首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 206 毫秒
1.
The Glu166Arg/Met182Thr mutant of Escherichia coli TEM(pTZ19-3) β-lactamase produces a 128-fold increase in the level of resistance to the antibiotic ceftazidime in comparison to that of the parental wild-type enzyme. The single Glu166Arg mutation resulted in a dramatic decrease in both the level of enzyme expression in bacteria and the resistance to penicillins, with a concomitant 4-fold increase in the resistance to ceftazidime, a third-generation cephalosporin. Introduction of the second amino acid substitution, Met182Thr, restored enzyme expression to a level comparable to that of the wild-type enzyme and resulted in an additional 32-fold increase in the minimal inhibitory concentration of ceftazidime to 64 μg/mL. The double mutant formed a stable covalent complex with ceftazidime that remained intact for the entire duration of the monitoring, which exceeded a time period of 40 bacterial generations. Compared to those of the wild-type enzyme, the affinity of the TEM(pTZ19-3) Glu166Arg/Met182Thr mutant for ceftazidime increased by at least 110-fold and the acylation rate constant was augmented by at least 16-fold. The collective experimental data and computer modeling indicate that the deacylation-deficient Glu166Arg/Met182Thr mutant of TEM(pTZ19-3) produces resistance to the third-generation cephalosporin ceftazidime by an uncommon covalent-trapping mechanism. This is the first documentation of such a mechanism by a class A β-lactamase in a manifestation of resistance.  相似文献   

2.
3.
In our effort to understand genetic disorders of the photoreceptor cells of the retina, we have focused on intraflagellar transport in photoreceptor sensory cilia. From previous mouse proteomic data we identified a cilia protein Ttc26, orthologue of dyf-13 in Caenorhabditis elegans, as a target. We localized Ttc26 to the transition zone of photoreceptor and to the transition zone of cilia in cultured murine inner medullary collecting duct 3 (mIMCD3) renal cells. Knockdown of Ttc26 in mIMCD3 cells produced shortened and defective primary cilia, as revealed by immunofluorescence and scanning electron microscopy. To study Ttc26 function in sensory cilia in vivo, we utilized a zebrafish vertebrate model system. Morpholino knockdown of ttc26 in zebrafish embryos caused ciliary defects in the pronephric kidney at 27 h postfertilization and distension/dilation of pronephros at 5 d postfertilization (dpf). In the eyes, the outer segments of photoreceptor cells appeared shortened or absent, whereas cellular lamination appeared normal in retinas at 5 dpf. This suggests that loss of ttc26 function prevents normal ciliogenesis and differentiation in the photoreceptor cells, and that ttc26 is required for normal development and differentiation in retina and pronephros. Our studies support the importance of Ttc26 function in ciliogenesis and suggest that screening for TTC26 mutations in human ciliopathies is justified.  相似文献   

4.
The biotin-containing tryptic peptides of pyruvate carboxylase from sheep, chicken, and turkey liver mitochondria have been isolated and their primary structures determined. The amino acid sequences of the 19 residue peptides from chicken and turkey are identical and share a common sequence of 14 residues around biocytin with the 24-residue peptide isolated from sheep. The sequences obtained were: residue 1 → 11 Avian: Gly Ala Pro Leu Val Leu Ser Ala Met Biocytin Met Sheep: Gly Gln Pro Leu Val Leu Ser Ala Met Biocytin Met residues 12 → 19 or 24 Avian: Glu Thr Val Val Thr Ala Pro Arg Sheep: Glu Thr Val Val Thr Ser Pro Val Thr Glu Gly Val Arg A sensitive radiochemical assay for biotin was developed based on the tight binding of biotin by avidin. The ability of zinc sulfate to precipitate, without dissociating, the avidin-biotin complex provided a convenient procedure for separating free and bound biotin, and hence, for back-titrating a standard amount of avidin with [14C]biotin.  相似文献   

5.
To distinguish biological molecular processes of osmotic stress occurring in inner medulla, we utilized microarrays to monitor expression profiles. RNAs from three segments (cortex, outer medulla, and inner medulla) of mouse kidney were isolated and applied to microarrays. We found 35 genes expressed highly in inner medulla. Next, microarrays for the RNAs from mouse medullary collecting duct cell line (mIMCD) cells and osmotically adapted mIMCD cells (HT cells) were performed (designed as resistant to 1270mOsm/H(2)O). Of 35 genes highly expressed in inner medulla, 6 genes such as; B-cell translocation gene protein (BTG), myc-basic motif homologue, gelsolin, cell surface glycoprotein, laminin beta2, and tubulo-interstitial nephritis antigen, were also expressed highly in HT cells. Using real-time PCR, we confirmed the expression of six genes. Additionally acute osmotic stress induced the BTG. By comparing the inner medulla to a mIMCD3, we identified genes which respond to acute and chronic hyperosmotic stress.  相似文献   

