首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The cAMP-dependent protein kinase-induced effects on phosphorylase and glycogen synthase activities and glucose production were studied in hepatocytes isolated from fed rats in the presence of the diastereomers of adenosine cyclic 3',5'-phosphorothioate, (Sp)-cAMPS and (Rp)-cAMPS. Incubation of hepatocytes with (Sp)-cAMPS or glucagon, both of which lead to cAMP-dependent protein kinase activation, resulted in a concentration-dependent increase in glycogen phosphorylase activity and a decrease in glycogen synthase activity. Incubation of hepatocytes with the cAMP-dependent protein kinase antagonist, (Rp)-cAMPS, in the absence of an agonist, had no significant effect on phosphorylase or glycogen synthase activities. Incubation of hepatocytes with a half-maximally inhibitory concentration of (Rp)-cAMPS shifted the agonist-induced activation curves for phosphorylase and the agonist-induced inhibition curves for glycogen synthase to 5-fold higher concentrations for both (Sp)-cAMPS and glucagon. Phosphorylase activity was very sensitive to the rapid, concentration-dependent inhibition by (Rp)-cAMPS of agonist-induced activation of cAMP-dependent protein kinase. The effects on phosphorylase activity were observable in 30 s and were concentration-dependent with half-maximal inhibition at 10 microM, similar to that observed for cAMP-dependent protein kinase. In contrast, glycogen synthase activity was less sensitive to (Rp)-cAMPS inhibition of agonist-induced activation of cAMP-dependent protein kinase. The effects on glycogen synthase activity lagged behind those on phosphorylase activity and the concentration dependence did not parallel the cAMP-dependent protein kinase effect, but was shifted to higher concentrations of (Rp)-cAMPS with half-maximal inhibition at 60 microM. Glucose (10 to 40 mM) increased the sensitivity of glycogen synthase to (Rp)-cAMPS inhibition of cAMP-dependent protein kinase over a narrow range of agonist concentration, but had no significant effect throughout most of the agonist-induced activation range. Thus, the diastereomers, (Sp)- and (Rp)-cAMPS, influence glycogen metabolism and the glycogenolytic enzymes through their modulation of cAMP-dependent protein kinase levels.  相似文献   

2.
Inhibition of hepatic glycogenolysis by an intracellular inhibitor of cAMP-dependent protein kinase in glucagon-stimulated hepatocytes was potentiated by insulin. When hepatocytes isolated from fed rats were treated with 0.3 nM glucagon, which activates glycogen breakdown half-maximally, the Rp diastereomer of adenosine cyclic 3',5'-phosphorothioate [Rp-cAMPS), a cAMP antagonist, inhibited glucose production half-maximally at 3 microM. A 10-fold lower concentration of antagonist was required to half-maximally inhibit glucose production in the presence of 10 nM insulin, which alone produced only 15% inhibition. Under the same experimental conditions, the maximal effect of (Rp)-cAMPS was also potentiated. In addition, the increase in the concentration of glucagon required for half-maximal activation of phosphorylase activity and inactivation of glycogen synthase activity in the presence of minimally effective concentrations of insulin and (Rp)-cAMPS were clearly synergistic. It is postulated that the synergism observed is a consequence of action at several enzymatic sites leading to, and including, alteration of the phosphorylation state of the two rate-limiting enzymes in glycogen metabolism.  相似文献   

