首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mesothelin is a glycosylphosphatidylinositol-anchored glycoprotein that is highly expressed on the cell surface of malignant mesothelioma. Monoclonal antibodies against mesothelin are being evaluated for the treatment of mesothelioma. Immunocytokines represent a novel class of armed antibodies. To provide an alternative approach to current mesothelin-targeted antibody therapies, we have developed a novel immunocytokine based on interleukin-12 (IL12) and the SS1 Fv specific for mesothelin. IL12 possesses potent anti-tumor activity in a wide variety of solid tumors. The newly-developed recombinant immunocytokine, IL12-SS1 (Fv), was produced in insect cells using a baculovirus-insect cell expression system. The SS1 single-chain Fv was fused to the C terminus of the p35 subunit of IL12 through a short linker (GSADGG). The single-chain IL12-SS1 (Fv) immunocytokine bound native mesothelin proteins on malignant mesothelioma (NCI-H226) and ovarian (OVCAR-3) cells as well as recombinant mesothelin on A431/H9 cells. The immunocytokine retained sufficient bioactivity of IL12 and significantly inhibited human malignant mesothelioma (NCI-H226) grown in the peritoneal cavity of nude mice and showed comparable anti-tumor activity to that of the SS1P immunotoxin. IL12-SS1 (Fv) is the first reported immunocytokine to mesothelin-positive tumors and may be an attractive addition to mesothelin-targeted cancer therapies.  相似文献   

2.
Many proteins produced in Escherichia coli accumulate in inclusion bodies. We have systematically evaluated the parameters that affect the refolding and renaturation of enzymatically active molecules from bacterial inclusion bodies containing a recombinant single-chain immunotoxin, B3(Fv)-PE38KDEL. This recombinant molecule is composed of the variable domains of monoclonal antibody B3 (B3(Fv)) fused to a truncated mutant form of Pseudomonas exotoxin A (PE38KDEL). This immunotoxin kills carcinoma cells in vitro, causes tumor regression in animal tumor models, and is being developed as an anti-cancer therapeutic agent (Brinkmann et al., 1991, Proc. Natl. Acad. Sci. USA 88, 8616-8620). Like many other recombinant proteins, B3(Fv)-PE38KDEL is produced in E. coli in inclusion bodies and must be denatured and refolded to become active. This requires correct folding, formation of native disulfide bonds, and the association of different domains. All these steps are strongly dependent on the renaturation conditions used. Optimum conditions of refolding were obtained by the addition of reduced and oxidized thiol reagents to promote disulfide bond formation and the addition of a labilizing agent such as L-arginine. Furthermore, the necessity to reactivate proteins at low protein concentrations due to its tendency to aggregate at high concentrations was overcome by a step-by-step addition of denatured and reduced protein into the refolding solution. This approach should be useful for the production of active forms of other recombinant proteins.  相似文献   

3.
Mik-beta 1 is a mAb that binds to the beta subunit of the IL-2R. We have constructed a recombinant single chain immunotoxin Mik-beta 1(Fv)-PE40 by genetically fusing the H and L V domains of Mik-beta 1 to each other via a peptide linker, and then to PE40, a derivative of Pseudomonas exotoxin. Mik-beta 1(Fv)-PE40 was selectively cytotoxic for cells expressing high levels of IL-2R beta (p75) subunit. Mik-beta 1(Fv)-PE40 was cytotoxic to the NK cell line YT-S, which expresses p75 but not p55 subunits, with an IC50 of 6 ng/ml. The ATL line HUT-102 was less sensitive, with an IC50 of 200 ng/ml. However, the IC50 could be lowered to 11 ng/ml when Mik-beta 1(Fv)-PE40 was allowed to bind to HUT-102 cells at 4 degrees C for 4 h before overnight incubation at 37 degrees C. An excess of Mik-beta 1 but not of anti-Tac, the anti-p55 mAb, prevented the cytotoxicity of Mik-beta 1(Fv)-PE40. We constructed a more active version of Mik-beta 1(Fv)-PE40, designated Mik-beta 1(Fv)-PE40KDEL, by converting the carboxyl-terminus of the toxin from -REDLK to -KDEL. Mik-beta 1(Fv)-PE40KDEL showed an IC50 of 2 ng/ml toward YT-S cells and 35 ng/ml toward HUT-102 cells. Binding studies using radioiodinated Mik-beta 1 showed that Mik-beta 1(Fv)-PE40 bound to the p75 receptor subunit with 11% of the affinity of the native Mik-beta 1 antibody. Mik-beta 1(Fv)-PE40 may be a useful reagent to study cells that express IL-2R, and it deserves further study as a possible treatment for cancers in which the malignant cells express high numbers of p75 subunit.  相似文献   

