首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A plasma membrane fraction was isolated from lysates of Bacillus Calmette-Guérin-induced alveolar macrophages of rabbit. On the basis of morphological and biochemical criteria this fraction appeared to be minimally contaminated by other subcellular organelles. Concentrations of Ca2+, but not of Mg2+, from 6.10(-8) to 1.10(-5) M markedly stimulated the basal ATPase (EC 3.6.1.3) activity of the plasma membrane, with an apparent Km (Ca2+) of 1.10(-6) M. The specific activity of the Ca2+-ATPase assayed at pCa = 5.5 was enriched about 8-fold in the plasma membrane fraction over the macrophage lysate. In contrast, the specific activity of the K+, EDTA-activated ATPase, associated to macrophage myosin, increased only 1.3-fold. Oligomycin and -SH group reagents exerted no influence on the Ca2+-ATPase activity, which was on the contrary inhibited by detergents such as Triton X-100 and deoxycholate. The activity of the Ca2+-ATPase was maximal at pH 7, and was decreased by 50 mM Na+ and 5 mM K+. On the contrary, the activity of Mg2+-ATPase, also present in the plasma membrane fraction, had a peak at about pH 7.8, and was stimulated by Na+ plus K+. On account of its properties, it is suggested that the Ca2+-ATPase is a component of the plasma membrane of the alveolar macrophage, and that its function may be that of participating in the maintenance of low free Ca2+ concentrations in the macrophage cytosol.  相似文献   

2.
Ca-dependent ATPase activity in the rat anterior pituitary was demonstrated in 50-microns tissue slices of aldehyde-fixed tissue with the medium of Takano et al. (Cell Tissue Res. 243:91. 1986).--The outer surface of the plasma membrane of the parenchymal as well as the folliculo-stellate cells was lined with lead precipitate. The reaction deposit was particularly well localized in intercellular spaces both between two parenchymal cells, and between a parenchymal and a folliculo-stellate cell. A fine reaction deposit was also seen in the endoplasmic reticulum and Golgi apparatus of some parenchymal cells. Elimination of Ca2+ from the tissue and the substrate medium drastically reduced the amount of reaction product. If ATP was omitted or replaced by sodium beta-glycerophosphate, no reaction product was seen. Changing the Ca2+ concentration or addition of Mg2+ to the standard medium caused a decrease in reaction intensity. Substitution of Mg2+ for Ca2+ resulted, again in well-localized lead deposition which we attribute to the activity of another enzyme. We suggest that the activity we described in the membrane of glandular cells may correspond to the enzyme involved in the long-term regulation of intracellular Ca2+ level.  相似文献   

3.
Summary Ca-dependent ATPase activity in the rat anterior pituitary was demonstrated in 50-m tissue slices of aldehyde-fixed tissue with the medium of Takano et al. (Cell Tissue Res. 243:91. 1986). — The outer surface of the plasma membrane of the parenchymal as well as the folliculo-stellate cells was lined with lead precipitate. The reaction deposit was particularly well localized in intercellular spaces both between two parenchymal cells, and between a parenchymal and a folliculo-stellate cell. A fine reaction deposit was also seen in the endoplasmic reticulum and Golgi apparatus of some parenchymal cells. Elimination of Ca2+ from the tissue and the substrate medium drastically reduced the amount of reaction product. If ATP was omitted or replaced by sodium -glycerophosphate, no reaction product was seen. Changing the Ca2+ concentration or addition of Mg2+ to the standard medium caused a decrease in reaction intensity. Substitution of Mg2+ for Ca2+ resulted again in well-localized lead deposition which we attribute to the activity of another enzyme. We suggest that the activity we described in the membrane of glandular cells may correspond to the enzyme involved in the long-term regulation of intracellular Ca2+ level.  相似文献   

