首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Continuous culture of Bacillus popilliae was achieved for the first time in a small chemostat. Initially, variable cell yields during steady-state chemostat growth led to a re-examination of growth rates in batch cultures. B. popilliae NRRL B-2309 and a wild strain were both found to be natural mixtures of three substrains characterized by different growth rates and colony morphologies and varying stability. Selected subcultures grown continuously provided data for three different cell production curves. Cell yields were two to three times greater per unit of medium in continuous than in batch culture, and about 1% of slow-growing chemostat cells formed typical spores.  相似文献   

2.
The accepted food yeast Saccharomyces fragilis was grown in batch and chemostat culture on coconut water and on a simulated coconut-water medium containing glucose, fructose, sucrose and sorbitol, to provide kinetic data for a feasibility study of microbial protein production. Analyses of growth on individual and mixed carbon substrates were made to determine sugar assimilation patterns in batch and chemostat cultures on coconut water. Growth on the polyol produced a much reduced specific growth rate, assimilation rate, growth yield and productivity compared to growth on the sugars. In mixed substrate fermentations a sequential utilization of the carbohydrates occurred. Both the monosaccharides repressed invertase synthesis and all three sugars repressed sorbitol assimilation. Complete carbon assimilation was only obtained by prolonged batch fermentation or in chemostat cultures at low dilution rates (<0.10 h-1). Supplementation of coconut water with biotin and nicotinic acid increased biomass yields in chemostat cultures.  相似文献   

3.
Growth characteristics of batch and continuous cultures of the pink facultative methylotrophMethylobacterium sp. MB1 were determined. The response of a chemostat culture to a pulse increase of methanol concentration was studied. Malate, succinate and oxaloacetate additions to the methanol-supplemented medium decreased batch culture growth inhibition by methanol. The carotenoid content in cells grown in a chemostat decreased with increasing growth rate. The key enzyme activities of C1-metabolism were measured in a chemostat culture at different dilution rates.  相似文献   

4.
WILSON  G. 《Annals of botany》1976,40(5):919-932
Operational and constructional details are given of a relativelysimple and inexpensive chemostat designed for the continuousculture of plant cells in suspension. This apparatus permitscontrol of the growth rate of sycamore, Acer pseudoplatanusL. cells in steady-state conditions. By alteration of the rateof input of medium different steady-state growth rates wereobtained over a wide range (mean doubling times from 182 h to36 h). In order to establish a growth-limiting nutrient thetime course of nutrient uptake in batch culture was measured.In batch culture the maximum growth obtained was proportionalto the initial concentration of phosphate when this was belowa concentration of 17 µg P per ml (as phosphate). It isalso shown in chemostat culture that the steady-state cell densityis proportional to the phosphate concentration in the mediumwhen this is below 17 µg P per ml (as phosphate). Phosphatewas therefore established to be the growth rate-limiting nutrientin chemostat culture at a concentration of 8•5 µgP per ml (as phosphate).  相似文献   

5.
The kinetics of growth, nutrient uptake, and anthraquinone biosynthesisby suspension cultures of Galium mollugo L. cells were examinedin batch and continuous (chemostat) culture. In batch culture,although the initial growth rate was constant (minimum doublingtime = 35 h) characteristic changes in cell composition wereobserved during the growth cycle particularly cell dry weight(between 3.9 and 9.2 g/109 cells), cell anthraquinone (22–80mg/109 cells), and cell protein (0.7–1.6 g/109 cells).Using a chemostat steady state growth was established at twodifferent specific growth rates with mean doubling times of40 h and 25 h. Phosphate was established as the growth-limitingnutrient in chemostat culture at a concentration of 11 µgP ml–1. In steady state growth at a doubling time of 40h the cell composition remained constant although this was differentfrom any cells grown in batch culture. The cell anthraquinonelevel in steady state growth was between 7 and 30 times lowerthan in batch culture. This result raises the question of therelative importance of growth rate and the growth-limiting nutrientin determining accumulation of secondary products by culturedplant cells.  相似文献   

