首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Many actin-binding proteins have been observed to have a modular architecture. One of the most abundant modules is the calponin-homology (CH) domain, found as tandem repeats in proteins that cross-link actin filaments (such as fimbrin, spectrin and alpha-actinin) or link the actin cytoskeleton to intermediate filaments (such as plectin). In proteins such as the eponymous calponin, IQGAP1, and Scp1, a single CH-domain exists, but there has been some controversy over whether this domain binds to actin filaments. A previous three-dimensional reconstruction of the calponin-F-actin complex has led to the conclusion that the visualized portion of calponin bound to actin belongs to its amino-terminal homology (CH) domain. We show, using a calponin fragment lacking the CH-domain, that this domain is not bound to F-actin, and cannot be positioning calponin on F-actin as hypothesized. Further, using classification methods, we show a multiplicity in cooperative modes of binding of calponin to F-actin, similar to what has been observed for other actin-binding proteins such as tropomyosin and cofilin. Our results suggest that the form and function of the structurally conserved CH-domain found in many other actin-binding proteins have diverged. This has broad implications for inferring function from the presence of structurally conserved domains.  相似文献   

2.
Tandem calponin homology (CH) domains are well-known actin filaments (F-actin) binding motifs. There has been a continuous debate about the details of CH domain-actin interaction, mainly because atomic level structures of F-actin are not available. A recent electron microscopy study has considerably advanced our structural understanding of CH domain:F-actin complex. On the contrary, it has recently also been shown that CH domains can bind other macromolecular systems: two CH domains from separate polypeptides Ncd80, Nuf2 can form a microtubule-binding site, as well as tandem CH domains in the EB1 dimer, while the single C-terminal CH domain of alpha-parvin has been observed to bind to a alpha-helical leucin-aspartate rich motif from paxillin.  相似文献   

3.
Calponins are a small family of proteins that alter the interaction between actin and myosin II and mediate signal transduction. These proteins bind F-actin in a complex manner that depends on a variety of parameters such as stoichiometry and ionic strength. Calponin binds G-actin and F-actin, bundling the latter primarily through two distinct and adjacent binding sites (ABS1 and ABS2). Calponin binds other proteins that bind F-actin and considerable disagreements exist as to how calponin is located on the filament, especially in the presence of other proteins. A study (Galkin, V.E., Orlova, A., Fattoum, A., Walsh, M.P. and Egelman, E.H. (2006) J. Mol. Biol. 359, 478–485.), using EM single-particle reconstruction has shown that there may be four modes of interaction, but how these occur is not yet known. We report that two distinct regions of calponin are capable of binding some of the same sites on actin (such as 18–28 and 360–372 in subdomain 1). This accounts for the finding that calponin binds the filament with different apparent geometries. We suggest that the four modes of filament binding account for differences in stoichiometry and that these, in turn, arise from differential binding of the two calponin regions to actin. It is likely that the modes of binding are reciprocally influenced by other actin-binding proteins since members of the α-actinin group also adopt different actin-binding positions and bind actin principally through a domain that is similar to calponin's ABS1.  相似文献   

4.
The fluorescence parameters of the environment-sensitive acrylodan, selectively attached to Cys273 in the C-terminal domain of smooth muscle calponin, were studied in the presence of F-actin and using varying salt concentrations. The formation of the F-actin acrylodan labeled calponin complex at 75 mm NaCl resulted in a 21-nm blue shift of the maximum emission wavelength from 496 nm to 474 nm and a twofold increase of the fluorescent quantum yield at 460 nm. These spectral changes were observed at the low ionic strengths (< 110 mm) where the calponin : F-actin stoichiometry is 1 : 1 as well as at the high ionic strengths (> 110 mm) where the binding stoichiometry is a 1 : 2 ratio of calponin : actin monomers. On the basis of previous three-dimensional reconstruction and chemical crosslinking of the F-actin-calponin complex, the actin effect is shown to derive from the low ionic strength interaction of calponin with the bottom of subdomain-1 of an upper actin monomer in F-actin and not from its further association with the subdomain-1 of the adjacent lower monomer which occurs at the high ionic strength. Remarkably, the F-actin-dependent fluorescence change of acrylodan is qualitatively but not quantitatively similar to that earlier reported for the complexes of calponin and Ca2+-calmodulin or Ca2+-caltropin. As the three calponin ligands bind to the same segment of the protein, encompassing residues 145-182, the acrylodan can be considered as a sensitive probe of the functioning of this critical region. A distance of 29 A was measured by fluorescence resonance energy transfer between Cys273 of calponin and Cys374 of actin in the 1 : 1 F-actin-calponin complex suggesting that the F-actin effect was allosteric reflecting a global conformational change in the C-terminal domain of calponin.  相似文献   