4.
A monoclonal antibody (2B3) directed against the calmodulin-binding (Ca2+ + Mg2+)-dependent ATPase from pig stomach smooth muscle was prepared. This antibody reacts with a 130,000-Mr protein that co-migrates on SDS/polyacrylamide-gel electrophoresis with the calmodulin-binding (Ca2+ + Mg2+)-ATPase purified from smooth muscle by calmodulin affinity chromatography. The antibody causes partial inhibition of the (Ca2+ + Mg2+)-ATPase activity in plasma membranes from pig stomach smooth muscle, in pig erythrocytes and human erythrocytes. It appears to be directed against a specific functionally important site of the plasmalemmal Ca2+-transport ATPase and acts as a competitive inhibitor of ATP binding. Binding of the antibody does not change the Km of the ATPase for Ca2+ and its inhibitory effect is not altered by the presence of calmodulin. No inhibition of (Ca2+ + Mg2+)-ATPase activity or of the oxalate-stimulated Ca2+ uptake was observed in a pig smooth-muscle vesicle preparation enriched in endoplasmic reticulum. These results confirm the existence in smooth muscle of two different types of Ca2+-transport ATPase: a calmodulin-binding (Ca2+ + Mg2+)-ATPase located in the plasma membrane and a second one confined to the endoplasmic reticulum.  相似文献   

5.
Low concentrations of free Ca2+ stimulated the hydrolysis of ATP by plasma membrane vesicles purified from guinea pig neutrophils and incubated in 100 mM HEPES/triethanolamine, pH 7.25. In the absence of exogenous magnesium, apparent values obtained were 320 nM (EC50 for free Ca2+), 17.7 nmol of Pi/mg X min (Vmax), and 26 microM (Km for total ATP). Studies using trans- 1,2-diaminocyclohexane- N,N,N',N',-tetraacetic acid as a chelator showed this activity was dependent on 13 microM magnesium, endogenous to the medium plus membranes. Without added Mg2+, Ca2+ stimulated the hydrolysis of several other nucleotides: ATP congruent to GTP congruent to CTP congruent to ITP greater than UTP, but Ca2+-stimulated ATPase was not coupled to uptake of Ca2+, even in the presence of 5 mM oxalate. When 1 mM MgCl2 was added, the vesicles demonstrated oxalate and ATP-dependent calcium uptake at approximately 8 nmol of Ca2+/mg X min (based on total membrane protein). Ca2+ uptake increased to a maximum of approximately 17-20 nmol of Ca2+/mg X min when KCl replaced HEPES/triethanolamine in the buffer. In the presence of both KCl and MgCl2, Ca2+ stimulated the hydrolysis of ATP selectively over other nucleotides. Apparent values obtained for the Ca2+-stimulated ATPase were 440 nM (EC50 for free Ca2+), 17.5 nmol Pi/mg X min (Vmax) and 100 microM (Km for total ATP). Similar values were found for Ca2+ uptake which was coupled efficiently to Ca2+-stimulated ATPase with a molar ratio of 2.1 +/- 0.1. Exogenous calmodulin had no effect on the Vmax or EC50 for free Ca2+ of the Ca2+-stimulated ATPase, either in the presence or absence of added Mg2+, with or without an ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N',-tetraacetic acid pretreatment of the vesicles. The data demonstrate that calcium stimulates ATP hydrolysis by neutrophil plasma membranes that is coupled optimally to transport of Ca2+ in the presence of concentrations of K+ and Mg2+ that appear to mimic intracellular levels.  相似文献   

6.
The organization of lipids in sarcoplasmic reticulum membrane was studied with a variety of stearic spin labels and a phosphatidylcholine spin label. The ESR spectra of the spin-labeled membranes consisted of two components, one due to labels in lipid bilayer structure and the other due to more immobilized labels. The relative intensity of the immobilized component increased when the lipid content of the membrane was decreased by treatment with phospholipase A [EC 3.1.1.4] and subsequent washing with bovine serum albumin. Membrane containing 30% of the intact phospholipid, i.e.0.15 mg of phospholipid per mg of protein, showed a spectrum consisting only of the immobilized component (the overall splitting ranged from 58.5 G to 60.5 G). The immobilized component was ascribed to lipids complexed with protein. The fraction of lipids in the two different organizations was determined from the ESR spectrum. The activity of the Ca2+-Mg2+ dependent ATPase [ATP phosphohydrolase, EC 3.6.1.3] was found to increase almost linearly with the lipid bilayer content in the membrane, whereas phosphoenzyme formation was almost independent of the bilayer content. This indicated that the bilayer structure is necessary for the ATPase to attain its full transport activity.  相似文献   