3.
Maximal doses of glucagon increase the phosphorylation state of 12 cytosolic proteins in isolated hepatocytes from fasted rats (Garrison, J. C., and Wagner, J. D. (1982) J. Biol. Chem. 257, 13135-13143). Incubation of hepatocytes with lower concentrations of glucagon indicates that a hierarchy of substrates exists with the concentration of glucagon required for half-maximal increases in phosphorylation varying 5-15-fold. The proteins whose phosphorylation state is most sensitive to low concentrations of glucagon are pyruvate kinase and 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase, both of which play key roles in the regulation of gluconeogenesis. Treatment of hepatocytes with (Sp)-cAMPS, the stimulatory diastereomer of adenosine cyclic 3',5'-phosphorothioate, mimics the response seen with glucagon. When hepatocytes are pretreated with the cAMP antagonist, (Rp)-cAMPS, the phosphorylation response is abolished at low concentrations of glucagon, and the dose of glucagon required for half-maximal stimulation of phosphorylation is increased 5-10-fold. The (Sp)-cAMPS-stimulated increases in phosphorylation state are also blunted by (Rp)-cAMPS. These results provide direct pharmacological evidence for the activation of the cAMP-dependent protein kinase in response to glucagon in the intact cell. Although low doses of glucagon appear to stimulate protein phosphorylation via the cAMP-dependent protein kinase, high doses of glucagon also cause a small increase in the concentration of free intracellular Ca2+ in hepatocytes. The glucagon-stimulated increases in the level of Ca2+ can be mimicked by (Sp)-cAMPS and inhibited by pretreatment with (Rp)-cAMPS. These results suggest that glucagon can elevate intracellular Ca2+ via cAMP and the cAMP-dependent protein kinase.  相似文献   

4.
The ability of the Rp diastereomer of adenosine cyclic 3',5'-phosphorothioate (Rp cAMPS) to inhibit glucagon-induced glycogenolysis was studied in hepatocytes isolated from fed rats. Preincubation of the cells for 20 min with progressively higher concentrations of Rp cAMPS followed by a 1 X 10(-9) M glucagon challenge resulted in a 50% inhibition of glucose production over a 30-min period at 2-3 X 10(-6) M Rp cAMPS. A maximal inhibition of 50-74% was achieved, the actual value depending upon the length of preincubation with Rp cAMPS. The inhibitory effect did not increase when the concentration of Rp cAMPS was increased from 3 X 10(-6) to 3 X 10(-4) M. Addition of 1 X 10(-5) M Rp cAMPS to the cells followed by 10(-11) to 10(-6) M glucagon shifted the glucagon concentration required for half-maximal glucose production measured at 10 min to 6-fold higher glucagon concentrations and the concentration of glucagon required for apparent maximal glucose production measured at 10 min to greater than 10-fold higher glucagon concentrations. The cAMP-dependent protein kinase activation curve was similarly shifted to higher concentrations of glucagon. These data show that Rp cAMPS acts as a cAMP antagonist capable of opposing the glucagon-induced activation of cAMP-dependent protein kinase and the concomitant activation of the glycogenolytic cascade.  相似文献   

5.
The diastereomeric forms of adenosine cyclic 3',5'-phosphorothioate, Rp cAMPS and Sp cAMPS, were studied in isolated hepatocytes from fed rats for their ability to interact with the intracellular cAMP-dependent protein kinase and to affect the phosphorylase kinase-phosphorylase glycogenolytic cascade. Incubation of the cells with increasing concentrations of Sp cAMPS produced a concentration-dependent activation of cAMP-dependent protein kinase with a concomitant increase in the glycogenolytic rate. Half-maximal and maximal velocities of glycogenolysis were reached at 8 X 10(-7) and 1 X 10(-5) M Sp cAMPS, respectively. Incubation of the cells with 10(-9) to 10(-4) M Rp cAMPS had no effect on basal glucose production or on cAMP-dependent protein kinase activity. Incubation of the cells simultaneously with 3 X 10(-6) M Sp cAMPS and increasing concentrations of Rp cAMPS produced half-maximal inhibition of glycogenolysis at 1 X 10(-5) M Rp cAMPS and maximal inhibition at 1 X 10(-4) M. The concentrations of Sp cAMPS required for half-maximal and maximal activation of glycogenolysis were increased 10-fold when 1 X 10(-5) M Rp cAMPS was present. These data imply that Sp cAMPS is a cAMP-agonist while Rp cAMPS is a cAMP-antagonist.  相似文献   