4.
We previously reported the construction and activity of a humanized, bispecific diabody (hEx3) that recruited T cells towards an epidermal growth factor receptor (EGFR) positive tumor. Herein, we describe the construction of a second functional, fully humanized, anti-EGFR bispecific diabody that recruits another subset of lymphocyte effectors, the natural killer cells, to EGFR-expressing tumor cells. After we confirmed that an anti-EGFR?×?anti-CD16 bispecific diabody (Ex16) consisting of a previously humanized anti-EGFR variable fragment (Fv) and a mouse anti-CD16 Fv had growth inhibitory activity, we designed a humanized anti-CD16 Fv to construct the fully humanized Ex16 (hEx16). However, the humanized form had lower activity for inhibition of cancer growth. To restore its growth inhibitory activity, we introduced mutations into the Vernier zone, which is located near the complementarity-determining regions and is involved in their binding activity. We efficiently prepared 15 different hEx16 mutants by expressing each chimeric single-chain component for hEx16 separately. We then used our in vitro refolding system to select the most functional mutant, which had a growth inhibitory effect comparable with that of the commercially available chimeric anti-EGFR antibody, cetuximab. Our refolding system could aid in the efficient optimization of other proteins with heterodimeric structure.  相似文献   

5.
目的: 探讨miR-520a-3p调控宫颈癌细胞因子分泌的分子机制。方法: 通过TargetScanHuman分析miR-520a-3p与NF-κB复合体亚基RELA的匹配情况,然后通过荧光素酶报告系统检测miR-520a-3p是否靶向NF-κB复合体亚基RELA;使用LPS刺激宫颈癌HELA细胞后,将miR-520a-3p mimics与转染试剂混合后滴入HELA细胞中,此为过表达组;将miR-520a-3p inhibitor与转染试剂混合后滴入HELA细胞中,此为敲低组,通过酶联免疫吸附试验检测过表达组和敲低组GCSF, GM-CSF, IL-2, IL-3, IL-4, IL-5, IL-6, IL-9, IL-10, IL-12 p40, IL-12 p70, IL-13, IL-17, IFN-γ, MCP-1, MCP-5, RANTES, TNFα的表达水平。每次实验重复3次。结果: miR-520a-3p靶向RELA的3’UTR;LPS激活NF-kB信号通路后,宫颈癌HELA细胞分泌的细胞因子GCSF, GM-CSF, IL-2, IL-3, IL-4, IL-5, IL-6, IL-9, IL-10, IL-12 p40, IL-12 p70, IL-13, IL-17, IFN-γ, MCP-1, MCP-5, RANTES, TNFα的蛋白表达水平上升(P<0.05);过表达组中NF-κB复合体亚基RELA的蛋白表达水平下降,宫颈癌HELA细胞分泌的上述细胞因子的蛋白表达水平下降(P<0.05);敲低组中NF-κB复合体亚基RELA的蛋白表达水平上升,宫颈癌HELA细胞分泌的上述细胞因子的蛋白表达水平上升(P<0.05)。结论: miR-520a-3p通过靶向NF-κB信号通路的关键分子RELA抑制宫颈癌HELA细胞的细胞因子分泌。  相似文献   