6.
Differing claims regarding the stability of the recombinant ethanologen E. coli KO11 are addressed here in batch and chemostat culture. In repeat batch culture, the organism was stable on glucose, mannose, xylose and galactose for at least three serial transfers, even in the absence of a selective antibiotic. Chemostat cultures on glucose were remarkably stable, but on mannose, xylose and a xylose/glucose mixture, they progressively lost their hyperethanologenicity. On xylose, the loss was irreversible, indicating genetic instability. The loss of hyperethanologenicity was accompanied by the production of high concentrations of acetic acid and by increasing biomass yields, suggesting that the higher ATP yield associated with acetate production may foster the growth of acetate-producing revertant strains. Plate counts on high chloramphenicol-containing medium, whether directly, or following preliminary growth on non-selective medium, were not a reliable indicator of high ethanologenicity during chemostat culture. In batch culture, the organism appeared to retain its promise for ethanol production from lignocellulosics and concerns that antibiotics may need to be included in all media appear unfounded. Received 13 January 1999/ Accepted in revised form 23 April 1999  相似文献   

7.
Yeast metabolism has been used extensively in scientific investigations and industrial applications. Understanding the properties of the yeast metabolic network is crucial, yet unaccomplished due to its high complexity, the different culture conditions, and the uncertainty associated with kinetic parameters. We recently developed a computational and mathematical framework using Monte Carlo method in which parameter uncertainty can be addressed through large-scale sampling procedure. This framework was applied on the compartmentalized central carbon pathways of Saccharomyces cerevisiae metabolism considering the growth environment of batch and chemostat reactor and integrating information from metabolic flux analysis. Statistical analysis of the results indicates that yeast cells growing in batch culture condition exhibit dramatically different control schemes from those growing in a chemostat. The difference is mainly due to the feedback introduced by the constraints of the chemostat. The control of the enzymes on the rates of the substrate uptake, product excretion, and cell growth and its practical implication are discussed. Clustering of the reaction steps according to the similarity of their responses to enzyme activity perturbations reveals functional coupling of metabolic reactions.  相似文献   

8.
The influence of different physiological states on the glucose uptake and mineralization by Cytophaga johnsonae, a freshwater isolate, was examined in batch and chemostat cultures. At different growth rates under glucose limitation in chemostat cultures, different uptake patterns for 14C labeled glucose were observed. In batch culture and at high growth rates the glucose uptake potential showed a higher maximum velocity and a much lower substrate affinity than at lower growth rates. These findings and the results of short-term labeling patterns could be explained by two different glucose uptake mechanisms which enable the strain to grow efficiently both at high and low substrate concentrations. Substrate specificity studies showed that a structural change of the C-2 atom of the glucose molecule was tolerated by both systems. The consequences of these results for the ecophysiological classification of the Cytophaga group and for the operation of continuous cultures are discussed.  相似文献   

9.
AIMS: To analyse the influence of cell growth rate and iron concentration on the production of pyoverdines (PVDs) and of their reduced dihydro forms by three fluorescent Pseudomonas strains (P. putida BTP16, P. fluorescens BTP7 and P. aeruginosa 7NSK2). METHODS: PVD and dihydropyoverdine (DHPVD) productions were determined by LC ESI-MS and spectrophotometry during batch and chemostat culture at different dilution rates. SIGNIFICANCE: The relatively high PVD-to-DHPVD ratio (0.57) observed in pH-controlled batch cultures suggested that a base-catalysed chemical oxidation of the dihydroform is not the prime mechanism involved in generating PVDs. Interestingly, in chemostat cultures the PVD-to-DHPVD ratio was significantly reduced at low specific growth rate. Our results suggest that the oxidation of DHPVD to PVD is catalysed by an iron-dependent enzymatic reaction rather than a chemical oxidation.  相似文献   

