首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aim To document long‐term rates of immigration, extinction and turnover in insular ant faunas and evaluate the relative impacts of recent hurricane activity and climate change. Location Small islands in the Exuma Cays, Andros and Abaco archipelagos of the Bahamas. Methods I surveyed the ant faunas of > 140 small islands in three archipelagos of the Bahamas over several multi‐year periods, spanning up to 17 years, by recording species attracted to baits. Immigrations, extinctions and species turnover were documented, as were the relative abundances of species. Four major hurricanes affected the study archipelagos in the second decade of this study. Results Rates of ant turnover were generally low among archipelagos and time periods. Immigrations outnumbered extinctions in the first decade of this study, although this pattern was reversed in the second decade. General physical characteristics of the islands were not significant predictors of the occurrence of extinctions. The relative abundance (based on proportion of baits occupied) of persistent populations of the two most common species both declined in the second decade, indicating, along with higher extinction rates, a generalized decline in these insular ant faunas. Main conclusions The available evidence suggests that hurricanes were not directly responsible for the observed declines in the ant faunas. Regional changes in insular ant species richness, however, are correlated with generalized North Atlantic hurricane activity over the last half century. Indirect effects of hurricanes on the vegetation of these islands, such as increased herbivory and possible decreased nutrient availability, along with a long‐term (quarter century) increase in temperature and decline in rainfall, are possible contributing factors to the changing ant turnover dynamics.  相似文献   

2.
Aim To document long‐term rates of immigration, extinction and turnover in insular floras and evaluate the relative impacts of recent hurricane activity and climate change. Location Three archipelagos of small islands, in the Exuma Cays, Andros and Abacos, Bahamas. Methods I surveyed the floras of 194 vegetated islands in three archipelagos over several multi‐year periods, spanning up to 17 years. Changes in abundance (foliar cover) of persistent populations were measured on a subset of 14 islands in the Exuma Cays over a 9‐year period. Results Rates of plant turnover were generally low compared with other organisms, but varied among archipelagos and time periods. Turnover rates were usually higher in the second decade of this study, and extinction rates were often dramatically higher than immigration rates in the second decade, resulting in overall decreases in species richness. Turnover did not differ significantly among island types based on generalized location and surrounding water depths, and extinctions were not more likely to occur on more exposed islands. The abundance (foliar cover) of populations that did not go extinct decreased steadily over the second decade of this study, indicating, along with higher extinction rates, a generalized decline in these insular floras. Main conclusions Although some islands may have been at or near a state of dynamic equilibrium in the first decade of this study, average species richness declined in all three archipelagos during the second decade, when extinctions greatly outnumbered immigrations. Four major hurricanes affected the study archipelagos in the second decade of this study, although the available evidence suggests that the hurricanes were not directly responsible for the declines. Indirect effects of hurricanes such as increased herbivory and possible decreased nutrient availability, along with a long‐term (25 years) increase in temperature and decline in rainfall are likely contributing factors.  相似文献   

3.
Abstract. Most archipelagos are comprised of a nested set of communities, with species on depauperate islands representing proper subsets of those on richer islands. The causality for this common intra-archipelago pattern, however, remains elusive. Here, I present a Monte Carlo approach for investigating whether nestedness results from selective extinctions, selective immigrations, or both. Results for mammal communities of three nearshore archipelagos and two montane forest archipelagos suggested that nestedness may result from both forces. Nestedness was significantly associated with area (extinctions) for all archipelagos studied, and with isolation (immigrations) for islands of Lake Huron and the American Southwest. The degree of nestedness is influenced by the degree of variations among species and islands. In addition, our ability to assess causality of nestedness is influenced by our ability to calculate biologically relevant measures of isolation, and by the potentially confounding effects of selective immigrations and extinctions on community nestedness.  相似文献   

