首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The protein kinase from human cells dependent on double-stranded (ds) RNA is a 68-kDa protein (p68 kinase), the level of which is enhanced significantly in cells treated with interferon. When activated by low concentrations of dsRNA, the p68 kinase becomes phosphorylated and thereby catalyzes the phosphorylation of the protein-synthesis initiation factor, eIF2. Here, we have purified the p68 kinase to homogeneity using a specific monoclonal antibody to investigate its capacity to bind dsRNA, poly(I).poly(C). Our study suggest that p68 kinase has high- and low-affinity binding sites: the high-affinity binding site is responsible for the activation and the low-affinity binding site for the inhibition of kinase activity. This is in accord with the fact that autophosphorylation of p68 kinase occurs at low concentrations of dsRNA whereas high concentrations of dsRNA inhibit its autophosphorylation. We have also investigated the binding of adenoviral VAI RNA to the purified p68 kinase and have found that the affinity of this binding is lower than that of poly(I).poly(C). We show that VAI RNA can activate or inhibit autophosphorylation of p68 kinase in a dose-dependent manner, i.e. activation at less than or equal to 1 microgram/ml or inhibition at greater than 1 microgram/ml of VAI RNA. In spite of its lower affinity of binding, VAI RNA cannot be displaced by poly(I).poly(C) or reovirus dsRNA. These data confirm our previous results to illustrate that VAI RNA can bind p68 kinase and cause its inactivation irreversably.  相似文献   

2.
3.
R J Schneider  C Weinberger  T Shenk 《Cell》1984,37(1):291-298
The adenovirus VAI RNA is a small polymerase III-transcribed species that is required for optimal translation of mRNAs late after infection. Mutant dl331 fails to produce this RNA species and, as a result, grows poorly. Mutant-infected cells contain normal levels of late mRNAs, but reduced levels of polypeptides are synthesized late after infection. Translational elongation occurs at normal rates in mutant, as compared to wild-type, virus-infected cells. Initiation of translation occurs with reduced efficiency in dl331 -infected cells. VAI RNA is required for formation of a stable 48S preinitiation complex and very likely functions to facilitate the interaction between 43S preinitiation complex and mRNA to form the 48S species.  相似文献   

4.
E Feduchi  L Carrasco 《FEBS letters》1987,214(1):153-157
HeLa cells treated with human lymphoblastoid interferon do not synthesize poliovirus proteins. The antiviral state against poliovirus is reversed if cells are previously infected with adenovirus type 5. A late gene product seems to be involved in this reversion, since no effect is observed at early stages of infection or in the presence of aphidicolin.  相似文献   

5.
Erythroid expression of the heme-regulated eIF-2 alpha kinase.   总被引:2,自引:0,他引:2       下载免费PDF全文
The role of heme-regulated eIF-2 alpha kinase (HRI) in the regulation of protein synthesis in rabbit reticulocytes is well documented. Inhibitors of protein synthesis with properties similar to those of HRI have been described in some nonerythroid cell types, but it has not yet been determined whether these eIF-2 alpha kinase activities are mediated by HRI or one or more as yet uncharacterized kinases. We have studied the expression of mRNA, polypeptide, and kinase activities of HRI in various tissues from both nonanemic and anemic rabbits. Our results indicate that HRI is expressed in an erythroid cell-specific manner. HRI is present in the bone marrow and peripheral blood of both nonanemic and anemic rabbits but not in any of the other tissues tested. HRI mRNA is present at low levels in uninduced mouse erythroleukemic (MEL) cells and human K562 cells and accumulates to higher levels upon induction. The accumulation of HRI mRNA in differentiating MEL cells is dependent upon the presence of heme. The addition of 3-amino-1,2,4-triazole (AT), an inhibitor of heme biosynthesis, to the induction medium markedly reduced HRI mRNA accumulation. Simultaneous addition of hemin and AT to the dimethyl sulfoxide induction medium largely prevented the inhibition of HRI mRNA induction by AT. These findings indicate that HRI is expressed in an erythroid cell-specific manner and that the major physiologic role of HRI is in adjusting the synthesis of globins to the availability of heme.  相似文献   