10.
Serum free fermentation procedures of cell cultures have got a wide application in production of biochemicals. But, cells cultured in serum free media in general are more sensitive to changes in culture condition, especially to nutrient limitation. There are no substances from serum which can support the cells when conditions are changing. In this study special attention is directed to amino acid utilization of mouse hybridoma in batch, chemostat and perfusion fermentations. Detailed data are presented which show the considerable difference of amino acid consumption rates in different fermentation modes. Already, in batch mode there are differences of the two investigated mouse hybridoma cell lines, although they are derived from the same myeloma line. In chemostat running at a dilution rate representing maximal growth rate most of the consumption rates are significant higher than in batch. On the other hand, in perfusion mode the rates are lower than in batch. This indicates clearly the different conditions of the fermentation modes. Therefore, it is necessary to develop serum free processes under the desired production conditions. An accurate analysis of the process is strongly recommended.  相似文献   

11.
Anacystis nidulans was grown photoautotrophically in a chemostat in the presence of light, air and CO2 as the sole carbon source. Either the amount of the nitrogen source in the medium or light intensity were used as growth-limiting parameters. 1. Cells of high glycogen content obtained by pre-incubation under nitrogen starvation conditions maintained their glycogen content during continuous cultivation. Both growth rate and the amount of cell-mass and of glycogen depended on the nitrate content of the medium and the light intensity. The values for the growth rate, the maximal rates of glycogen synthesis and of cell mass formation were 0.1 h-1, 6 mg/l.h and 17 mg/l.h, respectively. 2. Cells without glycogen which had been transferred from an exponentially growing batch culture to chemostat conditions showed increasing rates of growth and of cell mass formation when the light intensity was increased. A determination of specific values resulted in 0.15 h-1 for growth rate and 23 mg/1.h for cell mass formation. 3. The chemostat apparatus is described in detail.  相似文献   

12.
A versatile large-scale batch culture unit has been developedfor the growth of plant cell suspension cultures. This unithas been modified to permit of intermittent or continuous renewalof culture medium and, in a modified form, incorporated intoopen continuous culture systems of the chemostat and turbidostattype. A fully automatic culture sampler has been incorporatedinto the basic culture unit. The culture systems described havebeen successfully operated using a cell suspension derived fromAcer pseudoplatanus and results are presented demonstratingsynchronous growth in batch culture, prolonged logarithmic increassein cell number under conditions of high aeration and culturemedium renewal, and steady states of growth resulting from automaticregulation of the optical density of the cell suspension andfrom fixed rates of displacement of cell suspension by new medium.The potentialities of the culture systems are discussed in thelight of the experimental results presented.  相似文献   

13.
The effect of nitrogen source on methane-oxidizing bacteria with respect to cellular growth and trichloroethylene (TCE) degradation ability were examined. One mixed chemostat culture and two pure type II methane-oxidizing strains, Methylosinus trichosporium OB3b and strain CAC-2, which was isolated from the chemostat culture, were used in this study. All cultures were able to grow with each of three different nitrogen sources: ammonia, nitrate, and molecular nitrogen. Both M. trichosporium OB3b and strain CAC-2 showed slightly lower net cellular growth rates and cell yields but exhibited higher methane uptake rates, levels of poly-β-hydroxybutyrate (PHB) production, and naphthalene oxidation rates when grown under nitrogen-fixing conditions. The TCE-degrading ability of each culture was measured in terms of initial TCE oxidation rates and TCE transformation capacities (mass of TCE degraded/biomass inactivated), measured both with and without external energy sources. Higher initial TCE oxidation rates and TCE transformation capacities were observed in nitrogen-fixing mixed, M. trichosporium OB3b, and CAC-2 cultures than in nitrate- or ammonia-supplied cells. TCE transformation capacities were found to correlate with cellular PHB content in all three cultures. The results of this study suggest that the nitrogen-fixing capabilities of methane-oxidizing bacteria can be used to select for high-activity TCE degraders for the enhancement of bioremediation in fixed-nitrogen-limited environments.  相似文献   

