共查询到20条相似文献,搜索用时 15 毫秒
1.
Sosnikhina S. P. Kirillova G. A. Priyatkina S. N. Tikholiz O. A. Mikhailova E. I. Smirnov V. G. 《Russian Journal of Genetics》2003,39(6):642-648
It is shown that mutations mei8 (irregular condensation and fragmentation of meiotic chromosomes),sy1(asynapsis), and sy10 (heterologous synapsis) of rye Secale cereale L. are nonallelic. In double mutants mei8 sy1 and mei8 sy10 both mutations are expressed simultaneously and independently of each other. A study of joint inheritance of mutations sy1 and sy10 revealed their interaction by means of recessive epistasis: the double mutants sy1sy10 has the sy10 phenotype. This means that the sy10 gene controls an earlier stage of synapsis in meiotic prophase than the sy1 gene. Mutation mei8is inherited independently of sy1 but it is linked to sy10 (recombination frequency 26.8 ± 3.58%). 相似文献
2.
Sosnikhina SP Kirillova GA Mikhaĭlova EI Tikholiz OA Smirnov VG Fedotova IuS Kolomiets OL Bogdanov IuF 《Genetika》2001,37(1):81-90
Analysis of manifestation and inheritance of a new mutation inducing irregular synapsis in rye showed that abnormal phenotype is determined by a recessive allele of the sy19 gene. In the homozygotes for this mutation, even at the light microscopic level, abnormal formation of bivalents is already observed at pachytene-diakinesis. At metaphase I, the univalent frequency varies from 0 to 14; in a few cells, multivalent associations of chromosomes, which are not clearly oriented in the spindle, are detected. Electron microscopy of synaptonemal complexes revealed both homologous and heterologous synapsis in homozygotes for sy19, namely partial loss of the ability to stringent homology search. Analysis of joint inheritance of sy19 and asynaptic sy1 mutations showed that they are nonallelic, inherited independently, and interact by recessive epistasis. The phenotype of double sy1sy19 mutants indicates that the sy19 gene conditioning heterologous synapsis operates at meiosis later than the synaptic gene sy1. The epistatic group of mutations, sy9 > sy1 > sy19 and sy3, was determined. 相似文献
3.
Sosnikhina SP Mikhailova EI Tikholiz OA Priyatkina SN Smirnov VG Dadashev SY Kolomiets OL Bogdanov YF 《Cytogenetic and genome research》2005,109(1-3):215-220
Spontaneous meiotic mutations of winter rye Secale cereale L. (2n = 14) were revealed in inbred F2 progenies, which were obtained by self-pollination of F1 hybrids resulting from crosses of individual plants of cultivar Vyatka or weedy rye with plants of self-fertile inbred lines. The mutations cause partial or complete sterility, and are maintained in heterozygote condition. Six types of mutations were distinguished as the result of cytological analysis of meiosis and genetic analysis. (1) Plants with nonallelic asynaptic mutations sy1 and sy9 lacked bivalents in 96.8 and 67.0% metaphase I cells, respectively, formed only axial elements but not the mature synaptonemal complex (SC), and had defects in telomere clustering in early prophase I. (2) Weak asynaptic mutant sy3 showed incomplete synapsis at the start of SC degradation at diplotene and lower chiasma number; yet only 2% meiocytes lacked bivalents in MI. (3) Mutations sy2, sy6, sy7, sy8, sy10, and sy19 caused nonhomologous synapsis; i.e., a varying number of univalents and occasional multivalents were observed in MI, which was preceded by switches of pairing partners and fold-back synapsis at mid-prophase I. (4) Mutation mei6 led to the formation of protrusions and minor branched structures of the SC lateral elements. (5) Allelic mutations mei8 and mei8-10 caused irregular chromatin condensation along the chromosome length in prophase I, which was accompanied by chromosome sticking and fragmentation in MI. (6) Allelic mutations mei5 and mei10 determined chromosome supercondensation, caused the disturbance of meiotic spindle assembly, arrested meiosis at various stages but did not affect formation of the pollen wall, thus arrested meiocytes got covered with the pollen wall. Analysis of double mutants revealed recessive epistatic interactions for some mutations; the epistatic group was sy9 > sy1 > sy3 > sy19. This reflects the sequence of meiotic events controlled by the corresponding genes. The expression of sy2 and sy19 proved to be modified by additional genes. Most meiotic mutations found in rye have analogs in other plants. 相似文献
4.
