首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Soluble guanylyl cyclase (sGC) is a heterodimeric enzyme formed by an alpha subunit and a beta subunit, the latter containing the heme where nitric oxide (NO) binds. When NO binds, the basal activity of sGC is increased several hundred fold. sGC activity is also increased by YC-1, a benzylindazole allosteric activator. In the presence of NO, YC-1 synergistically increases the catalytic activity of sGC by enhancing the affinity of NO for the heme. The site of interaction of YC-1 with sGC is unknown. We conducted a mutational analysis to identify the binding site and to determine what residues were involved in the propagation of NO and/or YC-1 activation. Because guanylyl cyclases (GCs) and adenylyl cyclases (ACs) are homologous, we used the three-dimensional structure of AC to guide the mutagenesis. Biochemical analysis of purified mutants revealed that YC-1 increases the catalytic activity not only by increasing the NO affinity but also by increasing the efficacy of NO. Effects of YC-1 on NO affinity and efficacy were dissociated by single-point mutations implying that YC-1 has, at least, two types of interaction with sGC. A structural model predicts that YC-1 may adopt two configurations in one site that is pseudosymmetric with the GTP binding site and equivalent to the forskolin site in AC.  相似文献   

2.
3.
Winger JA  Marletta MA 《Biochemistry》2005,44(10):4083-4090
The catalytic domains (alpha(cat) and beta(cat)) of alpha1beta1 soluble guanylate cyclase (sGC) were expressed in Escherichia coli and purified to homogeneity. alpha(cat), beta(cat), and the alpha(cat)beta(cat) heterodimeric complex were characterized by analytical gel filtration and circular dichroism spectroscopy, and activity was assessed in the absence and presence of two different N-terminal regulatory heme-binding domain constructs. Alpha(cat) and beta(cat) were inactive separately, but together the domains exhibited guanylate cyclase activity. Analysis by gel filtration chromatography demonstrated that each of the approximately 25-kDa domains form homodimers. Heterodimers were formed when alpha(cat) and beta(cat) were combined. Results from circular dichroism spectroscopy indicated that no major structural changes occur upon heterodimer formation. Like the full-length enzyme, the alpha(cat)beta(cat) complex was more active in the presence of Mn(2+) as compared to the physiological cofactor Mg(2+), although the magnitude of the difference was much larger for the catalytic domains than for the full-length enzyme. The K(M) for Mn(2+)-GTP was measured to be 85 +/- 18 microM, and in the presence of Mn(2+)-GTP, the K(D) for the alpha(cat)beta(cat) complex was 450 +/- 70 nM. The N-terminal heme-bound regulatory domain of the beta1 subunit of sGC inhibited the activity of the alpha(cat)beta(cat) complex in trans, suggesting a domain-scale mechanism of regulation by NO. A model in which binding of NO to sGC causes relief of an autoinhibitory interaction between the regulatory heme-binding domain and the catalytic domains of sGC is proposed.  相似文献   

4.
Friebe A  Russwurm M  Mergia E  Koesling D 《Biochemistry》1999,38(46):15253-15257
Guanylyl cyclases (GCs) and adenylyl cyclases (ACs) play key roles in various signaling cascades and are structurally closely related. The crystal structure of a soluble AC revealed one binding site each for the substrate ATP and the activator forskolin. Recently, YC-1, a novel activator of the heterodimeric soluble GC (sGC), has been identified which acts like forskolin on AC. Here, we investigated the respective substrate and potential activator domains of sGC using point-mutated subunits. Whereas substitution of the conserved Cys-541 of the beta(1) subunit with serine led to an almost complete loss of activity, mutation of the respective homologue (Cys-596) in the alpha(1) subunit yielded an enzyme with an increased catalytic rate and higher sensitivity toward NO. This phenotype exhibits characteristics similar to those of the YC-1-treated wild-type enzyme. Conceivably, this domain which corresponds to the forskolin site of the ACs may comprise the binding site for YC-1.  相似文献   

