首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Selenoprotein W (SEPW1) is a ubiquitous, highly conserved thioredoxin-like protein whose depletion causes a transient p53- and p21(Cip1)-dependent G(1)-phase cell cycle arrest in breast and prostate epithelial cells. SEPW1 depletion increases phosphorylation of Ser-33 in p53, which is associated with decreased p53 ubiquitination and stabilization of p53. We report here that delayed cell cycle progression, Ser-33 phosphorylation, and p53 nuclear accumulation from SEPW1 depletion require mitogen-activated protein kinase kinase 4 (MKK4). Silencing MKK4 rescued G(1) arrest, Ser-33 phosphorylation, and nuclear accumulation of p53 induced by SEPW1 depletion, but silencing MKK3, MKK6, or MKK7 did not. SEPW1 silencing did not change the phosphorylation state of MKK4 but increased total MKK4 protein. Silencing p38γ, p38δ, or JNK2 partially rescued G(1) arrest from SEPW1 silencing, suggesting they signal downstream from MKK4. These results imply that SEPW1 silencing increases MKK4, which activates p38γ, p38δ, and JNK2 to phosphorylate p53 on Ser-33 and cause a transient G(1) arrest.  相似文献   

2.
Our previous studies have shown that cells conditionally deficient in Tsg101 arrested at the G(1)/S cell cycle checkpoint and died. We created a series of Tsg101 conditional knock-out cell lines that lack p53, p21(Cip1), or p19(Arf) to determine the involvement of the Mdm2-p53 circuit as a regulator for G(1)/S progression and cell death. In this new report we show that the cell cycle arrest in Tsg101-deficient cells is p53-dependent, but a null mutation of the p53 gene is unable to maintain cell survival. The deletion of the Cdkn1a gene in Tsg101 conditional knock-out cells resulted in G(1)/S progression, suggesting that the p53-dependent G(1) arrest in the Tsg101 knock-out is mediated by p21(Cip1). The Cre-mediated excision of Tsg101 in immortalized fibroblasts that lack p19(Arf) seemed not to alter the ability of Mdm2 to sequester p53, and the p21-mediated G(1) arrest was not restored. Based on these findings, we propose that the p21-dependent cell cycle arrest in Tsg101-deficient cells is an indirect consequence of cellular stress and not caused by a direct effect of Tsg101 on Mdm2 function as previously suggested. Finally, the deletion of Tsg101 from primary tumor cells that express mutant p53 and that lack p21(Cip1) expression results in cell death, suggesting that additional transforming mutations during tumorigenesis do not affect the important role of Tsg101 for cell survival.  相似文献   

3.
The p53 tumor suppressor responds to chemotherapeutic stress by triggering apoptosis or eliciting pro-survival pathway through arresting cell cycle progression for DNA damage repair. Here we examined the pro-survival activity of p53 on the adriamycin-induced stress using H1299 cells stably expressing tsp53 V143A, a temperature-sensitive mutant activating only the subset of p53 target genes related to growth arrest and DNA repair, but not apoptosis. At 38 degrees C, cells evaded from adriamycin-induced G2 arrest and died of apoptosis and mitotic catastrophe, which could be inhibited by Cdk inhibitors. Activation of functional tsp53 V143A at 32 degrees C led to suppression of Cdk1/2 activities and Cyclin B1/Cdk1 expression, cells exhibited prolonged G2 arrest, regained reproductive potential and were protected from mitotic catastrophe induced by adriamycin. Inhibition of mitotic catastrophe and Cyclin B1/Cdk1 expression was ablated upon silencing p21 Waf1 expression in tsp53 V143A-H1299 cells or in HCT116 cells. Together we show that p21 Waf1 is a key component of G2 checkpoint necessary and sufficient for protecting tumor cells against adriamycin-induced mitotic catastrophe.  相似文献   