6.
Disulfide bond formation in the regulation of eIF-2 alpha kinase by heme   总被引:8,自引:0,他引:8  
The inhibition of the autophosphorylation of the heme-regulated eukaryotic initiation factor (eIF)-2 alpha kinase (HRI) by hemin is very similar to that produced by thiol oxidation by diamide. The results obtained from the analysis of sodium dodecyl sulfate-polyacrylamide gel electrophoresis of unphosphorylated and phosphorylated HRI under reducing and nonreducing conditions indicate that hemin promotes disulfide formation in HRI. Hemin-promoted disulfide formation in HRI occurs under quasi-physiological conditions, i.e. 30 degrees C, 10 min at hemin concentrations of 5-10 microM. Under nondenaturing conditions, unphosphorylated HRI, phosphorylated HRI, hemin-treated unphosphorylated HRI, and hemin-treated prephosphorylated HRI are all eluted identically on Sephacryl S-300 column chromatography with an apparent molecular mass of 290,000 daltons. It appears, therefore, that the disulfide formation promoted by hemin occurs within the unit of 290,000 daltons. In addition, hemin treatment of phosphorylated HRI results in the appearance of a disulfide-linked form of higher molecular mass when analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis under nonreducing conditions. A similar high molecular mass form is observed when HRI is treated with 1,6-bismaleimidohexane, a double sulfhydryl cross-linker agent, and the autophosphorylation of HRI and the phosphorylation of eIF-2 alpha by HRI are greatly diminished; these effects are similar to the effects of hemin on HRI. We conclude that disulfide formation by hemin provides a likely mechanism by which hemin prevents the activation and inhibits the activity of HRI.  相似文献   

7.
The protein kinase DAI is activated upon viral infection of mammalian cells and inhibits protein synthesis by phosphorylation of the alpha subunit of translation initiation factor 2 (eIF-2 alpha). DAI is activated in vitro by double-stranded RNAs (dsRNAs), and binding of dsRNA is dependent on two copies of a conserved sequence motif located N terminal to the kinase domain in DAI. High-level expression of DAI in Saccharomyces cerevisiae cells is lethal because of hyperphosphorylation of eIF-2 alpha; at lower levels, DAI can functionally replace the protein kinase GCN2 and stimulate translation of GCN4 mRNA. These two phenotypes were used to characterize structural requirements for DAI function in vivo, by examining the effects of amino acid substitutions at matching positions in the two dsRNA-binding motifs and of replacing one copy of the motif with the other. We found that both copies of the dsRNA-binding motif are required for high-level kinase function and that the N-terminal copy is more important than the C-terminal copy for activation of DAI in S. cerevisiae. On the basis of these findings, we conclude that the requirements for dsRNA binding in vitro and for activation of DAI kinase function in vivo closely coincide. Two mutant alleles containing deletions of the first or second binding motif functionally complemented when coexpressed in yeast cells, strongly suggesting that the active form of DAI is a dimer. In accord with this conclusion, overexpression of four catalytically inactive alleles containing different deletions in the protein kinase domain interfered with wild-type DAI produced in the same cells. Interestingly, three inactivating point mutations in the kinase domain were all recessive, suggesting that dominant interference involves the formation of defective heterodimers rather than sequestration of dsRNA activators by mutant enzymes. We suggest that large structural alterations in the kinase domain impair an interaction between the two protomers in a DAI dimer that is necessary for activation by dsRNA or for catalysis of eIF-2 alpha phosphorylation.  相似文献   