5.
Accumulating evidence indicates that the functional properties of soluble guanylyl cyclase (sGC) are affected not only by the binding of NO but also by the NO:sGC ratio and a number of cellular factors, including GTP. In this study, we monitored the time-resolved transformations of sGC and sGC-NO complexes generated with stoichiometric or excess NO in the presence and absence of GTP. We demonstrate that the initial five-coordinate sGC-NO complex is highly activated by stoichiometric NO but is unstable and transforms into a five-coordinate sGC-2 state. This sGC-2 rebinds NO to form a low activity sGC-NO complex. The stability of the initial complex is greatly enhanced by GTP binding, binding of an additional NO molecule, or substitution of βHis-107. We propose that the transient nature of the sGC-NO complex, the formation of a desensitized sGC-2 state, and its transformation into a low activity sGC-NO adduct require βHis-107. We conclude that conformational changes leading to sGC desensitization may be prevented by GTP binding to the catalytic site or by binding of an additional NO molecule to the proximal side of the heme. The implications of these observations for cellular NO/cGMP signaling and the process of rapid desensitization of sGC are discussed in the context of the proposed model of sGC/NO interactions and dynamic transformations.  相似文献   

6.
Soluble guanylyl cyclase (sGC) regulates several important physiological processes by converting GTP into the second-messenger cGMP. sGC has several structural and functional properties in common with adenylyl cyclases (ACs). Recently, we reported that membranous ACs and sGC are potently inhibited by 2',3'-O-(2,4,6-trinitrophenyl)-substituted purine and pyrimidine nucleoside 5'-triphosphates. Using a highly sensitive high-performance liquid chromatography-tandem mass spectrometry method, we report that highly purified recombinant sGC of rat possesses nucleotidyl cyclase activity. As opposed to GTP, ITP, XTP and ATP, the pyrimidine nucleotides UTP and CTP were found to be sGC substrates in the presence of Mn(2+). When Mg(2+) is used, sGC generates cGMP, cAMP, cIMP, and cXMP. In conclusion, soluble "guanylyl" cyclase possesses much broader substrate specificity than previously assumed. Our data have important implications for cyclic nucleotide-mediated signal transduction.  相似文献   

7.
Mammals express nine membranous adenylyl cyclase isoforms (ACs 1-9), a structurally related soluble guanylyl cyclase (sGC) and a soluble AC (sAC). Moreover, Bacillus anthracis and Bacillus pertussis produce the AC toxins, edema factor (EF), and adenylyl cyclase toxin (ACT), respectively. 2'(3')-O-(N-methylanthraniloyl)-guanosine 5'-[gamma-thio]triphosphate is a potent competitive inhibitor of AC in S49 lymphoma cell membranes. These data prompted us to study systematically the effects of 24 nucleotides on AC in S49 and Sf9 insect cell membranes, ACs 1, 2, 5, and 6, expressed in Sf9 membranes and purified catalytic subunits of membranous ACs (C1 of AC5 and C2 of AC2), sAC, sGC, EF, and ACT in the presence of MnCl(2). N-Methylanthraniloyl (MANT)-GTP inhibited C1.C2 with a K(i) of 4.2 nm. Phe-889 and Ile-940 of C2 mediate hydrophobic interactions with the MANT group. MANT-inosine 5'-[gamma-thio]triphosphate potently inhibited C1.C2 and ACs 1, 5, and 6 but exhibited only low affinity for sGC, EF, ACT, and G-proteins. Inosine 5'-[gamma-thio]triphosphate and uridine 5'-[gamma-thio]triphosphate were mixed G-protein activators and AC inhibitors. AC5 was up to 15-fold more sensitive to inhibitors than AC2. EF and ACT exhibited unique inhibitor profiles. At sAC, 2',5'-dideoxyadenosine 3'-triphosphate was the most potent compound (IC(50), 690 nm). Several MANT-adenine and MANT-guanine nucleotides inhibited sGC with K(i) values in the 200-400 nm range. UTP and ATP exhibited similar affinities for sGC as GTP and were mixed sGC substrates and inhibitors. The exchange of MnCl(2) against MgCl(2) reduced inhibitor potencies at ACs and sGC 1.5-250-fold, depending on the nucleotide and cyclase studied. The omission of the NTP-regenerating system from cyclase reactions strongly reduced the potencies of MANT-ADP, indicative for phosphorylation to MANT-ATP by pyruvate kinase. Collectively, AC isoforms and sGC are differentially inhibited by purine and pyrimidine nucleotides.  相似文献   