4.
DNA damage causes cell cycle arrest in G(1), S, or G(2) to prevent replication on damaged DNA or to prevent aberrant mitosis. The G(1) arrest requires the p53 tumor suppressor, yet the topoisomerase I inhibitor SN38 induces p53 after the G(1) checkpoint such that the cells only arrest in S or G(2). Hence, SN38 facilitates comparison of p53 wild-type and mutant cells with regard to the efficacy of drugs such as 7-hydroxystaurosporine (UCN-01) that abrogate S and G(2) arrest. UCN-01 abrogated S and G(2) arrest in the p53 mutant breast tumor cell line MDA-MB-231 but not in the p53 wild-type breast line, MCF10a. This resistance to UCN-01 in the p53 wild-type cells correlated with suppression of cyclins A and B. In the p53 mutant cells, low concentrations of UCN-01 caused S phase cells to progress to G(2) before undergoing mitosis and death, whereas high concentrations caused rapid premature mitosis and death of S phase cells. UCN-01 inhibits Chk1/2, which should activate the mitosis-inducing phosphatase Cdc25C, yet this phosphatase remained inactive during S phase progression induced by low concentrations of UCN-01, probably because Cdc25C is also inhibited by the constitutive kinase, C-TAK1. High concentrations of UCN-01 caused rapid activation of Cdc25C, which is attributed to inhibition of C-TAK1, as well as Chk1/2. Hence, UCN-01 has multiple effects depending on concentration and cell phenotype that must be considered when investigating mechanisms of checkpoint regulation.  相似文献   

5.
The p38 group of kinases belongs to the mitogen-activated protein (MAP) kinase superfamily with structural and functional characteristics distinguishable from those of the ERK, JNK (SAPK), and BMK (ERK5) kinases. Although there is a high degree of similarity among members of the p38 group in terms of structure and activation, each member appears to have a unique function. Here we show that activation of p38gamma (also known as ERK6 or SAPK3), but not the other p38 isoforms, is required for gamma-irradiation-induced G(2) arrest. Activation of the MKK6-p38gamma cascade is sufficient to induce G(2) arrest in cells, and expression of dominant negative alleles of MKK6 or p38gamma allows cells to escape the DNA damage-induce G(2) delay. Activation of p38gamma is dependent on ATM and leads to activation of Cds1 (also known as Chk2). These data suggest a model in which activation of ATM by gamma irradiation leads to the activation of MKK6, p38gamma, and Cds1 and that activation of both MKK6 and p38gamma is essential for the proper regulation of the G(2) checkpoint in mammalian cells.  相似文献   

6.
Reactive oxygen species produced during hyperoxia damage DNA, inhibit proliferation in G1- through p53-dependent activation of p21(Cip1/WAF1/Sdi1), and kill cells. Because checkpoint activation protects cells from genotoxic stress, we investigated cell proliferation and survival of the murine type II epithelial cell line MLE15 during hyperoxia. These cells were chosen for study because they express Simian large and small-T antigens, which transform cells in part by disrupting the p53-dependent G1 checkpoint. Cell counts, 5-bromo-2'-deoxyuridine labeling, and flow cytometry revealed that hyperoxia slowed cell cycle progression after one replication, resulting in a pronounced G2 arrest by 72 h. Addition of caffeine, which inactivates the G2 checkpoint, diminished the percentage of hyperoxic cells in G2 and increased the percentage in sub-G1 and G1. Abrogation of the G2 checkpoint was associated with enhanced oxygen-induced DNA strand breaks and cell death. Caffeine did not affect DNA integrity or viability of cells exposed to room air. Similarly, caffeine abrogated the G2 checkpoint in hyperoxic A549 epithelial cells and enhanced oxygen-induced toxicity. These data indicate that hyperoxia rapidly inhibits proliferation after one cell cycle and that the G2 checkpoint is critical for limiting DNA damage and cell death.  相似文献   