6.
The L49 single-chain Fv fused to beta-lactamase (L49-sFv-bL) combined with the prodrug C-Mel is an effective anticancer agent against tumor cells expressing the p97 antigen. However, large-scale production of L49-sFv-bL from refolded E. coli inclusion bodies has been problematic due to inefficient refolding and instability of the fusion protein. Sequence analysis of the L49-sFv framework regions revealed three residues in the framework regions at positions L2, H82B, and H91, which are not conserved for their position, occurring in <1% of sequences in Fv sequence databases. One further unusual residue, found in <3% of variable sequences, was observed at position H39. Each unusual residue was mutated to a conserved residue for its position and tested for refolding yield from inclusion bodies following expression in E. coli. The three V(H) single mutants showed improvement in the yield of active protein and were combined to form double and triple mutants resulting in a 7-8-fold increased yield compared to the parental protein. In an attempt to further improve yield, the orientation of the triple mutant was reversed to create a bL-L49-sFv fusion protein resulting in a 3-fold increase in expressed inclusion body protein and producing a 20-fold increase in the yield of purified protein compared to the parental protein. The triple mutants in both orientations displayed increased stability in murine plasma and binding affinity was not affected by the introduced mutations. Both triple mutants also displayed potent in vitro cytotoxicity and in vivo antitumor activity against p97 expressing melanoma cells and tumor xenografts, respectively. These results show that a rational protein-engineering approach improved the yield, stability, and refolding characteristics of L49-sFv-bL while maintaining binding affinity and therapeutic efficacy.  相似文献   

7.
Typically, multiple cytokines act in concert to mediate a desired immunological response, and thus more effective therapeutics may be achieved by combining several cytokines with potentially synergistic activities. We have developed a series of bi-functional cytokine fusion proteins which, when additionally linked to an intact antibody (or the Fc portion of an antibody) in a variety of configurations, can be specifically targeted. We focus here mainly on the synergizing cytokine combination interleukin-2/interleukin-12 (IL-2/IL-12), but also demonstrate the utility of this approach with interleukin-4/granulocyte-macrophage colony-stimulating factor (IL-4/GM-CSF). Cytokine activity was retained in constructs where the cytokines were fused in tandem at the carboxyl terminus of the Fc or antibody heavy (H) chain, as well as in constructs where one cytokine was fused at the carboxyl terminus of the H chain while the second cytokine was fused to the amino terminus of either the H or light (L) chain variable region. Even in such constructs, antigen binding of the antibody-cytokine fusion proteins could be maintained. In the context of bi-functional fusion proteins, hetero-dimeric IL-12 could be expressed either in a single-chain form, or maintained as a heterodimer in which the p40 subunit was fused to IL-2. These IL-12/IL-2 bi-functional fusion proteins were shown to induce extremely high levels of interferon-gamma (IFN-gamma), similar to the synergy normally seen with the combined application of the individual cytokines. In addition, these bifunctional molecules were shown to have striking anti-tumor activity as either gene therapy or as an antibody cytokine(s) fusion protein, and may provide a useful approach to the treatment of cancer.  相似文献   

8.
9.
A human-derived single-chain Fv (scFv) antibody fragment specific against human CTLA4 (CD152) was produced at high level in Escherichia coli. The scFv gene was cloned from a phagemid to the expression vector pQE30 with a N-terminal 6His tag fused in-frame, and expressed as a 29 kDa protein in E. coli as inclusion bodies. The inclusion body of scFv was isolated from E. coli lysate, solubilized in 8M urea with 10mM dithiothreitol, and purified by ion-exchange chromatography. Method for in vitro refolding of the scFv was established. The effects of refolding buffer composition, protein concentration and temperature on the refolding yield were investigated. The protein was renatured finally by dialyzing against 3mM GSH, 1mM GSSG, 150 mM NaCl, 1M urea, and 50 mM Tris-Cl (pH 8.0) for 48 h at 4 degrees C, and then dialyzed against phosphate-buffered saline (pH 7.4) to remove remaining denaturant. This refolding protocol generated up to a 70% yield of soluble protein. Soluble scFv was characterized for its specific antigen-binding activity by indirect cellular ELISA. The refolded scFv was functionally active and was able to bind specifically to CTLA4 (CD152). The epitopes recognized by refolded anti-CTLA4 scFv do not coincide with those epitopes recognized by CD80/CD86.  相似文献   

