain. Tryptophan, phenylalanine and 3,4-dihydroxyphenylalanine (DOPA) at concentrations of 3.6 min and below trans-aminated aromatic keto acids more rapidly than α-ketoglutarate; lower Km values were found for tryptophan and phenylalanine in the presence of the aromatic keto acid. Rat brain and liver arninotransferases exhibited similar affinities for tryptophan in the presence of different keto acids. Branched chain keto acids were also acceptors of the amino groups of tryptophan and DOPA. In brain homogenates α-ketoglutarate and p -hydroxyphenyl-pyruvate were transaminated by tyrosine and 5-hydroxytryptophan at about equal rates, whereas a-ketoglutarate was transaminated more rapidly with aliphatic amino acids. At concentrations of 1.6 m DOPA and 0.8 mM p -hydroxyphenylpyruvate, transamination was 6-fold greater than the rate of formation of dopamine. The dihydroxyphenylpyruvate formed during arninotransfer from DOPA by brain tissue was not readily decarboxylated, whereas 65–70 per cent of the indolepyruvate formed from tryptophan was decarboxylated. We suggest that an increased rate or degree of transamination between tryptophan and aromatic and branched chain keto acids may explain the increased excretion of non-hydroxylated indolic acids in phenylketonuria and'maple syrup urine'disease, respectively. Increased aminotransfers from tryptophan and DOPA may reduce the amounts of precursors available for the synthesis of serotonin and catecholamines, both of which are at low levels in the sera of untreated phenylketonurics.  相似文献   

14.
Shikimate, anthranilate, indole, l -tryptophan, phenylpyruvate, l -p henylalanine, p-hydroxyphenylpyruvate or l -tyrosine were added to suspension-cultured Nicotiana tabacum (tabacco) and Daucus carota (carrot) tissues and incubated for 24 hours. Uptake of each compound was substantial as measured by its decrease in the medium. The levels of free tryptophan, phenylalanine and tyrosine were determined in the tissues after the 24 hours incubation. Shikimate did not change the aromatic animo acid levels in carrot tissue, but did increase all three in tobacco (3-fold or more), indicating a less stringent feedback control in tobacco. Anthranilate and indole increased the tissue tryptophan levels in both species by at least 17-fold, showing that the flow from anthranilate and indole to tryptophan was apparently unhindered by enzymatic control mechanisms. When tryptophan levels were elevated in both carrot and tobaccotissues by anthranilate, indole or tryptophan addition, there was also an increase in free phyenylalanine and tyrosine. This might be due to the reversal of phenylalanine and tyrosine feedback inhibition of chorismate mutase by the high tryptophan in the tissue. Chorismate mutase activity in tobacco crude extracts could be inhibited by 66–90% by 1 mM phenylalanine and /or tyrosine. Tryptophan at 1 mM stimulated the enzyme activity by 1/3 and completely reversed the phenylalanine and/or tyrosine inhibition of enzyme activity. Chorsimate mutase activity amino acids under a variety of conditions. Phenylpyruvate increased the phenylalanine levels and p-hydroxyphenylpyruvate increased the tyrosine levels in carrot and tobacco tissues indicating that there was no feedback control of the last step in phenylalanine and tyrosine biosynthesis.  相似文献   

15.
D Sadava  D Sutcliffe 《Life sciences》1988,43(14):1119-1123
Pregnant rats were given a diet supplemented with 0.5% alpha-methyl-phenylalanine and 3% phenylalanine from the 12th day of gestation to term. Compared to unsupplemented controls, maternal serum phenylalanine was elevated 8-10-fold. Experimental litters did not differ from controls in number of offspring, birth weight, or subsequent growth on an unsupplemented diet. At 8 weeks of age, animals were tested for latent learning on a 4-arm maze, and at 10 weeks, they were tested for observational learning with littermates in a food preference paradigm. In both tests, experimental animals did learn, but significantly less than controls. The data suggest that maternal hyperphenylalaninemia, induced as a model for the inborn error, phenylketonuria, can lead to learning deficits later in the lives of offspring.  相似文献   