4.
Aim To investigate species compositions, rates of species turnover, species–area and species–distance relationships and patterns of nestedness in the floras of small Bahamian islands, by comparing two groups of islands that had been differentially affected by two hurricanes. Location Small islands occurring on either side of Great Exuma near Georgetown, Bahamas. Methods We surveyed the plant species of 44 small islands over a 5‐year period from 1998 to 2002. Hurricanes Lili and Michelle occurred in 1996 and 2001, respectively; both storms affected small islands on the more exposed south‐west side of Great Exuma to a greater degree than small islands on the more protected north‐east side. A set of 27 islands was surveyed in 1998 and 2002 to evaluate species turnover. Stepwise multiple linear regression analyses and an information‐theoretic approach (the Akaike information criterion) were used to elucidate the importance of area and distance as predictors of plant species number. We compared a piecewise linear regression model with a simple linear regression of species number against area to determine whether a small island effect existed. Nestedness patterns were evaluated by Wilcoxon two‐sample tests to analyse occurrence sequences. Results Species turnover was low in an absolute sense (overall = 0.74% year?1), yet was over three times higher than that documented in a nearby archipelago in the absence of hurricanes. Both vegetated area and distance were important predictor variables for exposed islands but not for protected islands. Some support was found for a small island effect for the exposed islands based on a piecewise linear regression model. Both island groups revealed significant nestedness at the level of the assemblage (both P < 0.001). On exposed islands, 65–79% (depending upon the method of calculation) of all species were significantly nested, but only 47% of all species were significantly nested on protected islands. Main conclusions Overall, these insular floras seem highly resistant to hurricane‐force disturbances. Species turnover was low (< 1% year?1) in an absolute sense, particularly in comparison with rates for other taxa. Higher degrees of nestedness and significant species–area and species–distance relationships for exposed islands indicated stronger patterns of community assembly. It is likely that disturbance is a major structuring force for the exposed islands, although the type of disturbances that mediate these patterns may not be primarily hurricane‐force storms.  相似文献   

5.
Although islands as natural laboratories have held the attention of scientists for centuries, they continue to offer new study questions, especially in the context of the current biodiversity crisis. To date, habitat diversity on islands and spatial configuration of archipelagos have received less attention than classical island area and isolation. Moreover, in the field where experiments are impossible, correlative methods have dominated, despite the call for more mechanistic approaches. We developed an agent‐based computer simulation to study the effect of habitat diversity and archipelago configuration on plant species richness and composition in five archipelagos worldwide (Hawaii, Galapagos, Canary Islands, Cape Verde and Azores) and compared simulated diversity patterns to the empirical data. Habitat diversity proved to be an important factor to achieve realistic simulation results in all five archipelagos, whereas spatial structure of archipelagos was important in more elongated archipelagos. In most cases, simulation results correlate stronger with spermatophyte than with pteridophyte data, which we suggest can be attributed to the different dispersal and evolution rates of the two species groups. Correlation strength between simulated and observed diversity also varied among archipelagos, suggesting that geological and biogeographic histories of archipelagos have affected the species richness and composition on the islands. Our study demonstrates that a relatively simple computer simulation involving just a few essential processes can largely emulate patterns of archipelagic species richness and composition and serve as a powerful additional method to complement empirical approaches.  相似文献   