8.
Soluble guanylyl cyclase (sGC) is a ubiquitous enzyme that functions as a receptor for nitric oxide. Despite the obligate heterodimeric nature of sGC, the sequence segments mediating subunit association have remained elusive. Our initial screening for relevant interaction site(s) in the most common sGC isoenzyme, alpha(1) beta(1), identified two regions in each subunit, i.e. the regulatory domains and the central regions, contributing to heterodimer formation. To map the relevant segments in the beta(1) subunit precisely, we constructed multiple N- and C-terminal deletion variants and cotransfected them with full-length alpha(1) in COS cells. Immunoprecipitation revealed that a sequence segment spanning positions 204-408 mediates binding of beta(1) to alpha(1) The same region of beta(1)[204-408] was found to promote beta /beta(1) homodimerization. Fusion of [204 beta(1)-408] to enhanced green fluorescent protein conferred binding activity to the recipient protein. Coexpression of beta(1)[204-408] with alpha(1) or beta(1) targeted the sGC subunits for proteasomal degradation, suggesting that beta(1)[204-408] forms structurally deficient complexes with alpha(1) and beta(1). Analysis of deletion constructs lacking portions of the beta(1) dimerization region identified two distinct segments contributing to alpha(1) binding, i.e. an N-terminal site covering positions 204-244 and a C-terminal site at 379-408. Both sites are crucial for sGC function because deletion of either site rendered sGC dimerization-deficient and thus functionally inactive. We conclude that the dimerization region of beta(1) extends over 205 residues of its regulatory and central domains and that two discontinuous sites of 41 and 30 residues, respectively, facilitate binding of beta(1) to the alpha(1) subunit of sGC.  相似文献   

9.
Soluble guanylate cyclase is a heterodimeric hemoprotein composed of alpha- and beta-subunits with a homologous motif to the nucleotide-binding sites of adenylate cyclases. Homology modeling of guanylate cyclase, based on the crystal structure of adenylate cyclase, reveals a single GTP-binding site and a putative second site pseudosymmetric to the GTP-binding site. However, the role of this pseudosymmetric site has remained unclear. Using equilibrium dialysis, we identified two nucleotide-binding sites with high and low affinity for alpha,beta-methylene guanosine 5'-triphosphate (GMP-CPP). In contrast, 2'-dADP occupied both sites with equivalent affinities. Adenosine-5'-beta,gamma-imido triphosphate (AMP-PNP), which competitively inhibited the cyclase reaction, bound solely to the high affinity site, indicating the role of this site as the catalytic site. The function of the low affinity site was examined using allosteric activators YC-1 and BAY 41-2272. YC-1 significantly reduced the affinity of 2'-dADP, probably by competing for the same site as 2'-dADP. BAY 41-2272 totally inhibited the specific binding of one molecule of 2'-dADP as well as GMP-CPP. This suggests that the activators compete with these nucleotides for the low affinity site. Infrared and EPR analyses of the enzymic CO- and NO-hemes also supported the suggested role of the low affinity site as a target for the activators. Our results imply that the low affinity site is the pseudosymmetric site, which binds YC-1 or BAY 41-2272.  相似文献   