6.
The amino acid sequences of both the alpha and beta subunits of human chorionic gonadotropin have been determined. The amino acid sequence of the alpha subunit is: Ala - Asp - Val - Gln - Asp - Cys - Pro - Glu - Cys-10 - Thr - Leu - Gln - Asp - Pro - Phe - Ser - Gln-20 - Pro - Gly - Ala - Pro - Ile - Leu - Gln - Cys - Met - Gly-30 - Cys - Cys - Phe - Ser - Arg - Ala - Tyr - Pro - Thr - Pro-40 - Leu - Arg - Ser - Lys - Lys - Thr - Met - Leu - Val - Gln-50 - Lys - Asn - Val - Thr - Ser - Glu - Ser - Thr - Cys - Cys-60 - Val - Ala - Lys - Ser - Thr - Asn - Arg - Val - Thr - Val-70 - Met - Gly - Gly - Phe - Lys - Val - Glu - Asn - His - Thr-80 - Ala - Cys - His - Cys - Ser - Thr - Cys - Tyr - Tyr - His-90 - Lys - Ser. Oligosaccharide side chains are attached at residues 52 and 78. In the preparations studied approximately 10 and 30% of the chains lack the initial 2 and 3 NH2-terminal residues, respectively. This sequence is almost identical with that of human luteinizing hormone (Sairam, M. R., Papkoff, H., and Li, C. H. (1972) Biochem. Biophys. Res. Commun. 48, 530-537). The amino acid sequence of the beta subunit is: Ser - Lys - Glu - Pro - Leu - Arg - Pro - Arg - Cys - Arg-10 - Pro - Ile - Asn - Ala - Thr - Leu - Ala - Val - Glu - Lys-20 - Glu - Gly - Cys - Pro - Val - Cys - Ile - Thr - Val - Asn-30 - Thr - Thr - Ile - Cys - Ala - Gly - Tyr - Cys - Pro - Thr-40 - Met - Thr - Arg - Val - Leu - Gln - Gly - Val - Leu - Pro-50 - Ala - Leu - Pro - Gin - Val - Val - Cys - Asn - Tyr - Arg-60 - Asp - Val - Arg - Phe - Glu - Ser - Ile - Arg - Leu - Pro-70 - Gly - Cys - Pro - Arg - Gly - Val - Asn - Pro - Val - Val-80 - Ser - Tyr - Ala - Val - Ala - Leu - Ser - Cys - Gln - Cys-90 - Ala - Leu - Cys - Arg - Arg - Ser - Thr - Thr - Asp - Cys-100 - Gly - Gly - Pro - Lys - Asp - His - Pro - Leu - Thr - Cys-110 - Asp - Asp - Pro - Arg - Phe - Gln - Asp - Ser - Ser - Ser - Ser - Lys - Ala - Pro - Pro - Pro - Ser - Leu - Pro - Ser-130 - Pro - Ser - Arg - Leu - Pro - Gly - Pro - Ser - Asp - Thr-140 - Pro - Ile - Leu - Pro - Gln. Oligosaccharide side chains are found at residues 13, 30, 121, 127, 132, and 138. The proteolytic enzyme, thrombin, which appears to cleave a limited number of arginyl bonds, proved helpful in the determination of the beta sequence.  相似文献   

7.
The mechanisms that underlie the profibrotic effect of interleukin (IL)-1β are complicated and not fully understood. Recent evidence has suggested the involvement of the calcium-sensing receptor (CaSR) in tubular injury. Therefore, the current study aimed to investigate whether CaSR mediates IL-1β-induced collagen expression in cultured mouse inner medullary collecting duct cells (mIMCD3) and to determine the possible downstream signaling effector. The results showed that IL-1β significantly upregulated the expression of type I and III collagens in a concentration- and time-dependent manner. Moreover, CaSR was expressed in mIMCD3 cells, and its expression was increased by increasing the concentrations and times of IL-1β treatment. Selective inhibitors (Calhex231 or NPS2143) or the siRNA of CaSR attenuated the enhanced expression of type I and III collagens. Furthermore, IL-1β increased nuclear β-catenin protein levels and decreased cytoplasmic β-catenin expression in cells. In contrast, blockage of CaSR by the pharmacological antagonists or siRNA could partially attenuate such changes in the IL-1β-induced nuclear translocation of β-catenin. DKK1, an inhibitor of β-catenin nuclear translocation, further inhibited the expression of type I and III collagens in cells treated with IL-1β plus CaSR antagonist. In summary, these data demonstrated that IL-1β-induced collagen I and III expressions in collecting duct cells might be partially mediated by CaSR and the downstream nuclear translocation of β-catenin.  相似文献   