6.
Aim We looked at the biogeographical patterns of Oniscidean fauna from the small islands of the Mediterranean Sea in order to investigate the species–area relationship and to test for area‐range effects. Location The Mediterranean Sea. Methods We compiled from the literature a data set of 176 species of Oniscidea (terrestrial isopods) distributed over 124 Mediterranean islands. Jaccard's index was used as input for a UPGMA cluster analysis. The species–area relationship was investigated by applying linear, semi‐logarithmic, logarithmic and sigmoid models. We also investigated a possible ‘small island effect’ (SIE) by performing breakpoint regression. We used a cumulative and a sliding‐window approach to evaluate scale‐dependent area‐range effects on the log S/log A regression parameters. Results Based on similarity indexes, results indicated that small islands of the Mediterranean Sea can be divided into two major groups: eastern and western. In general, islands from eastern archipelagos were linked together at similarity values higher than those observed for western Mediterranean islands. This is consistent with a more even distribution of species in the eastern Mediterranean islands. Separate archipelagos in the western Mediterranean could be discriminated, with the exception of islets, which tended to group together at the lowest similarity values regardless of the archipelago to which they belong. Islets were characterized by a few common species with large ranges. The species–area logarithmic model did not always provide the best fit. Most continental archipelagos showed very similar intercepts, higher than the intercept for the Canary island oceanic archipelago. Sigmoid regression returned convex curves. Evidence for a SIE was found, whereas area‐range effects that are dependent on larger scale analyses were not unambiguously supported. Main conclusions The Oniscidea fauna from small islands of the Mediterranean Sea is highly structured, with major and minor geographical patterns being identifiable. Some but not all of the biogeographical complexity can be explained by interpreting the different shapes of species–area curves. Despite its flexibility, the sigmoid model tested did not always provide the best fit. Moreover, when the model did provide a good fit the curves looked convex, not sigmoid. We found evidence for a SIE, and minor support for scale‐dependent area‐range effects.  相似文献   

7.
Aim To identify the biogeographical factors underlying spider species richness in the Macaronesian region and assess the importance of species extinctions in shaping the current diversity. Location The European archipelagos of Macaronesia with an emphasis on the Azores and Canary Islands. Methods Seven variables were tested as predictors of single‐island endemics (SIE), archipelago endemics and indigenous spider species richness in the Azores, Canary Islands and Macaronesia as a whole: island area; geological age; maximum elevation; distance from mainland; distance from the closest island; distance from an older island; and natural forest area remaining per island – a measure of deforestation (the latter only in the Azores). Different mathematical formulations of the general dynamic model of oceanic island biogeography (GDM) were also tested. Results Island area and the proportion of remaining natural forest were the best predictors of species richness in the Azores. In the Canary Islands, area alone did not explain the richness of spiders. However, a hump‐shaped relationship between richness and time was apparent in these islands. The island richness in Macaronesia was correlated with island area, geological age, maximum elevation and distance to mainland. Main conclusions In Macaronesia as a whole, area, island age, the large distance that separates the Azores from the mainland, and the recent disappearance of native habitats with subsequent unrecorded extinctions seem to be the most probable explanations for the current observed richness. In the Canary Islands, the GDM model is strongly supported by many genera that radiated early, reached a peak at intermediate island ages, and have gone extinct on older, eroded islands. In the Azores, the unrecorded extinctions of many species in the oldest, most disturbed islands seem to be one of the main drivers of the current richness patterns. Spiders, the most important terrestrial predators on these islands, may be acting as early indicators for the future disappearance of other insular taxa.  相似文献   

8.
Changes in the composition of local communities through time (i.e. species turnover) is a common phenomenon in insular biology. However, the mechanisms promoting variation in species turnover, both among islands and among species, are poorly understood. In an effort to better understand the causes of variation in species turnover, we evaluated the colonization and extinction dynamics of plant populations on 18 small islands off the west coast of Canada. In 1997, we quantified total population sizes of 10 woody angiosperm species. A decade later, we resampled islands to test whether: 1) species turnover occurred, 2) colonization events were offset by extinction events, 2) variation in extinction rates among islands was associated with population sizes, average plant heights, island area, island isolation or each island's exposure to ocean-born disturbances, and 3) variation in extinction rates among species was associated with plant life history traits. Results showed that extinction events outnumbered colonization events, suggesting that the metacommunity is in 'disequilibrium'. Variation in extinction rates among islands was unrelated to island area and isolation. However, extinction rates increased with exposure to ocean-born disturbances and decreased with both initial population sizes and average plant heights. Species with thicker, tougher leaves (i.e. high leaf mass per area) were less prone to extinction than species with thinner, more papery leaves. Overall results indicate that species turnover is common and that it is generated primarily by extinction. Variation in extinction rates appears to result from an interaction between among-island effects (exposure, population size and plant stature) and among-species effects (leaf toughness), suggesting that ocean-born disturbances play a key role in determining metacommunity structure.  相似文献   