6.
Nerve growth factor (NGF)-mediated neurite outgrowth in rat pheochromocytoma PC12 cells has been described to be synergistically potentiated by the simultaneous addition of dibutyryl cAMP. To elucidate further the role of cAMP in NGF-induced neurite outgrowth we have used the adenylate cyclase activator forskolin, cAMP, and a set of chemically modified cAMP analogues, including the adenosine cyclic 3',5'-phosphorothioates (cAMPS) (Rp)-cAMPS and (Sp)-cAMPS. These diastereomers have differential effects on the activation of cAMP-dependent protein kinases, i.e., (Sp)-cAMPS behaves as a cAMP agonist and (Rp)-cAMPS behaves as a cAMP antagonist. Our data show that the establishment of a neuritic network, as observed from PC12 cells treated with NGF alone, could not be induced by either forskolin, cAMP, or cAMP analogues alone. The presence of NGF in combination with forskolin or cAMP or its agonistic analogues potentiated the initiation of neurite outgrowth from PC12 cells. The (Sp)-cAMPS-induced stimulation of NGF-mediated process formation was successfully blocked by the (Rp)-cAMPS diastereomer. On the other hand, NGF-stimulated neurite outgrowth was not inhibited by the presence of the cAMP antagonist (Rp)-cAMPS. We conclude that the morphological differentiation of PC12 cells stimulated by NGF does not require cAMP as a second messenger. The constant increase of intracellular cAMP, caused by either forskolin or cAMP and the analogues, in combination with NGF, not only rapidly stimulated early neurite outgrowth but also exerted a maintaining effect on the neuronal network established by NGF.  相似文献   

7.
The diastereoisomers of adenosine 3',5'-cyclic phosphorothioate, (Sp)-cAMPS and (Rp)-cAMPS, have been previously shown to act as agonists and antagonists, respectively, in the activation of several mammalian cAMP-dependent protein kinases. In an effort to characterize further the involvement of cAMP in the activation of Leydig cell steroidogenesis by lutropin/choriogonadotropin (LH/CG), we examined the effects of these cyclic nucleotide analogues on a clonal strain of cultured murine Leydig tumor cells (designated MA-10). Our results show that (i) (Sp)-cAMPS activates and (Rp)-cAMPS inhibits the isolated cAMP-dependent protein kinase of the MA-10 cells; (ii) both analogues inhibit the isolated cAMP phosphodiesterase(s); (iii) (Sp)-cAMPS activates steroid biosynthesis in intact cells, but (Rp)-cAMPS does not; and (iv) (Rp)-cAMPS is a competitive inhibitor of the activation of steroidogenesis by (Sp)-cAMPS, 8-bromo-cAMP, human CG, cholera toxin, and forskolin. However, (Rp)-cAMPS is a more effective inhibitor when steroidogenesis is activated by (Sp)-cAMPS or 8-bromo-cAMP than when it is activated by human CG, cholera toxin, or forskolin. This difference appears to be related to the combined effects of (Rp)-cAMPS on the cAMP-dependent protein kinases and cAMP phosphodiesterase(s). We conclude that cAMP is a quantitatively important mediator of the activation of steroidogenesis by LH/CG even at low concentrations of hormone where an increase in steroid biosynthesis cannot be easily correlated with increased cAMP accumulation. Thus, our data indicate that if other second messengers are involved in the activation of steroidogenesis by LH/CG, they must do so by acting together with, rather than independently of, cAMP.  相似文献   

8.
(Rp)-Adenosine 3',5'-monophosphorothioate ((Rp)-cAMPS) is a highly specific antagonist of the cAMP-dependent protein kinase from eukaryotic cells and is a very poor substrate for phosphodiesterases. It is therefore a useful tool for investigating the role of cAMP as a second messenger in a variety of biological systems. Taking advantage of stereospecific inversion of configuration around the alpha-phosphate during the adenylate cyclase reaction, we have developed a method for the preparative enzymatic synthesis of the Rp diastereomer of adenosine 3',5'-monophosphorothioate ((Rp)-cAMPS) from the Sp diastereomer of adenosine 5'-O-(1-thiotriphosphate) ((Sp)-ATP alpha S). The adenylate cyclase from Bordetella pertussis, partially purified by calmodulin affinity chromatography, cyclizes (Sp)-ATP alpha S approximately 40-fold more slowly than ATP, but binds (Sp)-ATP alpha S with about 10-fold higher affinity than ATP. The triethylammonium salt of the reaction product can be purified by elution from a gravity flow reversed-phase C18 column with a linear gradient of increasing concentrations of methanol. Yields of the pure (Rp)-cAMPS product of a synthesis with 2 mg of substrate are about 75%.  相似文献   