7.
8.
9.
A guinea pig kidney membrane preparation was incubated with thimerosal and then thoroughly washed. Comparison of the properties of the native and the modified membranes showed that (a) Na++K+-dependent activity is substantially inhibited by thimerosal; (b) thimerosal does not diminish Na+-dependent ATPase activity; and (c) the thimerosal treated enzyme, like the native enzyme, is phosphorylated in the presence of Na+ and ATP, and dephosphorylated upon the addition of K+. It is suggested that thimerosal does not affect the binding of ATP to the high-affinity catalytic site, but that it blocks the binding of ATP to a low affinity modifying site the occupation of which is essential for the dissociation of the stable K+-dephosphoenzyme and the recycling of the enzyme.  相似文献   

10.
Human red cell membrane Ca2+-stimulatable, Mg2+-dependent adenosine triphosphatase (Ca2+-ATPase) activity and its response to thyroid hormone have been studied following exposure of membranes in vitro to specific long-chain fatty acids. Basal enzyme activity (no added thyroid hormone) was significantly decreased by additions of 10(-9)-10(-4) M-stearic (18:0) and oleic (18:1 cis-9) acids. Methyl oleate and elaidic (18:1 trans-9), palmitic (16:0) and lauric (12:0) acids at 10(-6) and 10(-4) M were not inhibitory, nor were arachidonic (20:4) and linolenic (18:3) acids. Myristic acid (14:0) was inhibitory only at 10(-4) M. Thus, chain length of 18 carbon atoms and anionic charge were the principal determinants of inhibitory activity. Introduction of a cis-9 double bond (oleic acid) did not alter the inhibitory activity of the 18-carbon moiety (stearic acid), but the trans-9 elaidic acid did not cause enzyme inhibition. While the predominant effect of fatty acids on erythrocyte Ca2+-ATPase in situ is inhibition of basal activity, elaidic, linoleic (18:2) and palmitoleic (16:1) acids at 10(-6) and 10(-4) M stimulated the enzyme. Methyl elaidate was not stimulatory. These structure-activity relationships differ from those described for fatty acids and purified red cell Ca2+-ATPase reconstituted in liposomes. Thyroid hormone stimulation of Ca2+-ATPase was significantly decreased by stearic and oleic acids (10(-9)-10(-4) M), but also by elaidic, linoleic, palmitoleic and myristic acids. Arachidonic, palmitic and lauric acids were ineffective, as were the methyl esters of oleic and elaidic acids. Thus, inhibition of the iodothyronine effect on Ca2+-ATPase by fatty acids has similar, but not identical, structure-activity relationships to those for basal enzyme activity. To examine mechanisms for these fatty acid effects, we studied the action of oleic and stearic acids on responsiveness of the enzyme to purified calmodulin, the Ca2+-binding activator protein for Ca2+-ATPase. Oleic and stearic acids (10(-9)-10(-4) M) progressively inhibited, but did not abolish, enzyme stimulation by calmodulin (10(-9) M). Double-reciprocal analysis of the effect of oleic acid on calmodulin stimulation indicated noncompetitive inhibition. Addition of calmodulin to membranes in the presence of equimolar oleic acid restored basal enzyme activity. Oleic acid also reduced 125I-calmodulin binding to membranes, but had no effect on the binding of [125I]T4 by ghosts. The mechanism of the decrease by long chain fatty acids of Ca2+-ATPase activity in situ in human red cell ghosts thus is calmodulin-dependent and involves reduction in membrane binding of calmodulin.  相似文献   

11.
The temperature dependence of the Ca2+-dependent ATPase activity and of the conformational fluctuation of the ATPase molecule has been measured for four kinds of preparations: fragmented sarcoplasmic reticulum, MacLennan's enzyme (purified ATPase preparation), and DOL and egg PC-ATPase (purified ATPase preparations in which lipids are replaced with dioleoyllecithin and egg yolk lecithin, respectively). It has been found that Arrhenius plots of the Ca2+-dependent ATPase activity show a break at about 18 degrees C for all the preparations. Hydrogen--deuterium exchange kinetics of the peptide NH protons were used to measure the conformational fluctuation of the protein molecules. Van't Hoff plots of the conformational fluctuation amplitude of a region near the surface of the ATPase molecule also show a break at about 18 degrees C for all the preparations. It is concluded that the break at around 18 degrees C is not related to a gel-liquid crystalline transition of lipids but to a change in the conformation of the ATPase molecule existing in fluid lipids.  相似文献   