10.
Interleukin-12 (IL-12) is a heterodimeric cytokine composed of two subunits, p35 and p40. The disulfide-linked homodimer (p40)2 has been shown to be a potent IL-12 antagonist. In the present study, the p40 subunit was refolded from Escherichia coli inclusion bodies. Formation of (p40)2 was greatly increased in a redox buffer containing reduced and oxidized glutathione, but was not significantly affected by the cosolvents urea, GdnHCl or Chaps. While protein disulfide isomerase (PDI), GroEL/ES or DnaK/J/GrpE suppressed aggregation during refolding of p40, only DnaK/J/GrpE and PDI enhanced p40 dimerization. Oxidative assembly of p40 into (p40)2 by PDI, but not suppression of aggregation, was strongly dependent on inclusion of BSA in the refolding buffer. It is concluded that both chaperone-like and disulfide isomerase effects are essential for correct folding of p40 into dimers.  相似文献   

11.
The unique immunoglobulin idiotype expressed on the surface of B lymphoma cells can be used as an effective antigen in tumor-specific vaccines when fused to immunostimulatory proteins and cytokines. A DNA vaccine encoding for an idiotype antibody single chain Fv (scFv) fragment fused to the Tetanus Toxin Fragment C (TTFrC) has been shown to induce protective anti-tumor responses. Protein-based strategies may be more desirable since they provide greater control over dosage, duration of exposure, and in vivo distribution of the vaccine. However, production of fusion protein vaccines containing complex disulfide bonded idiotype antibodies and antibody-derived fragments is challenging. We use an Escherichia coli-based cell-free protein synthesis platform as well as high-level expression of E. coli inclusion bodies followed by refolding for the rapid generation of an antibody fragment – TTFrC fusion protein vaccine. Vaccine proteins produced using both methods were shown to elicit anti-tumor humoral responses as well as protect from tumor challenge in an established B cell lymphoma mouse model. The development of technologies for the rapid production of effective patient-specific tumor idiotype-based fusion protein vaccines provides opportunities for clinical application.  相似文献   

12.
13.
Efficient selection of the genetically modified cell population is a critical step to obtain the cells with desired properties. In this study, we propose an antigen-mediated genetically modified cell amplification (AMEGA) system employing an antibody/receptor chimera that triggers a growth signal in response to a non-toxic hapten dimer. An anti-fluorescein single-chain Fv fused to the extracellular D2 domain of erythropoietin receptor and transmembrane/intracellular domains of gp130 was expressed together with a model transgene, enhanced green fluorescent protein (EGFP) downstream of IRES sequence, by retroviral infection to IL-3-dependent Ba/F3 cells. Addition of fluorescein dimers connected by various oligo-DNA linkers induced selective growth of transfectants, thus leading to efficient expansion of EGFP-positive cell population. Also, digestion of the oligonucleotides by specific restriction endonuclease completely suppressed cell growth. Because these hapten dimers are not harmful for normal cells, the approach will be especially useful for reversible in vitro or in vivo expansion of genetically modified cell population employed for cell therapy and tissue engineering.  相似文献   

14.
We have previously constructed an antibody-avidin (Av) fusion protein, anti-transferrin receptor (TfR) IgG3-Av, which can deliver biotinylated molecules to cells expressing the TfR. We now describe the use of the fusion protein for antibody-directed enzyme prodrug therapy (ADEPT). The 67 amino acid carboxyl-terminal domain (P67) of human propionyl-CoA carboxylase alpha subunit can be metabolically biotinylated at a fixed lysine residue. We genetically fused P67 to the carboxyl terminus of the yeast enzyme FCU1, a derivative of cytosine deaminase that can convert the non-toxic prodrug 5-fluorocytosine to the cytotoxic agent 5-fluorouracil. When produced in Escherichia coli cells overexpressing a biotin protein ligase, the FCU1-P67 fusion protein was efficiently mono-biotinylated. In the presence of 5-fluorocytosine, the biotinylated fusion protein conjugated to anti-rat TfR IgG3-Av efficiently killed rat Y3-Ag1.2.3 myeloma cells in vitro, while the same protein conjugated to an irrelevant (anti-dansyl) antibody fused to Av showed no cytotoxic effect. Efficient tumor cell killing was also observed when E. coli purine nucleoside phosphorylase was similarly targeted to the tumor cells in the presence of the prodrug 2-fluoro-2'-deoxyadenosine. These results suggest that when combined with P67-based biotinylation, anti-TfR IgG3-Av could serve as a universal delivery vector for targeted chemotherapy of cancer.  相似文献   