9.
W R Dostmann  S S Taylor 《Biochemistry》1991,30(35):8710-8716
Previous investigations revealed that under physiological conditions in the presence of MgATP the phosphorothioate analogue of cAMP, (Rp)-cAMPS, is a competitive inhibitor and antagonist for cAMP for cAMP-dependent protein kinases I and II [DeWit et al., (1984) Eur. J. Biochem. 142, 255-260]. For the type I holoenzyme, the antagonist properties of (Rp)-cAMPS are shown here to be absolutely dependent on MgATP. In the absence of MgATP, (Rp)-cAMPS serves as a weak agonist with a Ka of 7.9 microM. The high-affinity binding of MgATP imposes a barrier on cAMP-induced activation of the homoenzyme--a barrier that both cAMP and (Sp)-cAMPS, but not (Rp)-cAMPS, can overcome. In the absence of MgATP, this barrier no longer exists, and (Rp)-cAMPS functions as an agonist. The holoenzyme also was formed with mutant regulatory subunits. Replacing the essential arginine, predicted to bind the exocyclic oxygens of cAMP, in site A with lysine abolishes high-affinity binding of cAMP to site A. The holoenzyme formed with this mutant R-subunit is activated by (Rp)-cAMPS in both the presence and absence of MgATP. These results suggest that the stereospecific requirements for holoenzyme activation involve this guanidinium side chain. Mutations that eliminate the high-affinity binding of MgATP, such as the introduction of an autophosphorylation site in the autoinhibitory domain, also generate a holoenzyme that can be activated by (Rp)-cAMPS. In the case of the type II holoenzyme, (Rp)-cAMPS is an antagonist in both the presence and absence of MgATP, emphasizing distinct roles for MgATP in these two forms of cAMP-dependent protein kinase.  相似文献   

10.
Oocyte maturation (meiosis reinitiation) in starfish is induced by the natural hormone 1-methyladenine (1-MeAde). Cyclic AMP seems to play a negative role in maturation since 1-MeAde triggers a decrease of the oocyte cAMP concentration and since intracellular microinjections of cAMP delay or inhibit maturation. Cyclic GMP is also inhibitory but other nucleotides such as cCMP, cIMP, and cUMP are inactive. The involvement of cAMP and cGMP in the control of oocyte maturation has been further investigated by the use of the stereoisomers of the phosphodiesterase-stable adenosine and guanosine 3',5'-phosphorothioates (cAMPS and cGMPS). The Sp isomers of cAMPS and cGMPS respectively activate cAMP-dependent protein kinase and cGMP-dependent kinase, while the Rp isomers inhibit the kinases. Extracellular addition of these cAMPS and cGMPS isomers has no effect on the oocytes. Intracellular microinjection of the kinase-activating (Sp)-cAMPS and (Sp)-cGMPS delays or inhibits 1-MeAde-induced maturation in a concentration-dependent manner (I50, 30 and 300 microM, respectively). Microinjections of (Rp)-cAMPS and (Rp)-cGMPS have no inhibitory effects and neither trigger nor facilitate maturation. Using various analogs, we found that the delaying or inhibiting effect is restricted to the compounds activating cAMP-dependent kinase, while the compounds inactive on or inhibiting the kinase have no effects on maturation. The inhibitory effect of (Sp)-cAMPS can be reversed by comicroinjection of the heat-stable inhibitor of cAMP-dependent protein kinase, by comicroinjection of the antagonist (Rp)-cAMPS, or by an increase in the 1-MeAde concentration. The negative effects of (Sp)-cAMPS or (Sp)-cGMPS are observed only when these isomers are microinjected during the hormone-dependent period. These results suggest that a cAMP-dependent inhibitory pathway participates in the maintenance of the prophase arrest of oocytes and that 1-MeAde acts both by inhibiting this negative pathway (dis-inhibitory pathway) and by stimulating a parallel activatory pathway leading to oocyte maturation. The generality of this mechanism is discussed.  相似文献   