8.
We have investigated the interaction of VAI RNA with the interferon-induced, double-stranded (ds) RNA-activated protein kinase, P68, both of which regulate protein synthesis in adenovirus-infected cells. Previous work has shown that during infection by the VAI RNA-negative mutant, dl331, both viral and cellular protein synthesis are inhibited due to phosphorylation of the alpha-subunit of the eukaryotic initiation factor, eIF-2, by the P68 protein kinase. Utilizing monoclonal antibodies specific for P68, we demonstrated that the physical levels of P68 in dl331-infected, wild-type Ad2-infected and uninfected cells were all comparable suggesting that the elevated kinase activity detected during mutant infection was not due to increased P68 synthesis. To examine the basis of the increased activity of P68, the protein kinase was purified from infected-cell extracts using the monoclonal antibody. We found that P68 was heavily autophosphorylated during dl331 infection but not during wild-type or mock infection. The extent of autophosphorylation correlated with elevated P68 activity and the loss of the dsRNA requirements to phosphorylate the exogenous substrates, eIF-1 alpha and histones. We also analyzed VAI RNA function in vitro and present evidence that purified VAI RNA can block the autophosphorylation of P68 in the ribosomal salt wash fraction of interferon-treated cells. Finally we suggest VAI RNA functions through a direct interaction with the P68 protein kinase, since we demonstrated that VAI RNA forms a complex with P68 both in vitro and in vivo.  相似文献   

9.
10.
11.
The interferon induced double-stranded-RNA-dependent eIF-2 alpha kinase has an established role in mediating part of interferons anti-viral effects. Several studies have suggested that it may have additional functions in cells not infected with virus. The mechanism of activation of the kinase and the consequences of its activity in uninfected cells remain to be determined. Our previous results have indicated that the activation (phosphorylation) of this kinase may be an important regulatory signal to the arrest of growth of mouse 3T3-F442A fibroblasts and their subsequent differentiation to adipocytes. We have found that the phosphorylation of the kinase occurred in vivo in the absence of viral infection and in vitro without the addition of dsRNA. We demonstrate here that total cytoplasmic RNA from 3T3-F442A cells contains a regulatory RNA(s) capable of activating dsRNA-dependent eIF-2 alpha kinase. Fractionation of the cytoplasmic RNA by oligo(dT)-cellulose indicated that the regulatory RNA eluted with the poly(A)-rich RNA fraction. It bound tightly to the dsRNA-dependent eIF-2 alpha kinase and was immune-precipitated with its antibodies as a complex of regulatory RNA and dsRNA-dependent eIF-2 alpha kinase. The regulatory RNA activity was further purified by phenol extraction of immune precipitates containing this complex. These findings indicated that the regulatory RNA forms a specific complex with the dsRNA-dependent eIF-2 alpha kinase. The activity of the regulatory RNA was sensitive to the dsRNA-specific RNase VI but not to proteinase K, DNase I or ssRNA-specific RNase T1. The activation of the dsRNA-dependent eIF-2 alpha kinase by regulatory RNA was prevented by addition of a high concentration of poly(I).poly(C). The regulatory RNA was also shown to activate partially purified dsRNA-dependent eIF-2 alpha kinase prepared from rabbit reticulocyte lysates and to inhibit protein synthesis in reticulocyte lysates. Our findings, that cellular RNAs can specifically activate the dsRNA-dependent eIF-2 alpha kinase, are consistent with a physiological role for the dsRNA-dependent eIF-2 alpha kinase and interferon during cell growth and differentiation. The relationship of the regulatory RNA activity to growth and differentiation of 3T3-F442A cells is discussed.  相似文献   

12.
The double-stranded RNA (dsRNA)-dependent protein kinase DAI (also termed dsI and P1) possesses two kinase activities; one is an autophosphorylation activity, and the other phosphorylates initiation factor eIF-2. We purified the enzyme, in a latent form, to near homogeneity from interferon-treated human 293 cells. The purified enzyme consisted of a single polypeptide subunit of approximately 70,000 daltons, retained its dependence on dsRNA for activation, and was sensitive to inhibition by adenovirus VA RNAI. Autophosphorylation required a suitable concentration of dsRNA and was second order with respect to DAI concentration, which suggests an intermolecular mechanism in which one DAI molecule phosphorylates a neighboring molecule. Once autophosphorylated, the enzyme could phosphorylate eIF-2 but seemed unable to phosphorylate other DAI molecules, which implies a change in substrate specificity upon activation. VA RNAI blocked autophosphorylation and activation but permitted the activated enzyme to phosphorylate eIF-2. VA RNAI also blocked the binding of dsRNA to the enzyme. The data are consistent with a model in which activation requires the interaction of two molecules of DAI with dsRNA, followed by intermolecular autophosphorylation of the latent enzyme. VA RNAI would block activation by preventing the interaction between DAI and dsRNA.  相似文献   