5.
Expression and purification of the h1 and h2 isoforms of calponin   总被引:2,自引:0,他引:2  
Three homologous calponin isoforms, named h1, h2, and acidic calponins, have been found in birds and mammals. Based primarily on studies of chicken gizzard smooth muscle (h1) calponin, calponin has been identified as a family of actin-associated proteins that inhibit actomyosin ATPase activity. Evolutionary divergence of the calponin isoforms suggests differentiated function. While the role of h1 calponin in smooth muscle contraction is under investigation, h2 calponin has been shown regulating the function of actin cytoskeleton. Using cloned cDNA, we expressed mammalian h1 and h2 calponins in Escherichia coli. We have developed effective methods to purify biologically active h1 and h2 calponin proteins from transformed bacterial culture. The purified calponin isoform proteins were used to generate monoclonal antibodies that reveal epitopic structure difference between h1 and h2 calponins. Together with their differential expression in tissues and during development, the structural diversity of h1 and h2 calponins suggests non-redundant physiological function. Nevertheless, h1 and h2 calponins bind F-actin with similar affinity, indicating a conserved mechanism for their role in regulating actin filaments in smooth muscle and non-muscle cells.  相似文献   

6.
Filamin A (FLNa) cross-links actin filaments (F-actin) into three-dimensional gels in cells, attaches F-actin to membrane proteins, and is a scaffold that collects numerous and diverse proteins. We report that Ca(2+)-calmodulin binds the actin-binding domain (ABD) of FLNa and dissociates FLNa from F-actin, thereby dissolving FLNa.F-actin gels. The FLNa ABD has two calponin homology domains (CH1 and CH2) separated by a linker. Recombinant CH1 but neither FLNa nor its ABD binds Ca(2+)-calmodulin in the absence of F-actin. Extending recombinant CH1 to include the negatively charged region linker domain makes it, like full-length FLNa, unable to bind Ca(2+)-calmodulin. Ca(2+)-calmodulin does, however, dissociate the FLNa ABD from F-actin provided that the CH2 domain is present. These findings identify the first evidence for direct regulation of FLNa, implicating a mechanism whereby Ca(2+)-calmodulin selectively targets the FLNa.F-actin complex.  相似文献   

7.
Calponins and transgelins are members of a conserved family of actin-associated proteins widely expressed from yeast to humans. Although a role for calponin in muscle cells has been described, the biochemical activities and in vivo functions of nonmuscle calponins and transgelins are largely unknown. Herein, we have used genetic and biochemical analyses to characterize the budding yeast member of this family, Scp1, which most closely resembles transgelin and contains one calponin homology (CH) domain. We show that Scp1 is a novel component of yeast cortical actin patches and shares in vivo functions and biochemical activities with Sac6/fimbrin, the one other actin patch component that contains CH domains. Purified Scp1 binds directly to filamentous actin, cross-links actin filaments, and stabilizes filaments against disassembly. Sequences in Scp1 sufficient for actin binding and cross-linking reside in its carboxy terminus, outside the CH domain. Overexpression of SCP1 suppresses sac6Delta defects, and deletion of SCP1 enhances sac6Delta defects. Together, these data show that Scp1 and Sac6/fimbrin cooperate to stabilize and organize the yeast actin cytoskeleton.  相似文献   

8.
The Arg (Abl-related gene) protein belongs to the Abl family of non-receptor tyrosine kinases that regulate cell motility and morphogenesis. It contains two actin-binding domains, one containing the talin-like I/LWEQ motif, and a C-terminal calponin homology (CH) domain. We used electron microscopy and single particle image analysis to reconstruct complexes of F-actin with full-length Arg, and fragments lacking either the I/LWEQ or CH domains. The Arg CH domain binds to actin's subdomain-1 (SD1) and induces a tilt of actin protomers. The I/LWEQ domain binds to either SD1 or SD4, closing the nucleotide binding cleft of actin. Although Arg can use either its CH or ILWEQ domains to bind an actin filament, both domains within Arg cannot bind simultaneously to adjacent protomers in the filament, consistent with its F-actin-bundling activity. The conformational changes in the filament introduced by Arg can explain the cooperative binding of Arg to F-actin and might prevent other actin binding proteins from binding to actin filaments.  相似文献   