7.
p53 checkpoint-defective cells are sensitive to X rays, but not hypoxia   总被引:2,自引:0,他引:2  
X-ray-induced damage leads to cell-cycle "checkpoint" arrest by p53-dependent induction of the cyclin-dependent kinase inhibitor p21 (Waf1/Cip1/Sdi1). Human tumor cells that lack this response fail to arrest after exposure to DNA-damaging agents, undergo multiple rounds of endoreduplicative DNA synthesis, and eventually commit to an apoptotic cell death. Since low oxygen tension can also induce p53 protein accumulation, and can lead to cell-cycle arrest or apoptosis, we examined the expression of p21 in tumor cells under normoxic and hypoxic conditions. In a survey of cells, mRNA for the p21 gene was induced two- to threefold in response to hypoxia in a seemingly p53-independent manner. We therefore examined genetically matched cells that differ in their p21 and p53 status for response to ionizing radiation and hypoxia. We found that both p21-deficient and p53-deficient cells exhibit an increase in chromosome instability, an increased level of apoptosis, and a failure to arrest after exposure to ionizing radiation. However, cells that lack either p21 or p53 exhibit no increase in chromosome instability or elevated apoptosis and still arrest in response to hypoxia. Thus, the mechanism responsible for the differential response to either hypoxia or X rays presumably lies in the control of cell-cycle progression in response to stress and its dependence on p21. Since the loss of a DNA-damage-dependent checkpoint does not sensitize cells to killing by stresses that elicit a DNA-damage-independent checkpoint, targeting the function of p21 pharmacologically will not kill tumor cells in situ in the absence of a DNA damage signal.  相似文献   

8.
9.
Cell cycle checkpoints and their impact on anticancer therapeutic strategies   总被引:15,自引:0,他引:15  
Cells contain numerous pathways designed to protect them from the genomic instability or toxicity that can result when their DNA is damaged. The p53 tumor suppressor is particularly important for regulating passage through G1 phase of the cell cycle, while other checkpoint regulators are important for arrest in S and G2 phase. Tumor cells often exhibit defects in these checkpoint proteins, which can lead to hypersensitivity; proteins in this class include ataxia-telangiectasia mutatated (ATM), Meiotic recanbination 11 (Mre11), Nijmegen breakage syndrome 1 (Nbs 1), breast cancer susceptibility genes 1 and 2 (BRCA1), and (BRCA2). Consequently, tumors should be assessed for these specific defects, and specific therapy prescribed that has high probability of inducing response. Tumors defective in p53 are frequently considered resistant to apoptosis, yet this defect also provides an opportunity for targeted therapy. When their DNA is damaged, p53-defective tumor cells preferentially arrest in S or G2 phase where they are susceptible to checkpoint inhibitors such as caffeine and UCN-01. These inhibitors preferentially abrogate cell cycle arrest in p53-defective cells, driving them through a lethal mitosis. Wild type p53 can prevent abrogation of arrest by elevating levels of p21(waf1) and decreasing levels of cyclins A and B. During tumorigenesis, tumor cells frequently loose checkpoint controls and this facilitates the development of the tumor. However, these defects also represent an Achilles heel that can be targeted to improve current therapeutic strategies.  相似文献   

10.
Manganese superoxide dismutase (MnSOD) catalyzes the dismutation of superoxide anions (O(2)(-)) into hydrogen peroxide (H(2)O(2)). We altered the intracellular status of reactive oxygen species by introducing human MnSOD cDNA into the human ovarian cancer cell line SK-OV-3. The overexpression of MnSOD inhibited cell growth and induced a concomitant increase in the level of H(2)O(2) in SK-OV-3 cells. The cells overexpressing MnSOD were more resistant to irradiation than parental cells. MnSOD overexpression shortened the G(2)-M duration in irradiated cells. Either inhibition of p38 mitogen-activated protein kinase (p38MAPK) or scavenging free radicals blocked the induction of radioresistance by MnSOD and also abolished the shortening of the G(2)-M duration with concomitant inhibition of p38MAPK phosphorylation. Irradiation increased the generation of H(2)O(2) even more in these transfectants. These results suggest that the accumulated H(2)O(2) potentiated the activation of p38MAPK after irradiation in cells overexpressing MnSOD, which led to the protection of cells from irradiation-mediated cell death through the G(2)-M checkpoint. SK-OV-3 cells had no constitutive expression of p53, and the overexpression of MnSOD and/or irradiation did not induce p53 or p21(WAF1), which causes cell cycle arrest. Thus, our results suggest that MnSOD alters the cell cycle progression of irradiated cells independently of p53 and p21(WAF1).  相似文献   