13.
A new eukaryotic initiation factor 2 kinase has been purified for the first time from calf brain cytosol. The purification of a nonabundant novel protein kinase activity, designated as PKI, that phosphorylates the alpha subunit of eukaryotic initiation factor 2 is described. The protein kinase activity was assayed using purified initiation factor 2 as a substrate and was purified by ammonium sulphate precipitation, conventional chromatography in heparin-Sepharose and phosphocellulose and by high performance size exclusion and anion exchange chromatographies. The protein kinase activity elutes in the region of 140,000 in the size exclusion chromatography and is associated with two different polypeptides a and b, with relative molecular masses of 38,000 and 20,000 and an approximate ratio of 2.5-3.0:1. The protein kinase does not phosphorylate casein or histones and it is independent of cyclic nucleotides. It can be classified as a serine kinase since the phosphorylation of the alpha subunit of eIF-2 is produced in serine residues. Under these conditions none of the kinase subunits are phosphorylated.  相似文献   

14.
J K Pal  J J Chen  I M London 《Biochemistry》1991,30(9):2555-2562
A highly purified preparation of heme-regulated inhibitor (HRI), an eIF-2 alpha kinase, from rabbit reticulocyte lysates has been used for generating monoclonal antibodies (mAB). Two hybridoma clones secreting HRI-specific antibodies (mAB A and mAB F) were obtained. Both antibodies immunoprecipitated biosynthetically labeled as well as phosphorylated HRI in reticulocyte lysates and also recognized denatured HRI in a Western blot. In in vitro protein kinase assays, preincubation of HRI with the antibodies significantly diminished both autokinase and eIF-2 alpha kinase activities. HRI from reticulocyte lysates could be quantitatively removed by immunoprecipitation with mAB F, and such HRI-depleted lysates were able to maintain protein synthesis under conditions of heme deficiency. With these monoclonal antibodies, HRI was detected only in the reticulocytes and bone marrow of anemic rabbits, among several rabbit tissues tested. The antibodies did not detect cross-reacting HRI in rat or human reticulocytes or in mouse erythroleukemic cells or human K562 cells even after induction of differentiation, although eIF-2 alpha kinase activity was detected in them. Polyclonal anti-rabbit HRI antibody detected HRI in rat reticulocytes. However, no cross-reacting HRI was detected by polyclonal antibody in human reticulocytes or other cell types tested. These findings suggest that HRI is not ubiquitous, and may be erythroid-specific, and that it is antigenically different in different species.  相似文献   

15.
In heme-deficient reticulocyte lysates, protein synthesis initiation is inhibited due to the activation of a heme-regulated protein kinase which blocks protein synthesis by the specific phosphorylation of the alpha-sub-unit of eukaryotic initiation factor 2 (eIF-2 alpha). The restoration of synthesis requires both hemin and glucose-6-P (Ernst, V., Levin, D. H., and London, I. M. (1978) J. Biol. Chem. 253, 7163-7172). The sugar phosphate fulfills two functions in initiation: (i) the generation of NADPH, and (ii) an effector function in some step in initiation. This latter effect is readily demonstrated in lysates depleted of low molecular weight components by filtration in dextran gels. In gel-filtered lysates, linear protein synthesis is sustained only by the addition of both hemin (20 microM) and glucose-6-P (or 2-deoxyglucose-6-P) (50-500 microM). The omission of either component gives rise to inhibitions which are characterized by the activation of heme-regulated eIF-2 alpha kinase and the concomitant phosphorylation of both endogenous heme-regulated eIF-2 alpha kinase and endogenous eIF-2 alpha, indicating that glucose-6-P is involved in the regulation of heme-regulated eIF-2 alpha kinase. In support of this, we find (a) that gel-filtered lysates incubated with hemin but depleted of glucose-6-P produce sufficient heme-regulated eIF-2 alpha kinase to inhibit protein synthesis when mixed with normal hemin-supplemented lysates; (b) the inhibitions of protein synthesis produced by heme-regulated eIF-2 alpha kinase generated either in glucose-6-P-depleted lysates or heme-deficient lysates are reversed by added eIF-2; and (c) the eIF-2 alpha kinase activities formed in the absence of either hemin or glucose-6-P are both neutralized by an anti-heme-regulated eIF-2 alpha kinase antiserum. We conclude that the physiological activation of heme-regulated eIF-2 alpha kinase is controlled by both hemin and glucose-6-P.  相似文献   

