首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The metabolism of glucose in the intact Day-6 and -7 post coitum (p.c.) rabbit blastocyst and in the separated trophectoderm and inner cell mass (ICM) of the Day-7 p.c. embryo was investigated. At Day-6 p.c., glucose traversed the trophectoderm with a half-time of 39 +/- 9.3 min, and was metabolized to CO2 at a rate of 25.5 +/- 1.6 nmol.cm-2.h-1. Neither the Na+ ionophore, amphotericin B, nor cyclic AMP had an effect on glucose metabolism to CO2. Lactate production by the Day-6 blastocyst was largely independent of glucose. At Day-7 p.c. in the intact embryo, CO2 production from glucose significantly decreased to 7.76 +/- 2.8 nmol.cm-2.h-1. Per unit surface area, the metabolism of glucose to CO2 was similar in the separated Day-7 p.c. trophectoderm and ICM. We conclude that the rabbit blastocyst is not highly dependent on glucose, and that the ICM does not utilize glucose as a metabolite to a greater extent than does the trophectoderm, at least in the Day-7 p.c. embryo.  相似文献   

2.
Rats were intravenously injected with 10μCi of [U-14C]deoxyglucose (DG) or [U-14C]fluorodeoxyglucose (FDG) and sacrificed by microwave irradiation 4, 45 and 240 min later. Fluorodeoxyglucose phosphate (FDGP) accumulated at a significantly greater rate than did deoxyglucose phosphate (DGP) in brain. Loss of the phosphorylated compounds from brain between 45 and 240 min after administration was similar. The per cent of radioactivity in non-phosphorylated compounds was lower with FDG as tracer at all times after injection. The probable basis for the difference in rate of phosphorylation of the two compounds is a difference in the kinetic properties of rat brain hexokinase with FDG and DG as substrates.The principal use of these isotopes is for studies of regional glucose utilization in brain. In the rat, our data indicate that FDG has two advantages over DG for such studies. Since FDGP accumulates in brain at about 150% the rate of DGP, the amounts (and costs) of isotope can be reduced by up to one third with FDG as tracer. The more rapid decrease in background of non-phosphorylated FDG potentially allows the study of shorter periods of time in autoradiographic work. These considerations apply to both qualitative and quantitative studies of glucose utilization by rat brain. For quantitative work, however, the constants necessary to convert rates of FDG phosphorylation to rates of glucose phosphorylation by rat brain have yet to be determined.  相似文献   

3.
Energy metabolism of cultured TM4 cells and the action of gossypol   总被引:1,自引:0,他引:1  
The energy metabolism of cultured TM4 cells, a cell line originally derived from mouse testicular cells, has been studied in relation to the action of gossypol. In the absence of externally added substrates, TM4 cells consumed oxygen at 37 +/- 5 nmoles O2 X mg protein-1 X h-1. Pyruvate stimulated oxygen consumption in a dose-dependent fashion up to 23%. Addition of glucose to the cells suspended in substrate-free medium inhibited oxygen consumption. At 5.5 mM glucose, the inhibition of oxygen consumption was 45 +/- 9%. The rate of aerobic lactate production from endogenous substrates was less than 7 nmoles lactate X mg protein-1 X h-1, even in the presence of optimal concentrations of the mitochondrial uncoupler carbonylcyanide m-chlorophenylhydrazone. The rate of aerobic lactate production was 920 +/- 197 nmoles X mg protein-1 X h-1 at external glucose concentrations of 2 mM or greater. The formation of aerobic glycolytic adenosine triphosphate (ATP) in 5 mM glucose comprised about 80% of the total ATP production. Gossypol stimulated both aerobic lactate production and oxygen consumption of the transformed testicular cells in a dose-dependent manner. The effect of gossypol on glucose transport, aerobic lactate production, and oxygen consumption is consistent with the hypothesis that gossypol modifies energy metabolism in these cells mainly by partially uncoupling mitochondrial oxidative phosphorylation. The possible impairment of cell and tissue function under gossypol treatment would depend on the metabolic properties of each specific differentiated cell.  相似文献   