10.
The stimulatory and inhibitory regulatory components of adenylyl cyclase (Ns and Ni), purified to apparent homogeneity without the use of regulatory ligands such as Mg, NaF, and guanyl-5'-yl imidodiphosphate, were tested for GTPase activity by incubating them with [gamma-32P]GTP and measuring 32Pi liberation using a charcoal adsorption assay to separate hydrolyzed from nonhydrolyzed radioactivity. We found that Ni is capable of hydrolyzing GTP. The activity was shown to be due to Ni itself and not to presence of one of its minor contaminants by correlating activity with abundance of the 40,000 Da alpha i subunit throughout the last stages of purification and by showing co-migration on a sucrose density gradient of the GTP-hydrolyzing activity with the alpha i, beta, and gamma subunits of Ni and not with any one of three minor contaminants present in the preparation tested. Preparations of Ns, free of detectable Ni, exhibited less than 10% the capacity to hydrolyze GTP, as compared to Ni on an equal protein basis. The basic properties of the GTP-hydrolyzing activity of Ni were determined. The activity is dependent on Mg ion (apparent Km = 5 to 15 nM), and is rapidly lost upon incubation with Mg2+ in the absence of GTP. MgGTP and free GTP serve equally well as substrate (apparent Km about 40 nM). Isotopic dilution studies indicate that the GTP binding site has a relative affinity for guanine nucleotides in the order GTP = GTP gamma S greater than GDP = GMP-P(NH)P greater than GDP beta S with the highest difference (GTP versus GDP beta S) being about 10-fold. NaF inhibited GTP hydrolysis by Ni at concentrations at which it activates Ni in intact membranes.  相似文献   

11.
Dictyostelium contains two guanylyl cyclases, GCA, a 12-transmembrane enzyme, and sGC, a homologue of mammalian soluble adenylyl cyclase. sGC provides nearly all chemoattractant-stimulated cGMP formation and is essential for efficient chemotaxis toward cAMP. We show that in resting cells the major fraction of the sGC-GFP fusion protein localizes to the cytosol, and a small fraction is associated to the cell cortex. With the artificial substrate Mn2+/GTP, sGC activity and protein exhibit a similar distribution between soluble and particulate fraction of cell lysates. However, with the physiological substrate Mg2+/GTP, sGC in the cytosol is nearly inactive, whereas the particulate enzyme shows high enzyme activity. Reconstitution experiments reveal that inactive cytosolic sGC acquires catalytic activity with Mg2+/GTP upon association to the membrane. Stimulation of cells with cAMP results in a twofold increase of membrane-localized sGC-GFP, which is accompanied by an increase of the membrane-associated guanylyl cyclase activity. In a cAMP gradient, sGC-GFP localizes to the anterior cell cortex, suggesting that in chemotacting cells, sGC is activated at the leading edge of the cell.  相似文献   

12.
Guanine nucleotides and Mg2+ differentially regulate agonist binding to adenosine (Ri) receptors in fat-cell plasma membranes. GTP alone decreases binding of the agonist ligand [3H]N6-cyclohexyladenosine (CHA) by increasing the dissociation constant (Kd). Mg2+ alone also decreases [3H]CHA binding, which is associated with a decrease in the number of receptors and in the dissociation constant. In the presence of Mg2+, the effect of GTP is to increase [3H]CHA binding by increasing the total number of receptors. It thus appears that Mg2+ acts specifically at a bivalent-cation site which, with GTP, regulates agonist binding. This putative Mg site is highly sensitive to alkylating agents. Mild treatment with N-ethylmaleimide (NEM) abolishes the characteristic GTP effect on agonist binding in the presence of Mg2+. In addition, the effect of Mg2+ alone is also eliminated. The effect of GTP alone is largely unaltered. Studies of the adenylate cyclase activity indicate that this NEM treatment also abolishes the inhibition of basal activity by adenosine analogues, whereas guanylyl imidodiphosphate inhibition of forskolin-stimulated activity is only slightly impaired at this NEM concentration. These observations indicate that a Mg2+ 'site' or 'component' is required for the integration of receptor (Ri) occupancy with regulation of catalytic activity (C). The regulatory role of Mg2+ is more demonstrable in receptor-GTP-regulatory-protein (Ri-Ni) interactions than in GTP-regulatory-protein-catalytic-unit (Ni-C) interactions.  相似文献   