11.
Microtubules purified from brain tissue contain endogenous cyclic AMP (cAMP)-dependent protein kinase activity, and microtubule-associated protein 2 (MAP2) is the major substrate. Beef brain microtubules were prepared and used as a model system to study the differential effects of rationally selected cyclic nucleotide analogues on microtubule receptor protein kinase. Data are presented to indicate that the following molecular interactions are essential for activation of the phosphorylation of MAP2: (a) hydrogen bond formation toward the 2', 3', or 5' position, (b) interaction with phosphorus, and (c) no hydrogen bonds but hydrophobic interactions at the base moiety. Thus, the activation mechanism of the type II protein kinase associated with brain microtubules resembles the mechanism found in protein kinases of other systems. In addition, we have studied the effect of the two diastereomers of adenosine 3',5'-monophosphorothioate (cAMPS). The (Sp)-cAMPS isomer was found to activate MAP2 protein kinase, whereas the (Rp)-cAMPS isomer had no activating effect. In contrast, this compound was able to inhibit cAMP-stimulated MAP2 phosphorylation and thus acts as an antagonist of the Sp diastereomer and cAMP. Hence, this analogue provides a useful means to clarify further the effect of cAMP-dependent phosphorylation on functional properties in microtubules in general.  相似文献   

12.
The effects of adrenalectomy on glucagon activation of liver glycogen phosphorylase and glycogenolysis were studied in isolated hepatocytes. Adrenalectomy resulted in reduced responsiveness of glycogenolysis and phosphorylase to glucagon activation. Stimulation of cAMP accumulation and cAMP-dependent protein kinase activity by glucagon was unaltered in cells from adrenalectomized rats. Adrenalectomy did not alter the proportion of type I and type II protein kinase isozymes in liver, whereas this was changed by fasting. Activation of phosphorylase kinase by glucagon was reduced in hepatocytes from adrenalectomized rats, although the half-maximal effective concentration of glucagon was unchanged. No difference in phosphorylase phosphatase activity between liver cells from control and adrenalectomized rats was detected. Glucagon-activated phosphorylase declined rapidly in hepatocytes from adrenalectomized rats, whereas the time course of cAMP increase in response to glucagon was normal. Addition of glucose (15 mM) rapidly inactivated glucagon-stimulated phosphorylase in both adrenalectomized and control rat hepatocytes. The inactivation by glucose was reversed by increasing glucagon concentration in cells from control rats, but was accelerated in cells from adrenalectomized rats. It is concluded that impaired activation of phosphorylase kinase contributes to the reduced glucagon stimulation of hepatic glycogenolysis in adrenalectomized rats. The possible role of changes in phosphorylase phosphatase is discussed.  相似文献   

13.
1. Control of glycogen metabolism by various substrates and hormones was studied in ruminant liver using isolated hepatocytes from fed sheep. 2. In these cells glucose appeared uneffective to stimulate glycogen synthesis whereas fructose and propionate activated glycogen synthase owing to (i) a decrease in phosphorylase a activity and (ii) changes in the intracellular concentrations of glucose 6-phosphate and adenine nucleotides. 3. The activation of hepatic glycogenolysis by glucagon and alpha 1-adrenergic agents was associated with increased phosphorylase a and decreased glycogen synthase activities. 4. The simultaneous changes in these two enzyme activities suggest that in sheep liver, activation of phosphorylase a is not a prerequisite step for synthase inactivation. 5. In sheep hepatocytes, in the presence of propionate and after a lag period, insulin activated glycogen synthase without affecting phosphorylase a. 6. This latter result suggests that the direct activation of glycogen synthase by insulin is mediated by a glycogen synthase-specific kinase or phosphatase. Insulin also antagonized glucagon effect on glycogen synthesis by counteracting the rise of cAMP.  相似文献   