16.
Bluma Tischler  Edith G. McGeer 《CMAJ》1962,87(25):1331-1332
Phenylalanine tolerance tests were performed on four untreated children with phenylketonuria, aged 8 to 12 years, before and after 14 days of folic acid administration (70 mg./day). No significant changes were noted in the phenylalanine tolerance tests or in the general condition of the patients. This study was carried out because of recent findings that a folic acid derivative is a co-factor in the conversion of phenylalanine to tyrosine.  相似文献   

17.
Cells sensitive to the cytocidal effect of tumor necrosis factor (TNF) were protected against this effect when growth in the presence of elevated concentrations of tryptophan. Several other indole derivatives also provided protection against TNF cytotoxicity. Most effective were indole itself and its monomethyl derivatives, providing a degree of protection greatly exceeding that observed with tryptophan. Protection was also observed against the cytocidal effect of TNF applied in the presence of a protein synthesis inhibitor. The protective effect of tryptophan was largely dependent on preexposure of the cells, for several hours, to a high concentration of this amino acid. On the other hand, indole was protective also when applied to cells together with TNF, or even two hours after TNF application. The inhibition of the cytotoxicity of TNF by tryptophan and other indole derivatives may serve as a useful experimental tool in exploring the mechanisms and the physiological implications of TNF cytotoxicity.  相似文献   

18.
Summary Three children with hyperphenylalaninaemia and hyperphenylalaniaemic mothers are presented. At least one of the affected children was a compound heterozygote for hyperphenylalaninaemia and phenylketonuria. The families were examined by an l-phenylalanine loading test, by direct determination of phenylalanine hydroxylase and/or a loading test with hepta-deuterophenylalanine. We conclude that most of the patients with moderately elevated serum phenylalanine should have the genotype hyperphenylalaninaemia/phenylketonuria, i.e. they are compound heterozygotes.  相似文献   

19.
The following enzyme activities of the tryptophan-nicotinic acid pathway were studied in male New Zealand rabbits: liver tryptophan 2,3-dioxygenase, intestine indole 2,3-dioxygenase, liver and kidney kynurenine 3-monooxygenase, kynureninase, kynurenine-oxoglutarate transaminase, 3-hydroxyanthranilate 3,4-dioxygenase, and aminocarboxymuconate-semialdehyde decarboxylase. Intestine superoxide dismutase and serum tryptophan were also determined. Liver tryptophan 2,3-dioxygenase exists only as holoenzyme, but intestine indole 2,3-dioxygenase is very active and can be considered the key enzyme which determines how much tryptophan enters the kynurenine pathway also under physiological conditions. The elevated activity of indole 2,3-dioxygenase in the rabbit intestine could be related to the low activity of superoxide dismutase found in intestine. Kynurenine 3-monooxygenase appeared more active than kynurenine-oxoglutarate transaminase and kynureninase, suggesting that perhaps a major portion of kynurenine available from tryptophan may be metabolized to give 3-hydroxyanthranilic acid, the precursor of nicotinic acid. In fact, 3-hydroxyanthranilate 3,4-dioxygenase is much more active than the other previous enzymes of the kynurenine pathway. In the rabbit liver 3-hydroxyanthranilate 3,4-dioxygenase and aminocarboxymuconate-semialdehyde decarboxylase show similar activities, but in the kidney 3-hydroxyanthranilate 3,4-dioxygenase activity is almost double. These data suggest that in rabbit tryptophan is mainly metabolized along the kynurenine pathway. Therefore, the rabbit can also be a suitable model for studying tryptophan metabolism in pathological conditions.  相似文献   

20.
Oxidative stress has been implicated in the development of many neurodegenerative diseases and also responsible from aging and some cancer types. Indolic compounds are a broad family of substances present in microorganisms, plants and animals. They are mainly related to tryptophan metabolism, and present particular properties that depend on their respective chemical structures. Due to free radical scavenger and antioxidant properties of indolic derivatives such as indolinic nitroxides and melatonin, a series of 2-phenyl indole derivatives were prepared and their in vitro effects on rat liver lipid peroxidation levels, superoxide formation and DPPH stable radical scavenging activities were determined against melatonin, BHT and alpha-tocopherol. The compounds significantly inhibited (72-98%) lipid peroxidation at 10(-3) M. These values were similar to that observed with BHT (88%). Possible structure-activity relationships of the compounds were discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号