12.
Infusions of ovine prolactin for 10 days induced hypercalcemia in unfed American eels, Anguilla rostrata LeSueur, that tentatively was related to stimulation of branchial Ca2+-uptake mechanisms. Analysis of ATPase activities in the plasma membranes of the branchial epithelium in prolactin treated eels showed a specific stimulation of high-affinity Ca2+-ATPase. The results of this study form further evidence that the high-affinity Ca2+-ATPase activity represents the Ca2+-pump of the branchial epithelium.  相似文献   

13.
We have determined effect of the oxidant peroxynitrite (ONOO-) on Ca2+-dependent matrix metalloprotease-2 (MMP-2) activity and the role of the protease on Ca2+ ATPase activity in bovine pulmonary vascular smooth muscle plasma membrane under ONOO- -triggered conditions. The smooth muscle plasma membrane possesses a 72-kDa protease activity in a gelatin-containing zymogram. The 72-kDa protease activity has been found to be inhibited by tissue inhibitor of metalloprotease-2 (TIMP-2), indicating that the protease is the matrix metalloprotease-2 (MMP-2). Treatment of the membrane suspension with ONOO- caused stimulation of the MMP-2 activity (as evidenced by 14C-gelatin degradation) and also increased Ca2+ ATPase activity. The ONOO- -triggered protease activity and the Ca2+ ATPase activity were found to be inhibited by the antioxidants: vitamin E, thiourea, and mannitol. Pretreatment with catalase and superoxide dismutase did not significantly alter ONOO- -stimulated MMP-2 activity and Ca2+ATPase activity, indicating that peroxide and superoxide are not present in appreciable amount in ONOO-. Under both basal and ONOO- triggered conditions, the MMP-2 activity and the Ca2+ ATPase activity were also inhibited by EGTA, 1:10-phenanthroline, and TIMP-2. However, the ONOO- -stimulated MMP-2 activity and the Ca2+ ATPase activity were found to be insensitive to phenylmethylsulfonylfluoride, Bowman-Birk inhibitor, chymostatin, leupeptin, antipain, N-ethylmaleimide, and pepstatin. These results suggest that ONOO- caused stimulation of MMP-2 activity and that the increased MMP-2 activity subsequently played a pivotal role in stimulating Ca2+ ATPase activity in bovine pulmonary vascular smooth muscle plasma membrane.  相似文献   

14.
Ca2+-stimulated, Mg2+-dependent ATPase in bovine thyroid plasma membranes   总被引:1,自引:0,他引:1  
An isolated plasma membrane fraction from bovine thyroid glands contained a Ca2+-stimulated, Mg2+-dependent adenosine triphosphatase ((Ca2+ + Mg2+)-ATPase) activity which was purified in parallel to (Na+ + K+)-ATPase and adenylate cyclase. The (Ca2+ + Mg2+)-ATPase activity was maximally stimulated by approx. 200 microM added calcium in the presence of approx. 200 microM EGTA (69.7 +/- 5.2 nmol/mg protein per min). In EGTA-washed membranes, the enzyme was stimulated by calmodulin and inhibited by trifluoperazine.  相似文献   