13.
Zn(2+) is required as either a catalytic or structural component for a large number of enzymes and thus contributes to a variety of important biological processes. We report here that low micromolar concentrations of Zn(2+) inhibited hormone- or forskolin-stimulated cAMP production in N18TG2 neuroblastoma cells. Similarly, low concentrations inhibited hormone- and forskolin-stimulated adenylyl cyclase (AC) activity in membrane preparations and did so primarily by altering the V(max) of the enzyme. Zn(2+) also inhibited recombinant isoforms, indicating that this reflects a direct interaction with the enzyme. The IC(50) for Zn(2+) inhibition was approximately 1-2 microm with a Hill coefficient of 1.33. The dose-response curve for Zn(2+) inhibition was identical for AC1, AC5, and AC6 as well as for the C441R mutant of AC5 whose defect appears to be in one of the catalytic metal binding sites. However, AC2 displayed a distinct dose-response curve. These data in combination with the findings that Zn(2+) inhibition was not competitive with Mg(2+) or Mg(2+)/ATP suggest that the inhibitory Zn(2+) binding site is distinct from the metal binding sites involved in catalysis. The prestimulated enzyme was found to be less susceptible to Zn(2+) inhibition, suggesting that the ability of Zn(2+) to inhibit AC could be significantly influenced by the coincidence timing of the input signals to the enzyme.  相似文献   

14.
Nitric oxide (NO), the principal endogenous ligand for soluble guanylate cyclase (sGC), stimulates that enzyme and accumulation of intracellular cGMP, which mediates many of the (patho) physiological effects of NO. Previous studies demonstrated that 2-substituted adenine nucleotides, including 2-methylthioATP (2MeSATP) and 2-chloroATP (2ClATP), allosterically inhibit guanylate cyclase C, the membrane-bound receptor for the Escherichia coli heat-stable enterotoxin in the intestine. The present study examined the effects of 2-substituted adenine nucleotides on crude and purified sGC. 2-Substituted nucleotides inhibited basal and NO-activated crude and purified sGC, when Mg2+ served as the substrate cation cofactor. Similarly, 2-substituted adenine nucleotides inhibited those enzymes when Mn2+, which activates sGC in a ligand-independent fashion, served as the substrate cation cofactor. Inhibition of sGC by 2-substituted nucleotides was associated with a decrease in Vmax, consistent with a noncompetitive mechanism. In contrast to guanylate cyclase C, 2-substituted nucleotides inhibited sGC by a guanine nucleotide-independent mechanism. These studies demonstrate that 2-substituted adenine nucleotides allosterically inhibit basal and ligand-stimulated sGC. They support the suggestion that allosteric inhibition by adenine nucleotides is a general characteristic of the family of guanylate cyclases. This allosteric inhibition is mediated by direct interaction of adenine nucleotides with sGC, likely at the catalytic domain in a region outside the substrate-binding site.  相似文献   

15.
Membrane-bound mammalian adenylyl cyclase (mAC) catalyzes the synthesis of intracellular cyclic AMP from ATP and is activated by stimulatory G protein alpha subunits (Galpha(s)) and by forskolin (FSK). mACs are inhibited with high potency by 2 '(3')-O-(N-methylanthraniloyl) (MANT)-substituted nucleotides. In this study, the crystal structures of the complex between Galpha(s).GTPgammaS and the catalytic C1 and C2 domains from type V and type II mAC (VC1.IIC2), bound to FSK and either MANT-GTP.Mg(2+) or MANT-GTP.Mn(2+) have been determined. MANT-GTP coordinates two metal ions and occupies the same position in the catalytic site as P-site inhibitors and substrate analogs. However, the orientation of the guanine ring is reversed relative to that of the adenine ring. The MANT fluorophore resides in a hydrophobic pocket at the interface between the VC1 and IIC2 domains and prevents mAC from undergoing the "open" to "closed" domain rearrangement. The K(i) of MANT-GTP for inhibition of VC1.IIC2 is lower in the presence of mAC activators and lower in the presence of Mn(2+) compared with Mg(2+), indicating that the inhibitor binds more tightly to the catalytically most active form of the enzyme. Fluorescence resonance energy transfer-stimulated emission from the MANT fluorophore upon excitation of Trp-1020 in the MANT-binding pocket of IIC2 is also stronger in the presence of FSK. Mutational analysis of two non-conserved amino acids in the MANT-binding pocket suggests that residues outside of the binding site influence isoform selectivity toward MANT-GTP.  相似文献   