14.
Multiple signalling pathways are involved in the mechanism by which insulin stimulates hepatic glycogen synthesis. In this study we used selective inhibitors of glycogen synthase kinase-3 (GSK-3) and an allosteric inhibitor of phosphorylase (CP-91149) that causes dephosphorylation of phosphorylase a, to determine the relative contributions of inactivation of GSK-3 and dephosphorylation of phosphorylase a as alternative pathways in the stimulation of glycogen synthesis by insulin in hepatocytes. GSK-3 inhibitors (SB-216763 and Li+) caused a greater activation of glycogen synthase than insulin (90% vs. 40%) but a smaller stimulation of glycogen synthesis (30% vs. 150%). The contribution of GSK-3 inactivation to insulin stimulation of glycogen synthesis was estimated to be less than 20%. Dephosphorylation of phosphorylase a with CP-91149 caused activation of glycogen synthase and translocation of the protein from a soluble to a particulate fraction and mimicked the stimulation of glycogen synthesis by insulin. The stimulation of glycogen synthesis by phosphorylase inactivation cannot be explained by either inhibition of glycogen degradation or activation of glycogen synthase alone and suggests an additional role for translocation of synthase. Titrations with the phosphorylase inactivator showed that stimulation of glycogen synthesis by insulin can be largely accounted for by inactivation of phosphorylase over a wide range of activities of phosphorylase a. We conclude that a signalling pathway involving dephosphorylation of phosphorylase a leading to both activation and translocation of glycogen synthase is a critical component of the mechanism by which insulin stimulates hepatic glycogen synthesis. Selective inactivation of phosphorylase can mimic insulin stimulation of hepatic glycogen synthesis.  相似文献   

15.
Hormonal regulation of hepatic glycogen synthase phosphatase   总被引:1,自引:0,他引:1  
Perfusion of livers from fed rats with medium containing glucagon (2 x 10(-10) or 1 x 10(-8) M) resulted in both time- and concentration-dependent inactivation of glycogen synthase phosphatase. Expected changes occurred in cAMP, cAMP-dependent protein kinase, glycogen synthase, and glycogen phosphorylase. The effect of glucagon on synthase phosphatase was partially reversed by simultaneous addition of insulin (4 x 10(-8) M), an effect paralleled by a decrease in cAMP. Addition of arginine vasopressin (10 milliunits/ml) resulted in a similar inactivation of synthase phosphatase and activation of phosphorylase, but independent of any changes in cAMP or its kinase. Phosphorylase phosphatase activity was unaffected by any of these hormones. Synthase phosphatase activity, measured as the ability of a crude homogenate to catalyze the conversion of purified rat liver synthase D to the I form, was no longer inhibited by glucagon or vasopressin when phosphorylase antiserum was added to the phosphatase assay mixture in sufficient quantity to inhibit 90-95% of the phosphorylase a activity. These data support the following conclusions: 1) hepatic glycogen synthase phosphatase activity is acutely modulated by hormones, 2) hepatic glycogen synthase phosphatase and phosphorylase phosphatase are regulated differently, 3) the hormone-mediated changes in synthase phosphatase cannot be explained by an alteration of the synthase D molecule affecting its behavior as a substrate, and 4) glycogen synthase phosphatase activity is at least partially controlled by the level of phosphorylase a.  相似文献   