Sosnikhina SP Kirillova GA Tikholiz OA Mikhaĭlova EI Smirnov VG Fedorova IuS Mazurova TF Bogdanov IuF 《Genetika》2002,38(2):216-226
The cytological expression of spontaneous mutation sy2 isolated from a population of weedy rye was examined. It was demonstrated that the primary defect of meiosis in the mutant plants is nonhomologous synapsis, which occurs simultaneously with the homologous one. An electron microscope study of the synaptonemal complex (SC) at prophase I showed synaptic abnormalities that manifested as "switches" of synapting axial elements to the nonhomologous partner and the formation of foldbacks of lateral SC elements. The sy2 mutants are characterized by one to two such events per meiosis. Nonhomologous synapsis leads to the appearance of univalents at metaphase I (on average 4.16 +/- 0.022 per meiocyte) and multivalents (on average 0.12 +/- 0.007 per meiocyte). The presence of multivalents in 12.0% of meiocytes at metaphase I may result from recombination in ectopic regions of homology. It is suggested that the sy2 mutation impairs a component of the system that limits synapsis in meiocytes to only homologous chromosome pairs. 相似文献
5.
Sosnikhina SP Kirillova GA Mikhaĭlova EI Tikholiz OA Smirnov VG Nemtsova NS 《Genetika》2003,39(3):362-369
Inheritance of two spontaneous meiosis-specific mutations with similar cytologic phenotype was studied. Both mutations were independently obtained from two rye populations (Vyatka variety and weedy rye). Both mutations are recessive, allelic, and monogenically inherited; the corresponding gene is designated mei8. The mutant alleles of the gene cause abnormal meiotic chromosome structure expressed as irregular compaction along the chromosome length, chromatin stickiness at all stages of meiosis, and chromosome fragmentation in anaphase I. 相似文献
6.
Yu. S. Fedotova Yu. F. Bogdanov S. A. Gadzhiyeva S. A. Sosnikhina V. G. Smirnov E. I. Mikhailova 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》1994,88(8):1029-1036
We studied the expression and inheritance of two spontaneous mutations found in different populations of rye Secale cereale L. that cause high univalent frequency in meiosis and low fertility. Both mutations were inherited as monogenic recessives. For each of the mutations the corresponding gene symbols (sy7 and sy10) were suggested although their allelism has not been studied. These mutants differ in chiasma frequency and in the number of univalents per meiocyte. Electron microscopy of the wholemount surface-spread synaptonemal complexes (SCs) from microsporocytes of both mutants revealed that during meiotic prophase I random synapsis began and progressed that involved not only homologous but also nonhomologous chromosomes. SCs were formed with frequent changes of pairing partners (switches) and intrachromosomal foldbacks of unpaired axial elements. As a result, incompletely synapsed, non-homologous and multivalent SCs were formed in mutants by the stage analogous to pachytene in normal plants. In sy7 a maximum in the number of switches and foldbacks were observed at zygotene, whereas in sy10 this occurred at pachytene. We suggest that it is the process of recognition of homology that is impaired in both mutants. This leads to indiscriminate synapsis and prevents chiasma formation. Both mutants may be classified as desynaptic. 相似文献
7.
Sosnokhina SP Kirillova GA Tikholiz OA Mikhaĭlova EI Priiatkina SN Smirnov VG 《Genetika》2002,38(3):347-356
Partially nonhomologous (heterologous) synapsis of meiotic chromosomes in a spontaneous desynaptic mutant form of rye is determined by two recessive genes, sy2a and sy2b, that have independent expression and inheritance. The third gene, dominant inhibitor suppressing the mutant phenotype, has been revealed in hybrid combinations between sy2 mutants and lines segregating other meiotic mutants: sy10 (heterologous synapsis), sy1, and sy9 (asynapsis). All three genes determining desynapsis (sy2a, sy2b, and I) were shown to be nonallelic to monogenic mutations sy10, sy1, and sy9, inherited independently of them and expressed at later stages of prophase I than the sy10 gene. The possibility of modifying monogenic segregation of mutation sy2 by gametophyte selection for a locus linked to the gene expressed as sy2 at particular frequencies of recombination between this gene and selected locus is discussed. 相似文献
8.