15.
Fv antibody fragments have been used as co‐crystallization partners in structural biology, particularly in membrane protein crystallography. However, there are inherent technical issues associated with the large‐scale production of soluble, functional Fv fragments through conventional methods in various expression systems. To circumvent these problems, we developed a new method, in which a single synthetic polyprotein consisting of a variable light (VL) domain, an intervening removable affinity tag (iRAT), and a variable heavy (VH) domain is expressed by a Gram‐positive bacterial secretion system. This method ensures stoichiometric expression of VL and VH from the monocistronic construct followed by proper folding and assembly of the two variable domains. The iRAT segment can be removed by a site‐specific protease during the purification process to yield tag‐free Fv fragments suitable for crystallization trials. In vitro refolding step is not required to obtain correctly folded Fv fragments. As a proof of concept, we tested the iRAT‐based production of multiple Fv fragments, including a crystallization chaperone for a mammalian membrane protein as well as FDA‐approved therapeutic antibodies. The resulting Fv fragments were functionally active and crystallized in complex with the target proteins. The iRAT system is a reliable, rapid and broadly applicable means of producing milligram quantities of Fv fragments for structural and biochemical studies.  相似文献   

16.
The Fv1 protein is an endogenous factor in mice that confers resistance to infection by certain classes of murine leukemia virus, a phenomenon referred to as restriction. The mechanism of restriction is not understood, and the low endogenous level of Fv1 in cells has prevented any biochemical or biophysical analysis of the protein. We have now purified recombinant Fv1(n) protein from a baculovirus system and demonstrate that Fv1 exists in a multimeric form. Furthermore, we have mapped the position of two domains within the protein using limited proteolysis. Biophysical characterization of the N-terminal domain reveals that it comprises a highly helical and extended dimeric structure. Based on these biochemical and biophysical data, we propose a model for the arrangement of domains in Fv1 and suggest that dimerization of the N-terminal domain is necessary for Fv1 function to allow the protein to interact with multiple capsid protomers in retroviral cores.  相似文献   

17.
Specificity in the immune system is dictated and regulated by specific recognition of peptide/major histocompatibility complexes (MHC) by the T cell receptor (TCR). Such peptide/MHC complexes are a desirable target for novel approaches in immunotherapy because of their highly restricted fine specificity. Recently a potent anti-human p53 CD8(+) cytotoxic T lymphocyte (CTL) response has been developed in HLA-A2 transgenic mice after immunization with peptides corresponding to HLA-A2 motifs from human p53. An alpha/beta T-cell receptor was cloned from such CTL which exhibited a moderately high affinity to the human p53(149-157) peptide. In this report, we investigated the possibility of using a recombinant tumor-specific TCR for antigen-specific elimination of cells that express the specific MHC-peptide complex. To this end, we constructed a functional single-chain Fv fragment from the cloned TCR and fused it to a very potent cytotoxic molecule, a truncated form of Pseudomonas exotoxin A (PE38). The p53 TCR scFv-P38 fusion protein was generated by in vitro refolding from bacterially-expressed inclusion bodies, and was found to be functional by its ability to bind antigen-presenting cells (APC) which express the specific p53-derived peptide. Moreover, we have shown that the p53-specific TCR scFv-PE38 molecule specifically kills APC in a peptide-dependent manner. These results represent the first time that a TCR-derived recombinant single-chain Fv fragment has been used as a targeting moiety to deliver a cytotoxic effector molecule to cells and has been able to mediate the efficient killing of the particular cell population that expresses the specific MHC/peptide complex. Similarly to antibody-based targeting approaches, TCR with tumor cell specificity represent attractive candidates for generating new, very specific targeting moieties for various modes of cancer immunotherapy.  相似文献   