9.
Utrophin, like its homologue dystrophin, forms a link between the actin cytoskeleton and the extracellular matrix. We have used a new method of image analysis to reconstruct actin filaments decorated with the actin-binding domain of utrophin, which contains two calponin homology domains. We find two different modes of binding, with either one or two calponin-homology (CH) domains bound per actin subunit, and these modes are also distinguishable by their very different effects on F-actin rigidity. Both modes involve an extended conformation of the CH domains, as predicted by a previous crystal structure. The separation of these two modes has been largely dependent upon the use of our new approach to reconstruction of helical filaments. When existing information about tropomyosin, myosin, actin-depolymerizing factor, and nebulin is considered, these results suggest that many actin-binding proteins may have multiple binding sites on F-actin. The cell may use the modular CH domains found in the spectrin superfamily of actin-binding proteins to bind actin in manifold ways, allowing for complexity to arise from the interactions of a relatively few simple modules with actin.  相似文献   

10.
Panasenko OO  Gusev NB 《IUBMB life》2000,49(4):277-282
Interaction of calponin and alpha-actinin with actin was analyzed by means of cosedimentation and electron microscopy. G-actin was polymerized in the presence of calponin, alpha-actinin, or both of these actin-binding proteins (ABPs). The single and bundled actin filaments were separated, and the stoichiometry of ABPs and actin in both types of filaments was determined. Binding of calponin to the single or bundled actin filaments was not dependent on the presence of alpha-actinin and did not displace alpha-actinin from actin. In the presence of calponin, however, less alpha-actinin was bound to the bundled actin filaments, and the binding of alpha-actinin was accompanied by a partial decrease in the calponin/actin stoichiometry in the bundles of actin filaments. Calponin had no influence on the binding of alpha-actinin to the single actin filaments. The structure of actin bundles formed in the presence of the two ABPs differed from that formed in the presence of either one singly. We conclude that calponin and alpha-actinin can coexist on actin and that nearly each actin monomer can bind one of these ABPs.  相似文献   

11.
Mapping the microtubule binding regions of calponin   总被引:3,自引:0,他引:3  
The smooth muscle basic calponin interacts with F-actin and inhibits the actomyosin ATPase in a calmodulin or phosphorylation modulated manner. It also binds in vitro to microtubules and its acidic isoform, present in nonmuscle cells, and co-localizes with microfilaments and microtubules in cultured neurons. To assess the physiological significance and the molecular basis of the calponin-microtubule interaction, we have first studied the solution binding of recombinant acidic calponin to microtubules using quantitative cosedimentation analyses. We have also characterized, for the first time, the ability of both calponin isoforms to induce the inhibition of the microtubule-stimulated ATPase activity of the cytoskeletal, kinesin-related nonclaret dysjunctional motor protein (ncd) and the abolition of this effect by calcium calmodulin. This property makes calponin a potent inhibitor of all filament-activated motor ATPases and, therefore, a potential regulatory factor of many motor-based biological events. By combining the enzymatic measurements of the ncd-microtubules system with various in vitro binding assays employing proteolytic, recombinant and synthetic fragments of basic calponin, we further unambiguously identified the interaction of microtubules at two distinct calponin sites. One is inhibitory and resides in the segment 145-182, which also binds F-actin and calmodulin. The other one is noninhibitory, specific for microtubules, and is located on the COOH-terminal repeat-containing region 183-292. Finally, quantitative fluorescence studies of the binding of basic calponin to the skeletal pyrenyl F-actin in the presence of microtubules did not reveal a noticeable competition between the two sets of filaments for calponin. This result implies that calponin undergoes a concomitant binding to both F-actin and microtubules by interaction at the former site with actin and at the second site with microtubules. Thus, in the living cells, calponin could potentially behave as a cross-linking protein between the two major cytoskeletal filaments.  相似文献   