15.
Insulin-secretory granules isolated from a pancreatic islet-cell tumour by centrifugation on Percoll density gradients exhibited a membrane-associated Mg(2+)-dependent ATPase activity. In granule suspensions incubated in iso-osmotic media, activity was increased 2-3-fold by carbonyl cyanide p-trifluoromethoxyphenylhydrazone, the combination of valinomycin, nigericin and K(2)SO(4) or by the addition of a detergent. Permeant anions also increased Mg(2+)-dependent ATPase activity under iso-osmotic conditions when combined with K(+) and nigericin, or NH(4) (+). It was deduced that a major component of the activity was coupled to the translocation of protons into the granule interior. The granule membrane appeared poorly permeable to H(+), K(+), NH(4) (+) and SO(4) (2-) but permeable, in increasing order, to phosphate or acetate, Cl(-), I(-) and SCN(-). Like the proton-translocating ATPase of mammalian mitochondria the granule enzyme when membrane-bound was inhibited by up to 85% by tributyltin or NN'-dicyclohexylcarbodi-imide and was solubilized in a tributyltin-insensitive form after extraction with dichloromethane. It was clearly not a mitochondrial contaminant as evidence by the distribution of marker proteins on density gradients. Unlike mitochondrial activity it was insensitive to oligomycin, efrapeptin, atractyloside, azide and oxyanions. Its properties, however, were indistinguishable from those of the proton-translocating ATPase found in the chromaffin granules of the adrenal medulla. Moreover, insulin granules and chromaffin granules exhibited similar levels of activity. This indicated that in spite of the differences in their internal composition, granules from tissues involved in polypeptide and amine hormone secretion possess catalytic components in common. Only a minor role for the ATPase in amine transport in insulin granules was apparent. Rather, its presence here may relate to the process of secretory vesicle morphogenesis or to the exocytotic mechanism.  相似文献   

16.
In order to determine whether polymorphic forms of the Ca2+ + Mg2+-dependent ATPase exist, we have examined the cross-reactivity of five monoclonal antibodies prepared against the rabbit skeletal muscle sarcoplasmic reticulum enzyme with proteins from microsomal fractions isolated from a variety of muscle and nonmuscle tissues. All of the monoclonal antibodies cross-reacted in immunoblots against rat skeletal muscle Ca2+ + Mg2+-dependent ATPase but they cross-reacted differentially with the enzyme from chicken skeletal muscle. No cross-reactivity was observed with the Ca2+ + Mg2+-dependent ATPase of lobster skeletal muscle. The pattern of antibody cross-reactivity with a 100,000 dalton protein from sarcoplasmic reticulum and microsomes isolated from various muscle and nonmuscle tissues of rabbit demonstrated the presence of common epitopes in multiple polymorphic forms of the Ca2+ + Mg2+-dependent ATPase. One of the monoclonal antibodies prepared against the purified Ca2+ + Mg2+-dependent ATPase of rabbit skeletal muscle sarcoplasmic reticulum was found to cross-react with calsequestrin and with a series of other Ca2+-binding proteins and their proteolytic fragments. Its cross-reactivity was enhanced in the presence of EGTA and diminished in the presence of Ca2+. Its lack of cross-reactivity with proteins that do not bind Ca2+ suggests that it has specificity for antigenic determinants that make up the Ca2+-binding sites in several Ca2+-binding proteins including the Ca2+ + Mg2+-dependent ATPase.This paper is dedicated to the memory of Dr. David E. Green.  相似文献   

17.
In order to gain some information regarding Ca2+-dependent ATPase, the enzyme was purified from cardiac sarcolemma and its properties were compared with Ca2+-ATPase activity of myosin purified from rat heart. Both Ca2+-dependent ATPase and myosin ATPase were stimulated by Ca2+ but the maximal activation of Ca2+-dependent ATPase required 4 mM Ca2+ whereas that of myosin ATPase required 10 mM Ca2+. These ATPases were also activated by other divalent cations in the order of Ca2+ > Mn2+ > Sr2+ > Br2+ > Mg2+; however, there was a marked difference in the pattern of their activation by these cations. Unlike the myosin ATPase, the ATP hydrolysis by Ca2+-dependent ATPase was not activated by actin. The pH optima of Ca2+-dependent ATPase and myosin ATPase were 9.5 and 6.5 respectively. Na+ markedly inhibited Ca2+-dependent ATPase but had no effect on the myosin ATPase activity. N-ethylmaleimide inhibited Ca2+-dependent ATPase more than myosin ATPase whereas the inhibitory effect of vanadate was more on myosin ATPase than Ca2+-dependent ATPase. Both Ca2+-dependent ATPase and myosin ATPase were stimulated by K-EDTA and NH4-EDTA. When myofibrils were treated with trypsin and passed through columns similar to those used for purifying Ca2+-ATPase from sarcolemma, an enzyme with ATPase activity was obtained. This myofibrillar ATPase was maximally activated at 3–4 mM Ca2+ and 3 to 4 mM ATP like sarcolemmal Ca2+-dependent ATPase. K+ stimulated both ATPase activities in the absence of Ca2+ and inhibited in the presence of Ca2+. Both enzymes were inhibited by Na+, Mg2+, La3+, and azide similarly. However, Ca2+ ATPase from myofibrils showed three peptide bands in SDS polyacrylamide gel electrophoresis whereas Ca2+ ATPase from sarcolemma contained only two bands. Sarcolemmal Ca2+-ATPase had two affinity sites for ATP (0.012 mM and 0.23 mM) while myofibrillar Ca2+-ATPase had only one affinity site (0.34 mM). Myofibrillar Ca2+-ATPase was more sensitive to maleic anhydride and iodoacetamide than sarcolemmal Ca2+-ATPase. These observations suggest that Ca2+-dependent ATPase may be a myosin like protein in the heart sarcolemma and is unlikely to be a tryptic fragment of myosin present in the myofibrils.  相似文献   