14.
Chemostat cultures of Methylobacterium extorquens AM1 grown on methanol or succinate at a range of dilution rates were compared to batch cultures in terms of enzyme levels, poly-β-hydroxybutyrate content, and intracellular concentrations of adenine and pyridine nucleotides. In both chemostat and batch cultures, enzymes specific to C1 metabolism were up-regulated during growth on methanol and down-regulated during growth on succinate, polyhydroxybutyrate levels were higher on succinate, intracellular ATP levels and the energy charge were higher during growth on methanol, while the pools of reducing equivalents were higher during growth on succinate. For most of the tested parameters, little alteration occurred in response to growth rate. Overall, we conclude that the chemostat cultivation conditions developed in this study roughly mimic the growth in batch cultures, but provide a better control over the culturing conditions and a better data reproducibility, which are important for integrative functional studies. This study provides baseline data for future work using chemostat cultures, defining key similarities and differences in the physiology compared to existing batch culture data.  相似文献   

15.
The fibrillar strain Streptococcus salivarius HB and a non-fibrillar mutant, strain HB-B, were grown in a defined medium under glucose limitation in a chemostat. Fermentation balances were produced for both strains in batch culture and at growth rates between 0.1/h and 1.1/h. In batch culture both strains fermented glucose to lactate, but in continuous culture glucose was fermented to formate, acetate and ethanol with increasing amounts of lactate as the growth rate was increased. Lactate never became the major fermentation product even at the highest growth rate. Amino acid analysis showed that only lysine was more than 50% utilized, while proline and tyrosine showed net production. The non-fibrillar strain HB-B showed, in general, a reduced utilization of amino acids compared with the fibrillar strain HB. Calculated growth yields and maintenance energies for the two strains showed that there was a reduction in the true growth yield and the maintenance energy coefficient of the non-fibrillar strain HB-B when compared with the fibrillar strain HB. The increase in the maintenance energy of the fibrillar strain HB (1.382 mmol/g/h) when compared with the non-fibrillar strain HB-B (0.546 mmol/g/h) of 153% is proposed to be the energy required for the maintenance of the fibrillar surface of the cell.  相似文献   

16.
The fibrillar strain Streptococcus salivarius HB and a non-fibrillar mutant, strain HB-B, were grown in a defined medium under glucose limitation in a chemostat. Fermentation balances were produced for both strains in batch culture and at growth rates between 0.1/h and 1.1/h. In batch culture both strains fermented glucose to lactate, but in continuous culture glucose was fermented to formate, acetate and ethanol with increasing amounts of lactate as the growth rate was increased. Lactate never became the major fermentation product even at the highest growth rate. Amino acid analysis showed that only lysine was more than 50% utilized, while proline and tyrosine showed net production. The non-fibrillar strain HB-B showed, in general, a reduced utilization of amino acids compared with the fibrillar strain HB. Calculated growth yields and maintenance energies for the two strains showed that there was a reduction in the true growth yield and the maintenance energy coefficient of the non-fibrillar strain HB-B when compared with the fibrillar strain HB. The increase in the maintenance energy of the fibrillar strain HB (1.382 mmol/g/h) when compared with the non-fibrillar strain HB-B (0.546 mmol/g/h) of 153% is proposed to be the energy required for the maintenance of the fibrillar surface of the cell.  相似文献   

17.
The ciliated protozoan Tetrahymena pyriformis was grown in a chemostat fed with a culture of Escherichia coli overflowing from another chemostat. Densities of the protozoan and bacterial populations, mean volume of protozoan cells, yields of protozoan volumes and numbers, and filtering rates of protozoans per cell and per unit volume of biomaterial were determined at five different dilution rates. The data obtained supplement other data already available for the popular test organism T. pyriformis, and they are also comparable with data available for related ciliates.  相似文献   