8.
9.
10.
11.
The recent availability of the SHV-1 beta-lactamase crystal structure provides a framework for the understanding of the functional role of amino acid residues in this enzyme. To that end, we have constructed by site-directed mutagenesis 18 variants of the SHV beta-lactamase: an extended spectrum group: Gly238Ser, Gly238Ser-Glu240Lys, Asp104Lys-Gly238Ser, Asp104Lys-Thr235Ser-Gly238Ser, Asp179Asn, Arg164His, and Arg164Ser; an inhibitor resistant group: Arg244Ser, Met69Ile, Met69Leu, and Ser130Gly; mutants that are synergistic with those that confer resistance to oxyimino-cephalosporins: Asp104Glu, Asp104Lys, Glu240Lys, and Glu240Gln; and structurally conserved mutants: Thr235Ser, Thr235Ala and Glu166Ala. Among the extended spectrum group the combination of high-level ampicillin and cephalosporin resistance was demonstrated in the Escherichia coli DH10B strains possessing the Gly238Ser mutation: Gly238Ser, Gly238Ser-Glu240Lys, Asp104Lys-Gly238Ser, and Asp104Lys-Thr235Ser-Gly238Ser. Of the inhibitor resistant group, the Ser130Gly mutant was the most resistant to ampicillin/clavulanate. Using a polyclonal anti-SHV antibody, we assayed steady state protein expression levels of the SHV beta-lactamase variants. Mutants with the Gly238Ser substitution were among the most highly expressed. The Gly238Ser substitution resulted in an improved relative k(cat)/K(m) value for cephaloridine and oxyimino-cephalosporins compared to SHV-1 and Met69Ile. In our comparative survey, the Gly238Ser and extended spectrum beta-lactamase variants containing this substitution exhibited the greatest substrate versatility against penicillins and cephalosporins and greatest protein expression. This defines a unique role of Gly238Ser in broad-spectrum beta-lactam resistance in this family of class A beta-lactamases.  相似文献   

12.
13.
A novel murine glycerol-3-phosphate acyltransferase-like protein 1 (named xGPAT1) has been cloned. The mouse xGPAT1 gene is located on mouse Chromosome 2, spans >19 kb, and consists of at least 23 exons. The protein is 32% identical and 72% similar to mouse mitochondrial GPAT (mtGPAT) on the amino acid level. Sequencing analysis confirmed that xGPAT1 has a 2403-bp open reading frame (ORF) that encodes an 801-amino acid protein with an estimated molecular mass of 89.1 kDa. A hydropathy plot of the deduced xGPAT1 protein showed a high degree of similarity with that of the mtGPAT protein. Using 5′-rapid amplification of cDNA ends, two alternate, untranslated exon 1 (1a and b) isoforms were obtained, generating variants xGPAT1-v1 and xGPAT1–v2. xGPAT1-v1 is expressed in mouse heart, liver, spleen, kidney and murine inner medullary collecting duct 3 (mIMCD3) cells, while xGPAT1-v2 is expressed in mouse liver, spleen, kidney, white and brown adipose tissues and 3T3-L1 pre- and post-adipocytes. xGPAT1 was distributed in the membrane fraction and showed GPAT activity when epitope-tagged xGPAT1 was expressed in Chinese hamster ovary (CHO)-K1 cells.  相似文献   

14.
We have identified a novel fibroblast growth factor receptor 3 (FGFR3) missense mutation in four unrelated individuals with skeletal dysplasia that approaches the severity observed in thanatophoric dysplasia type I (TD1). However, three of the four individuals developed extensive areas of acanthosis nigricans beginning in early childhood, suffer from severe neurological impairments, and have survived past infancy without prolonged life-support measures. The FGFR3 mutation (A1949T: Lys650Met) occurs at the nucleotide adjacent to the TD type II (TD2) mutation (A1948G: Lys650Glu) and results in a different amino acid substitution at a highly conserved codon in the kinase domain activation loop. Transient transfection studies with FGFR3 mutant constructs show that the Lys650Met mutation causes a dramatic increase in constitutive receptor kinase activity, approximately three times greater than that observed with the Lys650Glu mutation. We refer to the phenotype caused by the Lys650Met mutation as "severe achondroplasia with developmental delay and acanthosis nigricans" (SADDAN) because it differs significantly from the phenotypes of other known FGFR3 mutations.  相似文献   