16.
Interferon (IFN) is one of the molecules released by virus-infected cells, resulting in the establishment of an antiviral state within infected and neighboring cells. IFN-induced antiviral response may be subject to modulation by the cellular signaling environment of host cells which impact the effectiveness of viral replication. Here, we show that cells with an activated Ras/Raf/MEK signaling cascade allow propagation of viruses in the presence of IFN. Ras-transformed (RasV12) and vector control NIH 3T3 cells were infected with vesicular stomatitis virus (VSV) or an IFN-sensitive vaccinia virus (delE3L) in the presence of alpha interferon. While IFN protected vector control cells from infection by both viruses, RasV12 cells were susceptible to viral infection regardless of the presence of IFN. IFN sensitivity was restored in RasV12 cells upon RNA interference (RNAi) knockdown of Ras. We further investigated which elements downstream of Ras are responsible for counteracting IFN-induced antiviral responses. A Ras effector domain mutant that can only stimulate the Raf kinase family of effectors was able to suppress the IFN response and allow VSV replication. IFN-induced antiviral mechanisms were also restored in RasV12 cells by treatment with a MEK inhibitor (U0126 or PD98059). Moreover, by using RNAi to MEK1 and MEK2, we determined that MEK2, rather than MEK1, is responsible for suppression of the IFN response. In conclusion, our results suggest that activation of the Ras/Raf/MEK pathway downregulates IFN-induced antiviral response.  相似文献   

17.
18.
The inhibition of protein synthesis that occurs upon phosphorylation of the alpha subunit of eukaryotic initiation factor 2 (eIF-2 alpha) at serine 51 correlates with reduced guanine nucleotide exchange activity of eIF-2B in vivo and inhibition of eIF-2B activity in vitro, although it is not known if phosphorylation is the cause of the reduced eIF-2B activity in vivo. To characterize the importance of eIF-2 alpha phosphorylation in the regulation of eIF-2B activity, we studied the overexpression of mutant eIF-2 alpha subunits in which serine 48 or 51 was replaced by an alanine (48A or 51A mutant). Previous studies demonstrated that the 51A mutant was resistant to phosphorylation, whereas the 48A mutant was a substrate for phosphorylation. Additionally, expression of either mutant partially protected Chinese hamster ovary (CHO) cells from the inhibition of protein synthesis in response to heat shock treatment (P. Murtha-Riel, M. V. Davies, J. B. Scherer, S. Y. Choi, J. W. B. Hershey, and R. J. Kaufman, J. Biol. Chem. 268:12946-12951, 1993). In this study, we show that eIF-2B activity was inhibited in parental CHO cell extracts upon addition of purified reticulocyte heme-regulated inhibitor (HRI), an eIF-2 alpha kinase that phosphorylates Ser-51. Preincubation with purified HRI also reduced the eIF-2B activity in extracts from cells overexpressing wild-type eIF-2 alpha. In contrast, the eIF-2B activity was not readily inhibited in extracts from cells overexpressing either the eIF-2 alpha 48A or 51A mutant. In addition, eIF-2B activity was decreased in extracts prepared from heat-shocked cells overexpressing wild-type eIF-2 alpha, whereas the decrease in eIF-2B activity was less in heat-shocked cells overexpressing either mutant 48A or mutant 51A. While the phosphorylation at serine 51 in eIF-2 alpha impairs the eIF-2B activity, we propose that serine 48 acts to maintain a high affinity between phosphorylated eIF-2 alpha and eIF-2B, thereby inactivating eIF-2B activity. These findings support the hypothesis that phosphorylation of eIF-2 alpha inhibits protein synthesis directly through reducing eIF-2B activity and emphasize the importance of both serine 48 and serine 51 in the interaction with eIF-2B and regulation of eIF-2B activity.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号