12.
Gelsolin and calponin are well-characterized cytoskeletal proteins that are abundant and widely expressed in vertebrate tissues. It is also becoming apparent, however, that they are involved in cell signalling. In the present study, we show that gelsolin and calponin interact directly to form a high-affinity (K(d)=16 nM) 1:1 complex, by the use of fluorescent probes attached to both proteins, by affinity chromatography and by immunoprecipitation. These methods show that gelsolin can form high-affinity complexes with two calponin isoforms (basic h1 and acidic h3). They also show that gelsolin binds calponin through regions that have been identified previously as being calponin's actin-binding sites. Moreover, gelsolin does not interact with calponin while calponin is bound to F-actin. Reciprocal experiments to find calponin-binding sites on gelsolin show that these are in both the N- and C-terminal halves of gelsolin. Calponin has minimal effects on actin severing by gelsolin. In contrast, calponin markedly affects the nucleation activity of gelsolin. The maximum inhibition of nucleation by gelsolin was 50%, which was achieved with a ratio of two calponins for every gelsolin. Thus the interaction of calponin with gelsolin may play a regulatory role in the formation of actin filaments through modulation of gelsolin's actin-binding function and through the prevention of calponin's actin-binding activities.  相似文献   

13.
Gelsolin and calponin are well characterized actin-binding proteins that form a tight gelsolin:calponin complex (GCC). We show here that the GCC is formed through two distinct interfaces. One of these is formed between 144-182 of calponin and 25-150 of gelsolin (G1). The second is a calcium-sensitive site centred on calponin's CH domain, and the C-terminal half of gelsolin (G4-6). The behaviour of this second interface is dependent on the presence of calcium and so it is possible that potential GCC-binding partners may be selected by calcium availability. Actin is one such GCC-binding partner and we show that a larger complex is formed with monomeric actin in calcium. The stoichiometry of this complex is determined to be 1 gelsolin/1 calponin/2 G-actins (GCA(2)). Both actin monomers bind the GCC through gelsolin. Both calponin and gelsolin are reported to play signaling roles in addition to their better-characterized actin-binding properties and it is possible that the GCC regulates both of these functions.  相似文献   

14.
Kinetics of the smooth muscle calponin-F-actin interaction was studied by stopped-flow measurements of light scattering and fluorescence intensity of pyrene-labelled F-actin. The intensity and character of the changes in light scattering, and thus the mode of calponin binding to actin filaments leading to changes in their shape and bundling, depend on the molar ratio of the two proteins. Parallel measurements of pyrene-fluorescence quenching upon calponin binding revealed that intrinsic conformational changes in actin filaments are delayed relative to the binding process and are not markedly influenced by the mode of calponin binding. Bundling of actin filaments by calponin was not correlated with fluorescence changes and thus with alterations in the structure of actin filaments.  相似文献   

15.
The purpose of this study was to address the paradox of calponin localization with alpha-actinin and filamin, two proteins with tandem calponin homology (CH) domains, by determining the effect of these proteins on the binding of calponin to actin. The results show that actin can accommodate near-saturating concentrations of either calponin and alpha-actinin or calponin and filamin with little change or no change in ligand affinity. Little direct interaction occurred between alpha-actinin and calponin in the absence of actin, so this effect is not likely to explain the co-distribution of these proteins. Calponin, like alpha-actinin, induced elastic gel formation when added to actin. When alpha-actinin was added to newly formed calponin/actin gels, no change was seen in the mechanical properties of the gel compared to calponin and actin alone. However, when calponin was added to newly formed alpha-actinin/actin gels, the resulting gel was much stronger than the gels formed by either ligand alone. Furthermore, gels formed by the addition of calponin to alpha-actinin/actin exhibited a phenomenon known as strain hardening, a characteristic of mechanically resilient gels. These results add weight to the concept that one of the functions of calponin is to stabilize the actin cytoskeleton.  相似文献   

16.
Small Rho family GTPases are involved in regulation of actin cytoskeleton dynamics. These molecular switches are themselves mainly controlled by specific GTPase-activating proteins (GAPs) and guanine-nucleotide exchange factors (GEFs). We have cloned and initially characterized a novel putative RhoGEF from Dictyostelium discoideum. The predicted 135-kDa protein displays a unique domain organization in its N-terminus by harboring two type3 calponin homology (CH) domains followed by a single type1 CH domain. The C-terminal region encompasses a diffuse B-cell lymphoma homology/pleckstrin homology tandem domain that is typically found in RhoGEFs. We therefore refer to this protein as Trix (triple CH-domain array exchange factor). A recombinant N-terminal region of Trix carrying all three CH domains binds to F-actin and bundles actin filaments. Trix-null mutants are viable and display only subtle defects when compared to wild-type cells with the exception of a substantial decrease in exocytosis of a fluid-phase marker. GFP fusions with the full-length protein or the N-terminal part containing all three CH domains revealed that Trix localizes to the cortical region and strongly accumulates on late endosomes. Our results suggest that Trix is specifically involved in a Rho GTPase-signaling pathway that is required for regulation of the actin cytoskeleton during exocytosis.  相似文献   