16.
The biological activities of Rho family GTPases are controlled by their guanine nucleotide binding states in cells. Here we have investigated the role of Mg(2+) cofactor in the guanine nucleotide binding and hydrolysis processes of the Rho family members, Cdc42, Rac1, and RhoA. Differing from Ras and Rab proteins, which require Mg(2+) for GDP and GTP binding, the Rho GTPases bind the nucleotides in the presence or absence of Mg(2+) similarly, with dissociation constants in the submicromolar concentration. The presence of Mg(2+), however, resulted in a marked decrease in the intrinsic dissociation rates of the nucleotides. The catalytic activity of the guanine nucleotide exchange factors (GEFs) appeared to be negatively regulated by free Mg(2+), and GEF binding to Rho GTPase resulted in a 10-fold decrease in affinity for Mg(2+), suggesting that one role of GEF is to displace bound Mg(2+) from the Rho proteins. The GDP dissociation rates of the GTPases could be further stimulated by GEF upon removal of bound Mg(2+), indicating that the GEF-catalyzed nucleotide exchange involves a Mg(2+)-independent as well as a Mg(2+)-dependent mechanism. Although Mg(2+) is not absolutely required for GTP hydrolysis by the Rho GTPases, the divalent ion apparently participates in the GTPase reaction, since the intrinsic GTP hydrolysis rates were enhanced 4-10-fold upon binding to Mg(2+), and k(cat) values of the Rho GTPase-activating protein (RhoGAP)-catalyzed reactions were significantly increased when Mg(2+) was present. Furthermore, the p50RhoGAP specificity for Cdc42 was lost in the absence of Mg(2+) cofactor. These studies directly demonstrate a role of Mg(2+) in regulating the kinetics of nucleotide binding and hydrolysis and in the GEF- and GAP-catalyzed reactions of Rho family GTPases. The results suggest that GEF facilitates nucleotide exchange by destabilizing both bound nucleotide and Mg(2+), whereas RhoGAP utilizes the Mg(2+) cofactor to achieve high catalytic efficiency and specificity.  相似文献   

17.
Experiments were conducted to clarify the nucleotide requirements for lutropin (LH)-dependent adenylate cyclase desensitization in a cell-free membrane preparation derived from a thecal-cell-enriched component of preovulatory pig ovarian follicles. The follicular membranes were extensively washed in 2M-urea to remove endogenously bound GTP, and ATP devoid of GTP was utilized. Results conducted in the presence of 60 microM-GTP and various concentrations of ATP confirm the dependence of LH-stimulated adenylate cyclase activation and desensitization on millimolar concentrations of ATP. In experiments in which adenylate cyclase activation was supported by Mg2+, LH and adenosine 5'-[beta, gamma-imido]triphosphate, GTP did not support the desensitization response. Moreover, although GTP increased both basal and LH-stimulable adenylate cyclase activities in a concentration-dependent manner, the percentage desensitization was not significantly modified by the presence of 10nM-10mM-GTP. These results demonstrate that, even in the presence of exogenous GTP and Mg2+, activation of adenylate cyclase by saturating concentrations of LH in the presence of adenosine 5'-[beta, gamma-imido]triphosphate is not sufficient to initiate desensitization; millimolar concentrations of ATP are also required for the adenylate cyclase desensitization response.  相似文献   