4.
The effects of various concentrations of deoxyglucose (DG) on the aerobic metabolism of glucose in glucose-grown repressed Saccharomyces cerevisiae cells were studied at 30 degrees C in a standard pyrophosphate medium containing 4.5 10(7) cells/ml. 31P-nuclear magnetic resonance (NMR) spectroscopy was used to monitor DG phosphorylation and the formation of polyphosphates. The production of soluble metabolites of glucose was evaluated by 13C- and 1H-NMR and biochemical techniques. The cells were aerobically incubated with 25 mM of glucose and various concentrations of DG (0, 5 and 10 mM) in order to determine the DG concentration leading to optimum of 2-deoxy-D-glucose 6-phosphate (DG6P) formation without over-inhibiting the synthesis of other metabolites. The production of DG6P increased by about 25% when the external DG concentration was doubled (from 5 to 10 mM). The formation of polyphosphates (polyP), on the other hand, was found to be mainly conditioned by the DG concentration. The amount of polyP decreased by a factor of four upon addition of 5 mM DG and became undetectable in the presence of 10 mM DG. The glucose consumption and the production of soluble metabolites of [1-13C]glucose were then evaluated as a function of time in both the absence and presence of 5 mM DG. The effect of DG is to decrease the glucose consumption and the formation of polyphosphates, ethanol, glycerol, trehalose, glutamate, aspartate and succinate while stimulating the formation of arginine and citrate. Upon co-addition of 25 mM glucose and 5 mM DG, the ratio between the initial rates of glucose consumption (0.16 mM/min) and DG6P production (0.027 mM/min) is about (5.9 +/- 1.2), not very different from the ratio of the initial concentration of glucose and DG (= 5.0). Therefore, hexokinase can phosphorylate deoxyglucose as well as glucose. However, after 100 min of incubation, the glucose concentration in the external medium decreased by about 64% while only 10% of DG was phosphorylated. DG6P was formed and quickly reached the limiting value about 30 min after co-addition of glucose and DG. Nevertheless, when the maximum quantity of DG6P was obtained, the DG consumption became negligible. By contrast, the glucose consumption and the production of ethanol and glycerol, although substantially reduced by about 42%, varied linearly with time up to 80 min of incubation. Thus even in the presence of an excess of DG, glycolysis is only slowed but not gradually or completely inhibited by DG.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
Effects of insulin upon glucose metabolism were investigated in chick embryos explanted in vitro during the first 30 h of incubation. Insulin stimulated the glucose consumption of the chick gastrula (18 h) and neurula (24 h), but had no effect on the late blastula (0 h:laying) and on the stage of six to eight somites (30 h). The increase in glucose consumption concerned both the embryonic area pellucida (AP) and extraembryonic area opaca (AO). AP responded to a greater extent (50%) and at a lower range of concentrations (0.1-1.0 ng/ml) than AO (30%; 1-100 ng/ml). Insulin had no effect on the oxygen consumption of blastoderms, whereas it stimulated the aerobic lactate production (approximately 70% of the additional glucose consumption was converted to lactate). The nanomolar range of stimulating concentrations suggests that insulin has a specific effect in the chick embryo, and that it could modulate glucose metabolism in ovo as well. The transient sensitivity of the embryo to insulin is discussed in relation to behavior of mesodermal cells.  相似文献   