9.
Geographical patterns of species turnover in aquatic plant communities   总被引:1,自引:0,他引:1  
1. A classic theory in biogeography predicts that high latitude communities are unstable. This may be because of decreased species richness or decreased environmental predictability and productivity towards the poles.
2. We studied latitudinal patterns in long-term community persistence of aquatic vascular plants in 112 Finnish lakes, situated within a 1000-km range from the northernmost to the southernmost lake.
3. Contrary to theoretical predictions, we found that the turnover rate of plant species in 45 years was inversely related to latitude. That is, plant communities in northern lakes were more persistent than communities in southern lakes. When we used multiple regression to find the best predictors of species turnover rate (TR), latitude was the only variable that was highly significantly related to species turnover rate. Area, species number, water transparency, pH and change in transparency did not notably explain the gradient observed.
4. The latitudinal trend was mainly because of lower species immigration rates at higher latitudes, whereas extinction rate did not so strongly decrease with increasing latitude. Immigrations and extinctions in the lakes were not in balance: the species numbers between the 1930s and 1980s increased more strongly in the southern than northern lakes.
5. We suggest that the inverse relationship between latitude and plant species TR in Finland is most probably caused by human influence on lakes, especially eutrophication and immigration of new species in southern latitudes. In addition, although species richness per lake did not decrease towards the north, the total species pool probably does, which means that in the north there are fewer species that can actually immigrate.  相似文献   

10.
Global change and human expansion have resulted in many species extinctions worldwide, but the geographic variation and determinants of extinction risk in particular guilds still remain little explored. Here, we quantified insular extinctions of frugivorous vertebrates (including birds, mammals and reptiles) across 74 tropical and subtropical oceanic islands within 20 archipelagos worldwide and investigated extinction in relation to island characteristics (island area, isolation, elevation and climate) and species’ functional traits (body mass, diet and ability to fly). Out of the 74 islands, 33 islands (45%) have records of frugivore extinctions, with one third (mean: 34%, range: 2–100%) of the pre‐extinction frugivore community being lost. Geographic areas with more than 50% loss of pre‐extinction species richness include islands in the Pacific (within Hawaii, Cook Islands and Tonga Islands) and the Indian Ocean (Mascarenes, Seychelles). The proportion of species richness lost from original pre‐extinction communities is highest on small and isolated islands, increases with island elevation, but is unrelated to temperature or precipitation. Large and flightless species had higher extinction probability than small or volant species. Across islands with extinction events, a pronounced downsizing of the frugivore community is observed, with a strong extinction‐driven reduction of mean body mass (mean: 37%, range: –18–100%) and maximum body mass (mean: 51%, range: 0–100%). The results document a substantial trophic downgrading of frugivore communities on oceanic islands worldwide, with a non‐random pattern in relation to geography, island characteristics and species’ functional traits. This implies severe consequences for ecosystem processes that depend on mutualistic plant–animal interactions, including ecosystem dynamics that result from the dispersal of large‐seeded plants by large‐bodied frugivores. We suggest that targeted conservation and rewilding efforts on islands are needed to halt the defaunation of large and non‐volant seed dispersers and to restore frugivore communities and key ecological interactions.  相似文献   