18.
Activation of the stimulatory guanine nucleotide-binding regulatory component (G/F) of adenylate cyclase by guanine nucleotides or by Al3+, Mg2+, and F-stabilizes the protein to thermal denaturation or to inactivation by LiBr, guanidine HCl, or urea. Such activation allows the resolution of the active 45,000-Da alpha subunit from the 35,000-Da beta subunit by a high performance gel filtration procedure. Separation of the active alpha subunit has allowed definitive evaluation of the subunit dissociation model for the activation of G/F. The resolved alpha subunit is sufficient to reconstitute the adenylate cyclase activity of the cyc-S49 cell mutant. The alpha subunit alone is also sufficient to activate a preparation of the catalyst of adenylate cyclase that had been resolved from all other identified components of the enzyme system. The resolved alpha subunit displays hydrodynamic properties characteristic of activated G/F. The alpha subunit contains a high affinity guanine nucleotide-binding site. Activation of G/F by guanine nucleotides or by Al3+ + Mg2+ + F- allows resolution of the activated alpha subunit. Reversal of the activated state of the resolved alpha subunit occurs only slowly. Addition of beta subunit enhances the rate of deactivation. Deactivation of the activated alpha subunit by the beta subunit changes the S20,w for G/F activity from 2.0 to 4.0 (in Lubrol), consistent with a formation of the alpha X beta heterodimer. These data, taken in aggregate, constitute proof for the proposed mechanism of activation of G/F by non-hydrolyzable analogs of GTP and by Al3+, Mg2+, and F-. They are analogous to data obtained for transducin, the GTP-binding regulatory protein from vertebrate rod outer segment discs, and for the putative inhibitory guanine nucleotide-binding regulatory component of adenylate cyclase (the substrate for islet-activating protein). The model provides several powerful tests for study of mechanisms of hormonal regulation of adenylate cyclase in membranes.  相似文献   

19.
We describe the development of a rapid colorimetric assay for soluble guanylate cyclase (sGC) activity adapted for a 96-well microplate. The assay greatly decreases the analysis time and cost over traditional methodologies based on radio- and immunoassays and high-performance liquid chromatography (HPLC) separations. The method does not demonstrate any significant interference with chemicals commonly used for sGC purification and reaction kinetics. The assay converts the inorganic pyrophosphate produced in the cyclase reaction to inorganic phosphate, which is then measured using a modified Fiske-Subbarow assay. We used the assay to compare the reaction kinetics of preparations of sGC from a commercial source with those from our lab with Mg(2+)-guanosine 5'-triphosphate (GTP) or Mn(2+)-GTP as a substrate. The commercial preparation was found to have a specific activity of around 1.5 micromol/min/mg, which is significantly lower than expected, as was the fold-activation upon addition of nitric oxide (NO). Our laboratory preparation had a higher specific activity that was consistent with results from HPLC assays. We determined that the human isoform of sGC is more active in the basal and NO forms with Mn(2)-GTP as a substrate than Mg(2+)-GTP, a feature more similar to rat lung sGC than the more commonly studied bovine lung.  相似文献   

20.
Modification of bovine brain G proteins by an N-hydroxysuccinimide ester of biotin has been studied. In the presence of GDP, but in the absence of Mg2+, neither guanine nucleotide binding nor GTPase activity of the protein was altered by modification using less than 1.25 mM biotin derivative with 1 mg/ml G protein. Under these conditions the alpha subunit was modified more extensively than the beta and gamma subunits. However, biotinyl-alpha was less readily bound to streptavidin-agarose than was the less modified beta subunit. Biotinyl-beta gamma was isolated from the modified, intact G protein and further characterized to determine if biotinylation alters its functional properties. Isolated biotinyl-beta gamma and unmodified beta gamma were equivalent based upon: 1) inhibition of the S49 cell membrane adenylyl cyclase, 2) changes in hydrodynamic parameters after being recombined with isolated alpha and treated with guanine nucleotides or complexes of fluoride and aluminum, and 3) competition for isolated alpha binding to biotinyl-beta gamma immobilized previously on streptavidin-agarose. Biotinyl-beta gamma prebound to streptavidin-agarose was 70-100% functional, based upon binding of isolated alpha subunits. Estimates of the affinity of alpha binding to biotinyl-beta gamma indicate that bovine brain alpha 41 has a 10-15-fold higher affinity for beta gamma than does alpha 39. Nonhydrolyzable guanine nucleotides and complexes of fluoride and aluminum decreased binding of either alpha 39 or alpha 41 to biotinyl-beta gamma, and these effects were dependent upon the amount of Mg2+ present. GTP decreased binding of alpha 39, but not alpha 41, to biotinyl-beta gamma. These results indicate that GTP can affect G protein subunit interactions and that its effects do not necessarily require an intact membrane environment or the participation of activating receptors or other membrane-associated proteins. They further indicate that biotinylation of beta gamma does not alter its functional properties and that it can be used for studying G protein subunit interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号