11.
We previously identified FOXF1 as a potential tumor suppressor gene with an essential role in preventing DNA rereplication to maintain genomic stability, which is frequently inactivated in breast cancer through the epigenetic mechanism. Here we further addressed the role of the p53-p21WAF1 checkpoint pathway in DNA rereplication induced by silencing of FOXF1. Knockdown of FOXF1 by small interference RNA (siRNA) rendered colorectal p53-null and p21WAF1-null HCT116 cancer cells more susceptible to rereplication and apoptosis than the wild-type parental cells. In parental HCT116 cells with a functional p53 checkpoint, the p53-p21WAF1 checkpoint pathway was activated upon FOXF1 knockdown, which was concurrent with suppression of the CDK2-Rb cascade and induction of G1 arrest. In contrast, these events were not observed in FOXF1-depleted HCT116-p53−/− and HCT116-p21−/− cells, indicating that the p53-dependent checkpoint function is vital for inhibiting CDK2 to induce G1 arrest and protect cells from rereplication. The pharmacologic inhibitor (caffeine) of ataxia telangiectasia mutated (ATM) and ataxia telangiectasia and Rad3 related (ATR) protein kinases abolished activation of the p53-p21WAF1 pathway upon FOXF1 knockdown, suggesting that suppression of FOXF1 function triggered the ATM/ATR-mediated DNA damage response. Cosilencing of p53 by siRNA synergistically enhanced the effect of FOXF1 depletion on the stimulation of DNA rereplication and apoptosis in wild-type HCT116. Finally, we show that FOXF1 expression is predominantly silenced in breast and colorectal cancer cell lines with inactive p53. Our study demonstrated that the p53-p21WAF1 checkpoint pathway is an intrinsically protective mechanism to prevent DNA rereplication induced by silencing of FOXF1.  相似文献   

12.
Previous studies have shown that hyperoxia inhibits proliferation and increases the expression of the tumor suppressor p53 and its downstream target, the cyclin-dependent kinase inhibitor p21(CIP1/WAF1), which inhibits proliferation in the G1 phase of the cell cycle. To determine whether growth arrest was mediated through activation of the p21-dependent G1 checkpoint, the kinetics of cell cycle movement during exposure to 95% O2 were assessed in the Mv1Lu and A549 pulmonary adenocarcinoma cell lines. Cell counts, 5-bromo-2'-deoxyuridine incorporation, and cell cycle analyses revealed that growth arrest of both cell lines occurred in S phase, with A549 cells also showing evidence of a G1 arrest. Hyperoxia increased p21 in A549 but not in Mv1Lu cells, consistent with the activation of the p21-dependent G1 checkpoint. The ability of p21 to exert the G1 arrest was confirmed by showing that hyperoxia inhibited proliferation of HCT 116 colon carcinoma cells predominantly in G1, whereas an isogenic line lacking p21 arrested in S phase. The cell cycle arrest in S phase appears to be a p21-independent process caused by a gradual reduction in the rate of DNA strand elongation. Our data reveal that hyperoxia inhibits proliferation in G1 and S phase and demonstrate that p53 and p21 retain their ability to affect G1 checkpoint control during exposure to elevated O2 levels.  相似文献   

13.
Amin MA  Matsunaga S  Uchiyama S  Fukui K 《FEBS letters》2008,582(27):3839-3844
Nucleophosmin (NPM) is an abundantly expressed multifunctional nucleolar phosphoprotein. Here we show that depletion of NPM by RNA interference causes defects in cell division, followed by an arrest of DNA synthesis due to activation of a p53-dependent checkpoint response in HeLa cells. Depletion of NPM leads to mitotic arrest due to spindle checkpoint activation. The mitotic cells arrested by NPM depletion have defects in chromosome congression, proper mitotic spindle and centrosome formation, as well as defects in kinetochore-microtubule attachments. Loss of NPM thus causes severe mitotic defects and delayed mitotic progression. These findings indicate that NPM is essential for mitotic progression and cell proliferation.  相似文献   

14.
Cancer cells contain an abnormal number of chromosomes (aneuploidy), which is a prevalent form of genetic instability in human cancers. Abnormal amplification of centrosomes and defects of spindle assembly checkpoint are the major causes of chromosome instability in cancer cells. Here we present biochemical evidence to suggest a role of ECRG2, a novel tumor suppressor gene, in maintaining chromosome stability. ECRG2 localized to centrosomes during interphase and kinetochores during mitosis. Further analysis revealed that ECRG2 participates in centrosome amplification in a p53-dependent manner. Depletion of ECRG2 not only destabilized p53, down-regulated p21, and increased the cyclin E/CDK2 activity, thus initiating centrosome amplification, but also abolished the ability of p53 localize to centrosomes. Overexpression of ECRG2 restored the p53-dependent suppression of centrosome duplication. Furthermore, ECRG2-depleted cells show severely disrupted spindle phenotype but fail to maintain the mitotic arrest due to minimal BUBR1 protein levels. Taken together, our results indicate that ECRG2 is important for ensuring centrosome duplication, spindle assembly checkpoint, and accurate chromosome segregation, and its depletion may contribute to chromosome instability and aneuploidy in human cancers.  相似文献   