18.
  • 1.1. Isolated rat heart sarcolemma was treated with different concentrations of an ionic detergent, deoxycholate (DOC) and ATP hydrolysis in the presence of Ca2+ or Mg2+ was determined.
  • 2.2. Both Ca2+-dependent ATPase and Mg2+-dependent ATPase activities were decreased in the DOC-treated membranes; however, the depression of Mg2+-dependent ATPase activity was greater than that of Ca2+-dependent ATPase.
  • 3.3. The differential changes in Ca2+-dependent ATPase and Mg2+-dependent ATPase activities were apparent when incubations with DOC were carried out for different time intervals and at different temperatures.
  • 4.4. In DOC-treated preparations, the Km value for Ca2+-dependent ATPase was decreased whereas that for Mg2+-dependent ATPase was increased. The half maximal velocities of the Ca2+-dependent ATPase and Mg2+-dependent ATPase enzyme reactions in the treated preparations were obtained at a DOC: membrane protein ratio of 3.0 and 0.6, respectively.
  • 5.5. In the DOC-treated membranes exhibiting the half maximal velocities of enzyme reactions, the Ki value for Ca2+-dependent ATPase was drastically reduced but remained unchanged for Mg2+-dependent ATPase.
  • 6.6. The DOC treatment was associated with a loss of protein as well as phospholipids and resulted in changes in the ultrastructural integrity of the membrane.
  • 7.7. Varying degrees of decreases in the activities of sarcolemmal adenylate cyclase. (Na-K+)-ATPase. 5'-nucleotidase and calcium binding were seen upon DOC treatment.
  • 8.8. The extent of reduction in Ca2+-dependent ATPase and Mg2+-dependent ATPase activities were also different when the membrane was treated with a non-ionic detergent, Lubrol PX.
  • 9.9. These data suggest that Ca2+-dependent ATPase in heart sarcolemma is more resistant than Mg2+-dependent ATPase to detergent treatments and further indicate some differences in the properties of these enzymes.
  相似文献   

19.
20.
Two highly purified sarcoplasmic reticulum membrane fractiones differing in their sensitivities to the uncoupling action of caffeine were isolated from white skeletal muscles of the rabbit. The main protein component of both fractions is a catalytical polypeptide of Ca2+-dependent ATPase. Treatment of the caffeine-sensitive reticular fraction by trypsin or DTNB completely removes the effect of caffeine. It was found that similar effects on the caffeine-sensitive reticular fraction are exerted by bemegride, camphor, ethymizole and cordiamine. Isolation of Ca2+-dependent ATPase from both reticular fractions and reconstruction of Ca2+-transporting vesicles were carried out. Ca2+ transport by the vesicles enriched by ATPase from the caffeine-sensitive reticular fraction is uncoupled under the effect of caffeine; however, caffeine has no effect on the vesicles enriched by caffeine-insensitive reticular ATPase. The molecular weight of caffeine-sensitive and caffeine-insensitive ATPases determined in the presence of sedium dodecyl sulfate are found to be identical. Electrophoresis in the presence of digitonin revealed different electrophoretic behaviour of the two forms of ATPase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号