16.
Insulin regulation of hepatic glycogen synthase and phosphorylase.   总被引:7,自引:0,他引:7  
L A Witters  J Avruch 《Biochemistry》1978,17(3):406-410
The relative roles of insulin and glucose in the regulation of hepatic glycogen synthase and phosphorylase were studied in hepatocytes from fed rats. Elevation of extra-cellular glucose led to a rapid decrease in phosphorylase a activity followed by a slower increase in glycogen synthase I activity. A reciprocal and coordinate relationship between phosphorylase inactivation and synthase activation in response to glucose was observed; following initial glucose-induced inactivation of phosphorylase, there was a highly significant linear inverse relationship between residual phosphorylase activity and glycogen synthase activation. Insulin led to a further decrease in phosphorylase activity and a 30-50% additional increase in glycogen synthase activity over that caused by glucose. The effects of insulin required the presence of glucose and served to augment acute glucose stimulation of glycogen synthase and inhibition of phosphorylase. Insulin did not perturb the reciprocal and coordinate relationship between phosphorylase inactivation and synthase activation in response to glucose. The results suggest that the ability of insulin to activate hepatic glycogen synthase can be entirely accounted for by its ability to inactivate phosphorylase.  相似文献   

17.
Addition of insulin to liver cells from fed rats incubated in the absence of other hormones resulted in a 2-fold increase in glycogen synthase activity. This direct effect of insulin has been characterized and compared with the antagonism by insulin of alpha 1-adrenergic effects on glycogen metabolism. The activation of glycogen synthase by insulin developed slowly (20-25 min) and was most effective when the enzyme was partially preactivated by glucose. With glucose concentrations above 15 mM the effects of insulin and glucose were additive. In contrast to glucose, which caused inverse changes in phosphorylase and glycogen synthase activity, insulin activated glycogen synthase without affecting phosphorylase a. Treatment of hepatocytes with phenylephrine led to an activation of phosphorylase and inactivation of glycogen synthase, which could be partially blocked by insulin. This antagonistic effect of insulin was rapid (complete within 5 min of insulin addition) and showed an identical time course for both enzymes. The activation of glycogen synthase by insulin and inactivation by phenylephrine both resulted principally from alterations in the Vmax. Insulin added alone did not alter the basal cytosolic free Ca2+ concentration, which was 160 nM as measured with Quin 2 as an intracellular Ca2+ indicator. Both the magnitude and the initial rate of cytosolic free Ca2+ increase induced by phenylephrine were reduced by about 50% in cells pretreated with insulin. It is concluded that the direct activation of glycogen synthase by insulin is mediated by a glycogen synthase-specific kinase or phosphatase, whereas insulin antagonizes the effects of alpha 1-agonists by interfering with their ability to elevate cytosolic free Ca2+.  相似文献   

18.
We used metabolic control analysis to determine the flux control coefficient of phosphorylase on glycogen synthesis in hepatocytes by titration with a specific phosphorylase inhibitor (CP-91149) or by expression of muscle phosphorylase using recombinant adenovirus. The muscle isoform was used because it is catalytically active in the b-state. CP-91149 inactivated phosphorylase with sequential activation of glycogen synthase. It increased glycogen synthesis by 7-fold at 5 mm glucose and by 2-fold at 20 mm glucose with a decrease in the concentration of glucose causing half-maximal rate (S(0.5)) from 26 to 19 mm. Muscle phosphorylase was expressed in hepatocytes mainly in the b-state. Low levels of phosphorylase expression inhibited glycogen synthesis by 50%, with little further inhibition at higher enzyme expression, and caused inactivation of glycogen synthase that was reversed by CP-91149. At endogenous activity, phosphorylase has a very high (greater than unity) negative control coefficient on glycogen synthesis, regardless of whether it is determined by enzyme inactivation or overexpression. This high control is attenuated by glucokinase overexpression, indicating dependence on other enzymes with high control. The high control coefficient of phosphorylase on glycogen synthesis affirms that phosphorylase is a strong candidate target for controlling hyperglycemia in type 2 diabetes in both the absorptive and postabsorptive states.  相似文献   