6.
The phosphorylation and localization of Drosophila melanogaster Replication Protein A (DRP-A) was examined during oogenesis and in single embryos during the syncytial nuclear divisions of embryogenesis. DRP-A from ovaries was separated by two-dimensional electrophoresis into multiple phosphorylated species that include a previously unresolved form of RP-A. These forms are developmentally regulated with a major phosphorylated form appearing at stage 11 of oogenesis and persisting into mature eggs. Actively cycling early embryos were examined to investigate DNA replication in the absence of repair synthesis due to perturbation by drugs or mutation. An oscillation of the two major forms of DRP-A was observed over multiple cell cycles. The phosphorylated form was most abundant at mitosis and the nonphosphorylated form at interphase. In contrast to other systems where a phosphorylated form of RPA has been correlated with S phase, only the nonphosphorylated form of Drosophila RP-A is observed in early Drosophila embryos during DNA replication. Consistent with this role in DNA metabolism, DRP-A was localized to the nucleus. Subsequently at mitosis, DRP-A becomes delocalized. Strikingly, in ovaries a relatively large amount of DRP-A was observed during the early mitotic stages of oogenesis.  相似文献   

7.
The effects of various concentrations of deoxyglucose (DG) on the aerobic metabolism of glucose in glucose-grown repressed Saccharomyces cerevisiae cells were studied at 30°C in a standard pyrophosphate medium containing 4.5 107 cells/ml. 31P-nuclear magnetic resonance (NMR) spectroscopy was used to monitor DG phosphorylation and the formation of polyphosphates. The production of soluble metabolites of glucose was evaluated by 13C- and 1H-NMR and biochemical techniques. The cells were aerobically incubated with 25 mM of glucose and various concentrations of DG (0, 5 and 10 mM) in order to determine the DG concentration leading to optimum of 2-deoxy-d-glucose 6-phosphate (DG6P) formation without over-inhibiting the synthesis of other metabolites. The production of DG6P increased by about 25% when the external DG concentration was doubled (from 5 to 10 mM). The formation of polyphosphates (polyP), on the other hand, was found to be mainly conditioned by the DG concentration. The amount of polyP decreased by a factor of four upon addition of 5 mM DG and became undetectable in the presence of 10 mM DG. The glucose consumption and the production of soluble metabolites of [1-13C]glucose were then evaluated as a function of time in both the absence and presence of 5 mM DG. The effect of DG is to decrease the glucose consumption and the formation of polyphosphates, ethanol, glycerol, trehalose, glutamate, aspartate and succinate while stimulating the formation of arginine and citrate. Upon co-addition of 25 mM glucose and 5 mM DG, the ratio between the initial rates of glucose consumption (0.16 mM/min) and DG6P production (0.027 mM/min) is about (5.9 ± 1.2), not very different from the ratio of the initial concentration of glucose and DG (= 5.0). Therefore, hexokinase can phosphorylate deoxyglucose as well as glucose. However, after 100 min of incubation, the glucose concentration in the external medium decreased by about 64% while only 10% of DG was phosphorylated. DG6P was formed and quickly reached the limiting value about 30 min after co-addition of glucose and DG. Nevertheless, when the maximum quantity of DG6P was obtained, the DG consumption became negligible. By contrast, the glucose consumption and the production of ethanol and glycerol, although substantially reduced by about 42%, varied linearly with time up to 80 min of incubation. Thus even in the presence of an excess of DG, glycolysis is only slowed but not gradually or completely inhibited by DG. The reasons why DG6P cannot accumulate indefinitely in cells are discussed, together with the reasons why the consumption of DG, but not glucose, becomes negligible after 30 min of incubation. In the absence of DG, the amount of polyphosphates (polyP) increased regularly with time as long as glucose was sufficiently present (≥ 5 mM) in the suspension. When glucose was exhausted, long chain polyphosphates disappeared to give rise, at first, to polyP with shorter chains and finally to inorganic phosphate. In the presence of 5 mM DG, the reduction in quantity of polyP can be explained by the fact that ATP, normally used for the polyP synthesis, is now diverted to phosphorylation of DG to DG6P. The presence of 5 mM DG also had significant effects on the glutamate C2, C3 and C4 signal intensity and the production of all aminoacids. The results seem to indicate that the enzymes involved in the Krebs cycle are also affected by the presence of DG.  相似文献   