11.
Oceanic islands have long been considered to be particularly vulnerable to biotic invasions, and much research has focused on invasive plants on oceanic islands. However, findings from individual islands have rarely been compared between islands within or between biogeographic regions. We present in this study the most comprehensive, standardized dataset to date on the global distribution of invasive plant species in natural areas of oceanic islands. We compiled lists of moderate (5–25% cover) and dominant (>25% cover) invasive plant species for 30 island groups from four oceanic regions (Atlantic, Caribbean, Pacific, and Western Indian Ocean). To assess consistency of plant behaviour across island groups, we also recorded present but not invasive species in each island group.We tested the importance of different factors discussed in the literature in predicting the number of invasive plant species per island group, including island area and isolation, habitat diversity, native species diversity, and human development. Further we investigated whether particular invasive species are consistently and predictably invasive across island archipelagos or whether island-specific factors are more important than species traits in explaining the invasion success of particular species.We found in total 383 non-native spermatophyte plants that were invasive in natural areas on at least one of the 30 studied island groups, with between 3 and 74 invaders per island group. Of these invaders about 50% (181 species) were dominants or co-dominants of a habitat in at least one island group. An extrapolation from species accumulation curves across the 30 island groups indicates that the total current flora of invasive plants on oceanic islands at latitudes between c. 35°N and 35°S may eventually consist of 500–800 spermatophyte species, with 250–350 of these being dominant invaders in at least one island group. The number of invaders per island group was well predicted by a combination of human development (measured by the gross domestic product (GDP) per capita), habitat diversity (number of habitat types), island age, and oceanic region (87% of variation explained). Island area, latitude, isolation from continents, number of present, non-native species with a known invasion history, and native species richness were not retained as significant factors in the multivariate models.Among 259 invaders present in at least five island groups, only 9 species were dominant invaders in at least 50% of island groups where they were present. Most species were invasive only in one to a few island groups although they were typically present in many more island groups. Consequently, similarity between island groups was low for invader floras but considerably higher for introduced (but not necessarily invasive) species – especially in pairs of island groups that are spatially close or similar in latitude. Hence, for invasive plants of natural areas, biotic homogenization among oceanic islands may be driven by the recurrent deliberate human introduction of the same species to different islands, while post-introduction processes during establishment and spread in natural areas tend to reduce similarity in invader composition between oceanic islands. We discuss a number of possible mechanisms, including time lags, propagule pressure, local biotic and abiotic factors, invader community assembly history, and genotypic differences that may explain the inconsistent performance of particular invasive species in different island groups.  相似文献   

12.
Ants were studied on Puerto Rico and 44 islands surrounding Puerto Rico. Habitat diversity was the best predictor of the number of species per island and the distributions of species followed a nested subset pattern. The number of extinctions per island was low, approximately 1–2 extinctions per island in a period of 18 years, and the rates of colonization seem to be greater than the extinction rates. Ant dynamics on these islands do not seem to support the basic MacArthur and Wilson model of island biogeography. The MacArthur and Wilson equilibrium is based on the notion that species are interchangeable, but some extinctions and colonizations can change the composition and number of species drastically.  相似文献   

13.
Current threats to the planet's biodiversity are unprecedented, and they particularly imperil insular floras. In this investigation, we use the threat factors identified by the Millennium Ecosystem Assessment as the main drivers of biodiversity loss on islands to define and rank 13 current, continuing threats to the plant diversity of nine focal archipelagos where volcanic origin (or in the Seychelles a prolonged isolation after a continental origin) has produced a high degree of endemicity and fragility in the face of habitat alteration. We also conduct a global endangerment assessment based on the numbers of insular endemic plants in the endangered (EN) and critically endangered (CR) IUCN categories for 53 island groups with an estimated 9951 endemic plant species, providing a representative sample of the world's insular systems and their floristic richness. Our analyses indicate that isolation does not significantly influence endangerment, but plant endemics from very small islands are more often critically endangered. We estimate that between 3500 and 6800 of the estimated 70,000 insular endemic plant species worldwide might be highly threatened (CR+EN) and between ca. 2000 and 2800 of them in critical danger of extinction (CR). Based on these analyses, and on a worldwide literature review of the biological threat factors considered, we identify challenging questions for conservation research, asking (i) what are the most urgent priorities for the conservation of insular species and floras, and (ii) with the knowledge and assets available, how can we improve the impact of conservation science and practice on the preservation of island biodiversity? Our analysis indicates that the synergistic action of many threat factors can induce major ecological disturbances, leading to multiple extinctions. We review weaknesses and strengths in conservation research and management in the nine focal archipelagos, and highlight the urgent need for conservation scientists to share knowledge and expertise, identify and discuss common challenges, and formulate multi-disciplinary conservation objectives for insular plant endemics worldwide. To our knowledge, this is the most up-to-date and comprehensive survey yet to review the threat factors to native plants on oceanic islands and define priority research questions.  相似文献   