19.
Epinephrine and the alpha-adrenergic agonist phenylephrine activated phosphorylase, glycogenolysis, and gluconeogenesis from lactate in a dose-dependent manner in isolated rat liver parenchymal cells. The half-maximally active dose of epinephrine was 10-7 M and of phenylephrine was 10(-6) M. These effects were blocked by alpha-adrenergic antagonists including phenoxybenzamine, but were largely unaffected by beta-adrenergic antagonists including propranolol. Epinephrine caused a transient 2-fold elevation of adenosine 3':5'-monophosphate (cAMP) which was abolished by propranolol and other beta blockers, but was unaffected by phenoxybenzamine and other alpha blockers. Phenoxybenzamine and propranolol were shown to be specific for their respective adrenergic receptors and to not affect the actions of glucagon or exogenous cAMP. Neither epinephrine (10-7 M), phenylephrine (10-5 M), nor glucagon (10-7 M) inactivated glycogen synthase in liver cells from fed rats. When the glycogen synthase activity ratio (-glucose 6-phosphate/+ glucose 6-phosphate) was increased from 0.09 to 0.66 by preincubation of such cells with 40 mM glucose, these agents substantially inactivated the enzyme. Incubation of hepatocytes from fed rats resulted in glycogen depletion which was correlated with an increase in the glycogen synthase activity ratio and a decrease in phosphorylase alpha activity. In hepatocytes from fasted animals, the glycogen synthase activity ratio was 0.32 +/- 0.03, and epinephrine, glucagon, and phenylephrine were able to lower this significantly. The effects of epinephrine and phenylephrine on the enzyme were blocked by phenoxybenzamine, but were largely unaffected by propranolol. Maximal phosphorylase activation in hepatocytes from fasted rats incubated with 10(-5) M phenylephrine preceded the maximal inactivation of glycogen synthase. Addition of glucose rapidly reduced, in a dose-dependent manner, both basal and phenylephrine-elevated phosphorylase alpha activity in hepatocytes prepared from fasted rats. Glucose also increased the glycogen synthase activity ratio, but this effect lagged behind the change in phosphorylase. Phenylephrine (10-5 M) and glucagon (5 x 10(-10) M) decreased by one-half the fall in phosphoryalse alpha activity seen with 10 mM glucose and markedly suppressed the elevation of glycogen synthase activity. The following conclusions are drawn from these findings. (a) The effects of epinephrine and phenylephrine on carbohydrate metabolism in rat liver parenchymal cells are mediated predominantly by alpha-adrenergic receptors. (b) Stimulation of these receptors by epinephrine or phenylephrine results in activation of phosphorylase and gluconeogenesis and inactivation of glycogen synthase by mechanisms not involving an increase in cellular cAMP. (c) Activation of beta-adrenergic receptors by epinephrine leads to the accumulation of cAMP, but this is associated with minimal activation of phosphorylase or inactivation of glycogen synthase...  相似文献   

20.
L Hue  F Bontemps    H Hers 《The Biochemical journal》1975,152(1):105-114
In the isolated perfused rat liver, increasing glucose concentration from 5.5 to 55 mm in the perfusion medium caused a sequential inactivation of glycogen phosphorylase and activation of glycogen synthetase. The latter change was preceded by a lag period which corresponded to the time required to inactivate the major part of the phosphorylase. 2. The same sequence of events was observed in isolated rat hepatocytes incubated at 37C. In this preparation, the rate of phosphorylase inactivation was greatly increased by increasing the concentration of glucose and/or of K+ ions in the external medium. The same agents also caused the activation of glycogen synthetase, but this effect was secondary to the inactivation of phosphorylase. 3. In both types of preparations, the rate of synthetase activation was modulated by the residual amount of phosphorylase a that remained after the initial phase of rapid inactivation and was independent of glucose concentration. 4. In isolated hepatocytes, the rate of conversion of glucose into glycogen was propotional to the activity of synthetase a in the preparation. This conversion was preceded by a lag period which could be shortened by increasing either glucose or K+ concentration in the medium. The incorporation of labelled glucose into glycogen was simultaneous with a glycogenolytic process which could not be attributed to the activity of phosphorylase a.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号