15.
The receptor tyrosine kinases (RTKs) RET, MET, and RON all carry the Met(p+1loop)-->Thr point mutation (i.e., 2B mutation), leading to the formation of tumors with high metastatic potential. Utilizing a novel antibody array, we identified constitutive phosphorylation of STAT3 in cells expressing the 2B mutation but not wild-type RET. MET or RON with the 2B mutation also constitutively phosphorylated STAT3. Members of the EPH, the only group of wild-type RTK that carry Thr(p+1loop) residue, are often expressed unexpectedly in different types of cancers. Ectopic expression of wild-type but not Thr(p+1loop)-->Met substituted EPH family members constitutively phosphorylated STAT3. In both RTK(Metp+1loop) with 2B mutation and wild-type EPH members the Thr(p+1loop) residue is required for constitutive kinase autophosphorylation and STAT3 recruitment. In multiple endocrine neoplasia 2B (MEN-2B) patients expressing RET(M918T), nuclear enrichment of STAT3 and elevated expression of CXCR4 was detected in metastatic thyroid C-cell carcinoma in the liver. In breast adenocarcinoma cell lines expressing multiple EPH members, STAT3 constitutively bound to the promoters of MUC1, MUC4, and MUC5B genes. Inhibiting STAT3 expression resulted in reduced expression of these metastasis-related genes and inhibited mobility. These findings provide insight into Thr(p+1loop) residue in RTK autophosphorylation and constitutive activation of STAT3 in metastatic cancer cells.  相似文献   

16.
Colocalisation, the overlap of subcellular structures labelled with different colours, is a key step to characterise cellular phenotypes. We have developed a novel bioimage informatics approach for quantifying colocalisation of round, blob-like structures in two-colour, highly resolved, three-dimensional fluorescence microscopy datasets. First, the algorithm identifies isotropic fluorescent particles, of relative brightness compared to their immediate neighbourhood, in three dimensions and for each colour. The centroids of these spots are then determined, and each object in one location of a colour image is checked for a corresponding object in the other colour image. Three-dimensional distance maps between the centroids of differently coloured spots then display where and how closely they colocalise, while histograms allow to analyse all colocalisation distances. We use the method to reveal sparse colocalisation of different human leukocyte antigen receptors in choriocarcinoma cells. It can also be applied to other isotropic subcellular structures such as vesicles, aggresomes and chloroplasts. The simple, robust and fast approach yields superresolved, object-based colocalisation maps and provides a first indication of protein–protein interactions of fluorescent, isotropic particles.  相似文献   

17.
18.
19.
Temperature-sensitive (ts) mutations have been used as a genetic and molecular tool to study the functions of many gene products. Each ts mutant protein may contain a temperature-dependent intramolecular mechanism such as ts conformational change. To identify key ts structural elements controlling the protein function, we screened ts p53 mutants from a comprehensive mutation library consisting of 2,314 p53 missense mutations for their sequence-specific transactivity through p53-binding sequences in Saccharomyces cerevisiae. We isolated 142 ts p53 mutants, including 131 unreported ts mutants. These mutants clustered in beta-strands in the DNA-binding domain, particularly in one of the two beta-sheets of the protein, and 15 residues (Thr155, Arg158, Met160, Ala161, Val172, His214, Ser215, Pro223, Thr231, Thr253, Ile254, Thr256, Ser269, Glu271, and Glu285) were ts hot spots. Among the 142 mutants, 54 were examined further in human osteosarcoma Saos-2 cells, and it was confirmed that 89% of the mutants were also ts in mammalian cells. The ts mutants represented distinct ts transactivities for the p53 binding sequences and a distinct epitope expression pattern for conformation-specific anti-p53 antibodies. These results indicated that the intramolecular beta-sheet in the core DNA-binding domain of p53 was a key structural element controlling the protein function and provided a clue for finding a molecular mechanism that enables the rescue of the mutant p53 function.  相似文献   

20.
Hypertrophic cardiomyopathy (HCM) is a genetically and clinically heterogeneous myocardial disease that is in most cases familial and transmitted in a dominant fashion. The most frequently affected gene codes for the cardiac (ventricular) β-myosin heavy chain. We have investigated the genetic cause of an isolated case of HCM, which was marked by an extremely severe phenotype and a very early age of onset. HCM is normally not a disease of small children. The proband was a boy who had suffered cardiac arrest at the age of 6.5years (resuscitation by cardioconversion). Upon screening of the β-myosin heavy chain gene as a candidate, two missense mutations, one in exon19 (Arg719Trp) and a second in exon12 (Met349Thr), were identified. The Arg719Trp mutation was de novo, as it was not found in the parents. In contrast, the Met349Thr mutation was inherited through the maternal grandmother. Six family members were carriers of this mutation but only the proband was clinically affected. Segregation and molecular analysis allowed us to assign the Met349Thr mutation to the maternal and the Arg719Trp de novo mutation to the paternal β-myosin allele. Thus, the patient has no normal myosin. We interpret these findings in terms of compound heterozygosity of a dominant (Arg719Trp) and a recessive (Met349Thr) mutation. Whereas a single mutated Arg719Trp allele would be sufficient to cause HCM, the concurrent Met349Thr mutation alone does not apparently induce the disease. Nevertheless, it conceivably contributes to the particularly severe phenotype. Received: 15 September 1997 / Accepted: 26 November 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号