18.
Interleukin-12 (IL-12) is a heterodimeric cytokine with potent immunostimulatory activity and anti-angiogenic properties. Its clinical applications are limited, however, by severe side-effects. Here we report that an IL-12 fusion protein, consisting of IL-12 fused to a human antibody fragment specific to the oncofetal ED-B domain of fibronectin, markedly enhances the antitumor activity of this cytokine, as demonstrated in a mouse lung-metastasis model and in two models of mice bearing different aggressive murine tumors. The residual small tumor masses seen in the treated mice were infiltrated with lymphocytes, macrophages, and natural killer cells and had elevated interferon gamma (IFN-gamma). These results are of therapeutic relevance as the ED-B domain of fibronectin, a naturally occurring marker of angiogenesis identical in mouse and man, is expressed in the majority of aggressive solid tumors but is not detectable in normal vessels and tissues.  相似文献   

19.
吕建新  彭颖  孟哲峰 《遗传》2005,27(4):557-560
为了构建肿瘤靶向性的人突变型IL-18新基因并进行真核表达,以重组PCR技术构建EGF-IL-18融合基因,利用 Bac-to-Bac杆状病毒表达系统和Sf 9昆虫细胞株(来自秋天草地夜蛾)表达融合基因,纯化表达产物,并以IFN-γ诱导实验和EGFR竞争结合实验初步评价融合蛋白的生物活性。测序证明构建的融合基因为原设计EGF-IL-18融合基因。SDS-PAGE和Western blot证明EGF-IL-18融合基因在昆虫细胞中获得表达,表达的融合蛋白的Mr约为20 000,与理论值相符,纯化后融合蛋白具有特异的IL-18单抗结合活性。IFN-γ诱导实验和EGFR竞争结合实验显示,该融合蛋白具有肿瘤导向性和抗肿瘤活性。表明对突变型IL-18成功地进行了肿瘤导向性改造并使其在真核细胞获得表达。  相似文献   

20.
IL-12 is a cytokine which showed anti-tumor effects in clinical trials, but also produced serious toxicity. We describe a fusion protein, huBC1-IL12, designed to achieve an improved therapeutic index by specifically targeting IL-12 to tumor and tumor vasculature. huBC-1 is a humanized antibody that targets a cryptic sequence of the human ED-B-containing fibronectin isoform, B-FN, present in the subendothelial extracellular matrix of most aggressive tumors. B-FN is oncofetal and angiogenesis-associated, and is undetectable in most normal adult tissues. The original murine BC-1 antibody has been used successfully for immunoscintigraphy to image brain tumor mass in glioblastoma patients. In huBC1-IL12, each of the IgG heavy chains is genetically fused to the N-terminus of the IL-12 p35 subunit, which in turn is disulfide-bonded to the p40 subunit, resulting in a hexameric molecule of MW of ∼300 kDa. Since human IL-12 has no biological activity in mice, we produced huBC1-muIL12 as a surrogate molecule for animal tumor models. Despite the relatively poor PK profile of this molecule in mice and the apparent drawbacks of xenogeneic models in SCID mice, which lack T and B cells, one cycle of treatment with huBC1-muIL12 was efficacious in the PC3mm2, A431, and HT29 subcutaneous tumor models and PC3mm2 lung metastasis model. This molecule also was found to have surprisingly low toxicity in immunocompetent mice. A fusion protein that contains human IL-12 (huBC1-huIL12), which is a suitable molecule for investigation as a therapeutic, has also been produced. This protein has been shown to have a longer serum half-life than huBC1-muIL12 in mice, and retains both antigen binding and IL-12 activity in in vitro assays.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号