14.
Classic island biogeography theory predicts that very small islands, near the extreme lower end of the species–area relationship, should support very few species. At times no species may be present, however, due to randomness in the immigration–extinction dynamics. Alternatively, a lack of vegetation on very small islands may indicate that such islands do not contain the appropriate habitat for the establishment or long‐term survival of plants, or that disturbances are too frequent or intense. These potential mechanisms were evaluated in the central Exumas, Bahamas, where surveys of 117 small islands revealed that over a third of the islands supported no terrestrial plant life. Area and exposure were significant predictors of whether a small island was vegetated or not in multiple logistic regressions. No islands naturally devoid of vegetation were colonized over a 17‐yr period, and only two naturally vegetated islands lost all vegetation. Experimental introductions of two species –Sesuvium portulacastrum and Borrichia arborescens– revealed that a number of islands naturally lacking vegetation were able to sustain introduced populations over the long term (up to 15 yr). Drought and hurricanes appeared to have reduced the establishment success and possibly long‐term survival of the introductions, although some populations survived four major hurricanes. Turnover rates of both introduced species were often an order of magnitude higher on the experimental introduction islands than on other islands in the archipelago. It appears many of the islands in this system that naturally lack vegetation may be physically capable of supporting terrestrial plant life, yet have no plants primarily due to barriers to colonization.  相似文献   

15.
The vascular flora on twenty-nine lake islands in Lough Corrib, western Ireland was surveyed in 1992–93. Thirteen of these islands had been surveyed by the author in 1974 (Roden, 1979). Data on species–area curves and species turnover between 1974 and 1992 are presented. Species numbers on each island did not change greatly in the 18-year interval and extinctions were most common on smaller islands. It is known that six of the islands surveyed are less than 150 years old and their flora must have immigrated over open water during that period. It is shown that this group of species has a different log species/log area regression than the remaining flora, with a much shallower slope (low Z value). The proportion of less widespread species was greatest on islands nearest to the mainland. The implication of different slopes in different species groups and the restriction of turnover to rare species is discussed with reference to the island Theory of Biogeography.  相似文献   

16.
ABSTRACT Populations of many seabirds and other species that nest along coasts are declining due to habitat degradation and loss. An improved understanding of the species‐specific factors that determine nest density across a landscape is therefore critical for conservation efforts. We examined factors that affected the density (number per hectare) and abundance (number at a sampling site) of nests of Little Terns (Sternula albifrons) on the Sinai Peninsula, Egypt. Terns preferred to nest on islands rather than the mainland, with islands constituting 64% of the area surveyed, but containing 99% of the 439 tern nests we found. Nest densities were highest on islands that were small, located at moderate distances from the mainland, and irregularly shaped or elongated. Most nests (69%) were on islands with areas < 3 ha, although these islands represented < 5% of total island area, and islands with the highest nest densities were 80–300 m from the mainland. Terrestrial predators were more likely to occur on larger islands, visiting three of the largest four islands. Most tern nests were within 1 m of shorelines, causing island perimeter to be a strong influence on nest density. Island shape was the only factor that significantly affected nest abundance, with more nests on islands with relatively long perimeters for their size. Our results suggest that protection or creation of relatively small, slender islands at moderate distances from shore may be an effective means of increasing the number of breeding sites for Little Terns. Although not generally considered a potential determinant of nest site preferences for seabirds, island shape is likely to be important for species that prefer sites adjacent to water, including species that nest on beaches and seaside cliffs.  相似文献   