Structural investigation and morphometry of meiotic chromosomes by scanning electron microscopy (in comparison to light microscopy) of all stages of condensation of meiosis I + II show remarkable differences during chromosome condensation in mitosis and meiosis I of rye (Secale cereale) with respect to initiation, mode and degree of condensation. Mitotic chromosomes condense in a linear fashion, shorten in length and increase moderately in diameter. In contrast, in meiosis I, condensation of chromosomes in length and diameter is a sigmoidal process with a retardation in zygotene and pachytene and an acceleration from diplotene to diakinesis. The basic structural components of mitotic chromosomes of rye are "parallel fibers" and "chromomeres" which become highly compacted in metaphase. Although chromosome architecture in early prophase of meiosis seems similar to mitosis in principle, there is no equivalent stage during transition to metaphase I when chromosomes condense to a much higher degree and show a characteristic "smooth" surface. No indication was found for helical winding of chromosomes either in mitosis or in meiosis. Based on measurements, we propose a mechanism for chromosome dynamics in mitosis and meiosis, which involves three individual processes: (i) aggregation of chromatin subdomains into a chromosome filament, (ii) condensation in length, which involves a progressive increase in diameter and (iii) separation of chromatids. 相似文献
9.
Sosnikhina SP Mikhaĭlova EI Tikholiz OA Priiatkina SN Smirnov VG Voĭlokov AV Fedotova IuS Kolomiets OL Bogdanov IuF 《Genetika》2005,41(10):1310-1321
Genetic collection of meiotic mutants of winter rye Secale cereale L. (2n = 14) was created. Mutations were detected in inbred F2 generations after self-fertilization of the F1 hybrids, obtained by individual crossing of rye plants (cultivar Vyatka) or weedy rye with plants from autofertile lines. The mutations cause partial or complete plant sterility and are maintained in collection in a heterozygous state. Genetic analysis accompanied by cytogenetic study of meiosis has revealed six mutation types. (1) Nonallelic asynaptic mutations sy1 and sy9 caused the formation of only axial chromosome elements in prophase and anaphase. The synaptonemal complexes (SCs) were absent, the formation of the chromosome "bouquet" was impaired, and all chromosomes were univalent in meiotic metaphase I in 96% (sy1) and 67% (sy2) of cells. (2) Weak asynaptic mutation sy3, which hindered complete termination of synapsis in prophase II. Subterminal asynaptic segments were always observed in the SC, and at least one pair of univalents was present in metaphase I, but the number of cells with univalents did not exceed 2%. (3) Mutations sy2, sy6, sy7, sy8, sy10, and sy19, which caused partially nonhomologous synapsis: change in pairing partners and fold-back chromosome synapsis in prophase I. In metaphase I, the number of univalents varied and multivalents were observed. (4) Mutation mei6, which causes the formation of ultrastructural protrusions on the lateral SC elements, gaps and branching of these elements. (5) Allelic mutations mei8 and mei10, which caused irregular chromatin condensation along chromosomes in prophase I, sticking and fragmentation of chromosomes in metaphase I. (6) Allelic mutations mei5 and mei10, which caused chromosome hypercondensation, defects of the division spindle formation, and random arrest of cells at different meiotic stages. However, these mutations did not affect the formation of microspore envelopes even around the cells, whose development was blocked at prophase I. Analysis of cytological pictures of meiosis in double rye mutants reveled epistatic interaction in the mutation series sy9 > sy1 > sy3 > sy19, which reflects the order of switching these genes in the course of meiosis. The expression of genes sy2 and sy19 was shown to be controlled by modifier genes. Most meiotic mutations found in rye have analogs in other plant species. 相似文献
10.
G. Melz R. Schlegel V. Thiele 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》1992,85(1):33-45
Communicated by G. Wenzel 相似文献
11.
Sosnikhina SP Kirillova GA Priiatkina SN Mikhaĭlova EI Tikholiz OA Smirnov VG 《Genetika》2003,39(6):783-790
Genetic analysis has demonstrated that meiotic mutations mei8 (irregular condensation and fragmentation of meiotic chromosomes) and mei10 (chromosome overcompaction) are nonallelic. Mutation mei10 exhibits digenic inheritance (with a segregation ratio of 13:3) in the combinations of crosses studied. It is assumed that the phenotypic expression of mutation mei10 is suppressed by the effect of recessive gene lch1 or lch2 (long chromosomes), both of which have been revealed in one of the parental lines (Mc10). These genes determine weak condensation of meiotic chromosomes. In double mutants mei8 mei10, the mutations are expressed independently of each other. Gene mei10 is linked with gene mei8 (r = 36.8 +/- 5.38%); genes lch1 and lch2 are not linked either with them or with each other. Taking into account the data on the linkage between genes mei10 and sy10 and between mei8 and sy10, the order of genes in the linkage group is shown to the following: mei8-sy10-mei10. 相似文献
12.