18.
Vibrio gazogenes ATCC 29988 growth and prodigiosin synthesis were studied in batch culture on complex and defined media and in chemostat cultures on defined medium. In batch culture on complex medium, a maximum growth rate of 0.75 h−1 and a maximum prodigiosin concentration of 80 ng of prodigiosin · mg of cell protein−1 were observed. In batch culture on defined medium, maximum growth rates were lower (maximum growth rate, 0.40 h−1), and maximum prodigiosin concentrations were higher (1,500 ng · mg of protein−1). In batch culture on either complex or defined medium, growth was characterized by a period of logarithmic growth followed by a period of linear growth; on either medium, prodigiosin biosynthesis was maximum during linear growth. In batch culture on defined medium, the initial concentration of glucose optimal for growth and pigment production was 3.0%; higher levels of glucose suppressed synthesis of the pigment. V. gazogenes had an absolute requirement for Na+; optimal growth occurred in the presence of 100 mM NaCl. Increases in the concentration of Na+ up to 600 mM resulted in further increases in the concentration of pigment in the broth. Prodigiosin was synthesized at a maximum level in the presence of inorganic phosphate concentrations suboptimal for growth. Concentrations of KH2PO4 above 0.4 mM caused decreased pigment synthesis, whereas maximum cell growth occurred at 1.0 mM. Optimal growth and pigment production occurred in the presence of 8 to 16 mg of ferric ion · liter−1, with higher concentrations proving inhibitory to both growth and pigment production. Both growth and pigment production were found to decrease with increased concentrations of p-aminobenzoic acid. The highest specific concentration of prodigiosin (3,480 ng · mg protein−1) was observed in chemostat cultures at a dilution rate of 0.057 h−1. The specific rate of prodigiosin production at this dilution rate was approximately 80% greater than that observed in batch culture on defined medium. At dilution rates greater than 0.057 h−1, the concentration of cells decreased with increasing dilution rate, resulting in a profile comparable to that expected for linear growth kinetics. No explanation could be found for the linear growth profiles obtained for both batch and chemostat cultures.  相似文献   

19.
The growth of a model plant pathogen, Pseudomonas syringae pv. tomato DC3000, was investigated using a chemostat culture system to examine environmentally regulated responses. Using minimal medium with iron as the limiting nutrient, four different types of responses were obtained in a customized continuous culture system: (1) stable steady state, (2) damped oscillation, (3) normal washout due to high dilution rates exceeding the maximum growth rate, and (4) washout at low dilution rates due to negative growth rates. The type of response was determined by a combination of initial cell mass and dilution rate. Stable steady states were obtained with dilution rates ranging from 0.059 to 0.086 h?1 with an initial cell mass of less than 0.6 OD600. Damped oscillations and negative growth rates are unusual observations for bacterial systems. We have observed these responses at values of initial cell mass of 0.9 OD600 or higher, or at low dilution rates (<0.05 h?1) irrespectively of initial cell mass. This response suggests complex dynamics including the possibility of multiple steady states. Iron, which was reported earlier as a growth limiting nutrient in a widely used minimal medium, enhances both growth and virulence factor induction in iron‐supplemented cultures compared to unsupplemented controls. Intracellular iron concentration is correlated to the early induction (6 h) of virulence factors in both batch and chemostat cultures. A reduction in aconitase activity (a TCA cycle enzyme) and ATP levels in iron‐limited chemostat cultures was observed compared to iron‐supplemented chemostat cultures, indicating that iron affects central metabolic pathways. We conclude that DC3000 cultures are particularly dependent on the environment and iron is likely a key nutrient in determining physiology. Biotechnol. Bioeng. 2010;105: 955–964. © 2009 Wiley Periodicals, Inc.  相似文献   

20.
The growth of Streptococcus cremoris on a semidefined medium was studied at initial lactose concentrations of 0.2-5.0% in batch culture, and in lactose-limited chemostat cultures at 0.5% lactose. Kinetic analysis of the batch data, using statisitcal techniques, indicated the importance of lactose limitation and lactic acid inhibition of the growth of S. cremoris. A model for the biomass production, lactose utilization, and lactic acid production in batch culture was proposed. In continuous culture, it was found that steady state populations were maintained at higher dilution rates (D = 0.6-0.7 h-1) than the maximum predicted by batch culture (0.56h-1). No evidence for a selection of fast growing mutants was obtained. Copious growth adhering to the walls of the fermentor (i.e. wall growth) occurred very rapidly at higher dilution rates and this undoubtedly affected steady-state growth and wash-out and, as a consequence, the apparent maximum dilution rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号