15.
DNA damage activates checkpoint controls which block progression of cells through the division cycle. Several different checkpoints exist that control transit at different positions in the cell cycle. A role for checkpoint activation in providing resistance of cells to genotoxic anticancer therapy, including chemotherapy and ionizing radiation, is widely recognized. Although the core molecular functions that execute different damage activated checkpoints are known, the signals that control checkpoint activation are far from understood. We used a kinome-spanning RNA interference screen to delineate signalling required for radiation-mediated retinoblastoma protein activation, the recognized executor of G(1) checkpoint control. Our results corroborate the involvement of the p53 tumour suppressor (TP53) and its downstream targets p21(CIP1/WAF1) but infer lack of involvement of canonical double strand break (DSB) recognition known for its role in activating TP53 in damaged cells. Instead our results predict signalling involving the known TP53 phosphorylating kinase PRPK/TP53RK and the JNK/p38MAPK activating kinase STK4/MST1, both hitherto unrecognised for their contribution to DNA damage G1 checkpoint signalling. Our results further predict a network topology whereby induction of p21(CIP1/WAF1) is required but not sufficient to elicit checkpoint activation. Our experiments document a role of the kinases identified in radiation protection proposing their pharmacological inhibition as a potential strategy to increase radiation sensitivity in proliferating cancer cells.  相似文献   

16.
A "spindle assembly" checkpoint has been described that arrests cells in G1 following inappropriate exit from mitosis in the presence of microtubule inhibitors. We have here addressed the question of whether the resulting tetraploid state itself, rather than failure of spindle function or induction of spindle damage, acts as a checkpoint to arrest cells in G1. Dihydrocytochalasin B induces cleavage failure in cells where spindle function and chromatid segregation are both normal. Notably, we show here that nontransformed REF-52 cells arrest indefinitely in tetraploid G1 following cleavage failure. The spindle assembly checkpoint and the tetraploidization checkpoint that we describe here are likely to be equivalent. Both involve arrest in G1 with inactive cdk2 kinase, hypophosphorylated retinoblastoma protein, and elevated levels of p21(WAF1) and cyclin E. Furthermore, both require p53. We show that failure to arrest in G1 following tetraploidization rapidly results in aneuploidy. Similar tetraploid G1 arrest results have been obtained with mouse NIH3T3 and human IMR-90 cells. Thus, we propose that a general checkpoint control acts in G1 to recognize tetraploid cells and induce their arrest and thereby prevents the propagation of errors of late mitosis and the generation of aneuploidy. As such, the tetraploidy checkpoint may be a critical activity of p53 in its role of ensuring genomic integrity.  相似文献   

17.
18.
19.
20.
Previous evidence has indicated that an intact centrosome is essential for cell cycle progress and that elimination of the centrosome or depletion of individual centrosome proteins prevents the entry into S phase. To investigate the molecular mechanisms of centrosome-dependent cell cycle progress, we performed RNA silencing experiments of two centrosome-associated proteins, pericentriolar material 1 (PCM-1) and pericentrin, in primary human fibroblasts. We found that cells depleted of PCM-1 or pericentrin show lower levels of markers for S phase and cell proliferation, including cyclin A, Ki-67, proliferating cell nuclear antigen, minichromosome maintenance deficient 3, and phosphorylated retinoblastoma protein. Also, the percentage of cells undergoing DNA replication was reduced by >50%. At the same time, levels of p53 and p21 increased in these cells, and cells were predisposed to undergo senescence. Conversely, depletion of centrosome proteins in cells lacking p53 did not cause any cell cycle arrest. Inhibition of p38 mitogen-activated protein kinase rescued cell cycle activity after centrosome protein depletion, indicating that p53 is activated by the p38 stress pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号