17.
Almost all recent extinction of species or subspecies on islands comes from human activities. On the other hand, in local populations there is much natural extinction and immigration, i.e. turnover, on small islands. Most of this turnover occurs in locally rare species, and attests to the phenomenon of minimum viable population size. The MacArthur-Wilson theory is based on this turnover which, from an ecological point of view, is generally trivial. More useful theories of minimum viable population size are being developed. Rarity is the precursor of extinction, and species can be rare in several ways. Models of these phenomena are still primitive, particularly those that relate habitat availability to population density. Models of interactive communities show phenomena that may be relevant to the understanding of extinction in the geological record. Lotka-Volterra equations indicate considerable sensitivity to invasions, sometimes producing a cascade of extinction. Chemostat equations show that the behaviour of food chains can change dramatically with small changes in parameters, suggesting that small environmental effects can sometimes cause large ecological changes, including extinctions, in interactive biotic communities.  相似文献   

18.
Research on island species–area relationships (ISAR) has expanded to incorporate functional (IFDAR) and phylogenetic (IPDAR) diversity. However, relative to the ISAR, we know little about IFDARs and IPDARs, and lack synthetic global analyses of variation in form of these three categories of island diversity–area relationship (IDAR). Here, we undertake the first comparative evaluation of IDARs at the global scale using 51 avian archipelagic data sets representing true and habitat islands. Using null models, we explore how richness-corrected functional and phylogenetic diversity scale with island area. We also provide the largest global assessment of the impacts of species introductions and extinctions on the IDAR. Results show that increasing richness with area is the primary driver of the (non-richness corrected) IPDAR and IFDAR for many data sets. However, for several archipelagos, richness-corrected functional and phylogenetic diversity changes linearly with island area, suggesting that the dominant community assembly processes shift along the island area gradient. We also find that archipelagos with the steepest ISARs exhibit the biggest differences in slope between IDARs, indicating increased functional and phylogenetic redundancy on larger islands in these archipelagos. In several cases introduced species seem to have ‘re-calibrated’ the IDARs such that they resemble the historic period prior to recent extinctions.  相似文献   

19.
Many bird species were extirpated or became extinct when prehistoric man reached oceanic islands We list > 200 species of extinct island birds only recorded as sub-fossils and which probably vanished due to prehistoric man In addition we list c 160 cases where an extant species has been found as subfossil on islands where it no longer occurs Several species today considered endemic to single islands of island groups had a much wider distribution in the past Biogeographic analyses of insular avifaunas are almost meaningless it the extensive prehistoric extinctions are not taken into account
Most extinct species belong to Anatidae Rallidae and Drcpanididae while local extirpations are numerous among doves and seabirds Smaller birds are rare mainly due to sampling bias and taphonomic factors The bird populations were depleted mainly by overhunting predation by introduced vertebrates and alteration of the original vegetation
Prehistoric humans on islands although dependent on limited animal resources regularly failed to exploit these in a sustainable way Several cases where human populations disappeared from islands in the Pacific may have been due to over-exploitation of native animals
Prehistoric man reached most tropical and temperate islands and most of the few remaining island faunas have been severely depleted in historic times The prehistoric extinctions emphasize the extreme vulnerability and value of the very few pristine island faunas that still remain  相似文献   

20.
Little evidence for sympatric speciation in island birds   总被引:4,自引:0,他引:4  
It has been suggested that the presence of sister species in small circumscribed areas, such as isolated lakes or islands, might imply that these species originated sympatrically. To investigate this possibility in birds, we searched for endemic, congeneric species on isolated islands in the ocean. Among 46 islands and small archipelagos chosen because they contain at least one species of endemic land bird, we identified seven pairs of endemic congeners (excluding flightless rails). Of these seven, only four pairs are potentially sister species and thus possible candidates for sympatric speciation. However, three of these four pairs have always been considered the results of double invasion from a mainland source (in two of these cases, molecular-phylogenetic work has either confirmed a double invasion or is ambiguous). The one remaining pair may have speciated allopatrically on a small archipelago. Additional phylogenetic studies are required to understand these cases, and our results should also be considered in light of the large number of island-bird extinctions in historic time. We conclude that, at present, there is little evidence for sympatric speciation in island birds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号