Scanning electron microscopy (SEM) proves to be an appropriate technique for imaging chromatin organization in meiosis I and II of rye (Secale cereale) down to a resolution of a few nanometers. It could be shown for the first time that organization of basic structural elements (coiled and parallel fibers, chromomeres) changes dramatically during the progression to metaphase I and II. Controlled loosening with proteinase K (after fixation with glutaraldehyde) provides an enhanced insight into chromosome architecture even of highly condensed stages of meiosis. By selective staining with platinum blue, DNA content and distribution can be visualized within compact chromosomes as well as in a complex arrangement of fibers. Chromatin interconnecting threads, which are typically observed in prophase I between homologous and non-homologous chromosomes, stain clearly for DNA. In zygotene transversion of chromatid strands to their homologous counterparts becomes evident. In pachytene segments of synapsed and non-synapsed homologs alternate. At synapsed regions pairing is so intimate that homologous chromosomes form one filament of structural entity. Chiasmata are characterized by chromatid strands which traverse from one homolog to its counterpart. Bivalents are characteristically fused at their telomeric regions. In metaphase I and II there is no structural evidence for primary and secondary constrictions. 相似文献
13.
D. Adam V. Simonsen V. Loeschcke 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》1987,74(5):560-565
Summary Eleven samples of eight European commercial varieties of winter rye were examined at eight polymorphic enzyme loci. Genotype frequencies fitted Hardy-Weinberg expectations at all loci in all samples studied. Of the total genetic diversity recorded at the 8 loci, only 7% was expressed between varieties. Allele frequency differences between varieties were, however, sufficient to allow a characterization of each variety by a specific set of allele frequencies. Using subsets of the original data, it could be demonstrated that all pairs of varieties but one still showed significant allozyme differences, when only 4 loci were screened in samples half the original size of 200 individuals. Even when only one locus was analyzed, all varieties but two were distinguishable, but this diagnostic locus was not identical in all pairwise comparisons. 相似文献
14.
15.
F. J. Gallego C. Benito 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》1997,95(3):393-399
Aluminium (Al) tolerance in roots of two cultivars (“Ailés” and “JNK”) and two inbred lines (“Riodeva” and “Pool”) of rye
was studied using intact roots immersed in a nutrient solution at a controlled pH and temperature. Both the cultivars and
the inbred lines analysed showed high Al tolerance, this character being under multigenic control. The inbred line “Riodeva”
was sensitive (non-telerant) at a concentration of 150 μM, whereas the “Ailes” cultivar showed the highest level of Al tolerance
at this concentration. The segregation of aluminium-tolerance genes and several isozyme loci in different F1s, F2s and backcrosses between plants of “Ailés” and “Riodeva” were also studied. The segregation ratios obtained for aluminium
tolerance in the F2s analysed were 3 : 1 and 15 : 1 (tolerant : non-tolerant) while in backcrosses they were 1 : 1 and 3 : 1. These results indicated
that Al tolerance is controlled by, at least, two major dominant and independent loci in rye (Alt1 and Alt3). Linkage analyses carried out between Al-tolerance genes and several isozyme loci revealed that the Alt1 locus was linked to the aconitase-1 (Aco1), nicotinamide adenine dinucleotide dehydrogenase-2 (Ndh2), esterase-6 (Est6) and esterase-8 (Est8) loci, located on chromosome arm 6RL. The order obtained was Alt1-Aco1-Ndh2-Est6-Est8. The Alt3 locus was not linked to the Lap1, Aco1 and Ndh2 loci, located on chromosome arms, 6RS, 6RL and 6RL respectively. Therefore, the Alt3 locus is probably on a different chromosome.
Received: 18 March 1997 / Accepted: 21 March 1997 相似文献
16.