17.
Calponin inhibits the actin-activated ATPase of smooth muscle myosin and thus has been proposed as a thin filament-based regulatory component in smooth muscle. To obtain information on the mechanism of inhibition by calponin we have used chemical modification of actin and cross-linking of actin and subfragment 1. Modification of Lys 61 of actin had no effect on the inhibition by calponin of acto-heavy meromyosin ATPase, i.e. different from tropomyosin-troponin. In addition, modification of the acidic N-terminal region of actin did not impair the ability of calponin to bind to F-actin. Finally, calponin was effective in inhibiting ATPase activity of cross-linked acto-subfragment 1. Therefore the mechanism of inhibition by calponin is distinct from troponin-tropomyosin and caldesmon in that it does not involve either the N-terminal acidic region of actin nor the area around Lys 61 and does not fit a simple steric blocking model.  相似文献   

18.
Fimbrin belongs to a superfamily of actin cross-linking proteins that share a conserved 27-kD actin-binding domain. This domain contains a tandem duplication of a sequence that is homologous to calponin. Calponin homology (CH) domains not only cross-link actin filaments into bundles and networks, but they also bind intermediate filaments and some signal transduction proteins to the actin cytoskeleton. This fundamental role of CH domains as a widely used actin-binding domain underlines the necessity to understand their structural interaction with actin. Using electron cryomicroscopy, we have determined the three-dimensional structure of F-actin and F-actin decorated with the NH2-terminal CH domains of fimbrin (N375). In a difference map between actin filaments and N375-decorated actin, one end of N375 is bound to a concave surface formed between actin subdomains 1 and 2 on two neighboring actin monomers. In addition, a fit of the atomic model for the actin filament to the maps reveals the actin residues that line, the binding surface. The binding of N375 changes actin, which we interpret as a movement of subdomain 1 away from the bound N375. This change in actin structure may affect its affinity for other actin-binding proteins and may be part of the regulation of the cytoskeleton itself. Difference maps between actin and actin decorated with other proteins provides a way to look for novel structural changes in actin.  相似文献   

19.
Small Rho family GTPases are involved in regulation of actin cytoskeleton dynamics. These molecular switches are themselves mainly controlled by specific GTPase-activating proteins (GAPs) and guanine-nucleotide exchange factors (GEFs). We have cloned and initially characterized a novel putative RhoGEF from Dictyostelium discoideum. The predicted 135-kDa protein displays a unique domain organization in its N-terminus by harboring two type3 calponin homology (CH) domains followed by a single type1 CH domain. The C-terminal region encompasses a diffuse B-cell lymphoma homology/pleckstrin homology tandem domain that is typically found in RhoGEFs. We therefore refer to this protein as Trix (triple CH-domain array exchange factor). A recombinant N-terminal region of Trix carrying all three CH domains binds to F-actin and bundles actin filaments. Trix-null mutants are viable and display only subtle defects when compared to wild-type cells with the exception of a substantial decrease in exocytosis of a fluid-phase marker. GFP fusions with the full-length protein or the N-terminal part containing all three CH domains revealed that Trix localizes to the cortical region and strongly accumulates on late endosomes. Our results suggest that Trix is specifically involved in a Rho GTPase-signaling pathway that is required for regulation of the actin cytoskeleton during exocytosis.  相似文献   

20.
Genomic analysis predicted that the rice (Oryza sativa var. japonica) genome encodes at least 41 kinesin-like proteins including the novel kinesin O12, which is classified as a kinesin-14 family member. O12 has a calponin homology (CH) domain that is known as an actin-binding domain. In this study, we expressed the functional domains of O12 in Escherichia coli and determined its enzymatic characteristics compared with other kinesins. The microtubule-dependent ATPase activity of recombinant O12 containing the motor and CH domains was significantly reduced in the presence of actin. Interestingly, microtubule-dependent ATPase activity of the motor domain was also affected by actin in the absence of the CH domain. Our findings suggest that the motor activity of the rice plant-specific kinesin O12 may be regulated by actin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号