J. Dvořák 《Biologia Plantarum》1968,10(2):112-117
2,4-D was applied to the roots of diploid and tetraploid corn. After the application the mitotic division in the meristem of root tips was blocked; the mitotic division in differentiated cells of cortex and central cylinder, on the other hand, was provoked. In the cortex of diploid corn (variety ?eské) predominantly tetraploid were found cells with 28 chromosomes and, to a lesser extent, octoploid and diploid ones with 56 and 14 chromosomes respectively. In the cortex of tetraploid corn (variety Bernburger Tetraroggen), most cells were octoploid with 56 chromosomes; the metaphase levels with 112 and 28 chromosomes, e.g. 16-ploid and tetraploid cells, were found less frequently. The relations between the numbers of cells with different polyploidy were similar in both the varieties. The first endoreduplication cycle was different polyploidy were similar in both the varieties. The first endoreduplication cycle was found to occur in the region where the cortex cells finish their elongation. In the central cylinder of the roots of diploid corn most cells were found to be diploid, in tetraploid corn most cells were tetraploid. 相似文献
17.
Molecular assembly of meiotic proteins Asy1 and Zyp1 and pairing promiscuity in rye (Secale cereale L.) and its synaptic mutant sy10 下载免费PDF全文
Mikhailova EI Phillips D Sosnikhina SP Lovtsyus AV Jones RN Jenkins G 《Genetics》2006,174(3):1247-1258
Assembly of two orthologous proteins associated with meiotic chromosome axes in Arabidopsis thaliana (Asy1 and Zyp1) was studied immunologically at meiotic prophase of meiosis of wild-type rye (Secale cereale) and its synaptic mutant sy10, using antibodies derived from A. thaliana. The temporal and spatial expression of the two proteins were similar in wild-type rye, but with one notable difference. Unlike A. thaliana, in which foci of the transverse filament protein Zyp1 appear to linearize commensurately with synapsis, linear tracts of Asy1 and Zyp1 protein form independently at leptotene and early zygotene of rye and coalign into triple structures resembling synaptonemal complexes (SCs) only at later stages of synapsis. The sy10 mutant used in this study also forms spatially separate linear tracts of Asy1 and Zyp1 proteins at leptotene and early zygotene, and these coalign but do not form regular triple structures at midprophase. Electron microscopy of spread axial elements reveals extensive asynapsis with some exchanges of pairing partners. Indiscriminate SCs support nonhomologous chiasma formation at metaphase I, as revealed by multi-color fluorescence in situ hybridization enabling reliable identification of all the chromosomes of the complement. Scrutiny of chiasmate associations of chromosomes at this stage revealed some specificity in the associations of homologous and nonhomologous chromosomes. Inferences about the nature of synapsis in this mutant were drawn from such observations. 相似文献
18.
G. Melz K. Adolf 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》1991,82(6):761-764
Summary The genetics and relationships between the genes in rye located in the nucleus and cytoplasm of the male sterility of the G-type were investigated. A factor inducing male sterility was found in the cytoplasms or rye cv Schlägler alt and rye cv Norddeutscher Champagner. Monogenic inheritance was observed in linkage tests. Using primary trisomies of rye cv Esto, the nuclear gene ms1 was found to be located on chromosome 4R. Modifying genes, probably masked in normal cytoplasm but expressed in male-sterility-inducing cytoplasm together with gene ms1, were located on chromosomes 3R (ms2) and 6R (ms3). Mono-, di-, and trigenic inheritance types were found in backcross progenies of trisomies. 相似文献
19.
R. Schlegel G. Melz R. Nestrowicz 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》1987,74(6):820-826
Summary Haploid, dihaploid and tetrahaploid rye plants of the variety Petka have been produced to establish a homozygous genotype and karyotype. The morphology, karyotypic characteristics and the metaphase I chromosome behaviour are described demonstrating the utility of the material as a universal standard tester in rye cytogenetics. Clones of several ploidy levels are maintained by long-term in vitro sprout culture. They are available for international testing. Sexual propagation of the clones is possible using a heat treatment procedure to break the self-incompatibility of the homozygotes. 相似文献
20.
Summary Fine structural investigations of non-viable rye grains indicate recognisible abnormalities in the plasmalemma and mitochondrial membranes of the unimbibed embryo. Once such grains are wetted there is rapid and progressive disorganisation of the tissue. Biochemical studies show a reduced uptake of water, lack of respiratory activity and a failure in nucleic acid and protein synthesis. Whereas total DNA, RNA and protein levels are unchanged on loss of viability, the integrity of DNA and RNA is impaired and ribosomal RNA and soluble protein levels are reduced. 相似文献