8.
Brain Slice Glucose Utilization   总被引:3,自引:3,他引:0  
The metabolism of 2-deoxyglucose has been studied in 540 micron and 1,000 micron hypothalamic brain slices. Slice 2-deoxyglucose (2DG) and 2-deoxyglucose-6-phosphate (2DG6P) levels were measured after tissue homogenization and perchloric acid extraction. By analyzing the uptake and washout kinetics with nonlinear least-squares methods, we have determined the rate constants for three-, four-, or five-parameter kinetic models and obtained a value for the in vitro lumped constant (LC). The kinetic analysis reveals a small, slowly decaying, 2DG component that is not predicted by any of the models. If this component is treated as a separate, parallel compartment, then the four- and five-parameter models are essentially equivalent. To compare our data to prior in vivo data, we combined 2DG and 2DG6P to produce Ci*, the total slice radioactivity, and analyzed the first 45 min of uptake. These data were fit best by a three-parameter model and the slowly decaying pool was not identified. Calculation of glucose utilization from total tissue radioactivity, measured by whole slice homogenization and by image analysis of autoradiograms, showed excellent correlation between the two methods. Image analysis of radioactivity in the suprachiasmatic nucleus, which is present in these slices, revealed a spontaneous diurnal variation in in vitro glucose utilization in close quantitative agreement with prior in vivo measurements. The kinetic analysis of the 1,000 micron slice was qualitatively similar to that of the 540 micron slice but revealed an increase in the LC and a large decrease in k1 as well as the expected large increase in the hexokinase rate constant, k3. Overall, in vitro glucose utilization increased by about 60%. These results are consistent with our prior studies of the 1,000 micron slice and support our interpretation that the 1,000 micron slice is an excellent in vitro model for brain ischemia without infarction.  相似文献   

9.
We studied the uptake of 2-deoxy-D-glucose (2DG) and the synthesis of its phosphorylated product 2DG-6-phosphate (2DG-6P) by the retinas of the clawed frog (Xenopus laevis) and the bullfrog (Rana catesbeiana). Autoradiographs showed that most of the retinal 2DG uptake is by the photoreceptor layer. The 2DG accumulation by isolated Xenopus retinas was time and concentration dependent. The Kt for transport was 5.05 mM; Vmax was 6.99 X 10(-10) mol . mg-1 tissue wet weight min-1. The Km for 2DG-6P formation was estimated to be 2-3 mM and Vmax to be approximately 4 x 10(-9) mol . mg-1 min-1. 2DG uptake was inhibited competitively by glucose with a Ki of 2.29 mM. Exposure to light reduced 2DG uptake by no more than 10% as compared with dark uptake. Low sodium or ouabain (10(-4)-10(-7) M) treatment did not significantly alter 2DG uptake as compared with control retinas. In experiments upon intact, anesthetized bullfrogs, light reduced both the total amount of radioactivity acquired by the retina and the fraction of 2DG-6P present. The results are discussed in terms of the fraction of energy consumed by the retina required to maintain the photoreceptor dark current.  相似文献   

10.
Insulin and parathyroid hormone (PTH) regulate glucose metabolism in bone cells. In order to differentiate between the effects of these hormones and to compare the potency of insulin with that of insulin-like growth factor (IGF) I, we treated rat bone-derived osteoblastic (PyMS) cells for different time periods and at different concentrations with insulin, IGF I, or PTH, and measured [1-(14)C]-2-deoxy-D-glucose (2DG) uptake and incorporation of D-[U-(14)C] glucose into glycogen. 2DG uptake was Na-independent with an apparent affinity constant (K (M)) of ~2 mmol/l. Expression of the high affinity glucose transporters (GLUT), GLUT1 and GLUT3 but not of GLUT4, was found by Northern and Western analysis. Similar to the findings with primary rat osteoblasts, but distinct from those in rat fibroblasts, 2DG uptake and glycogen synthesis were increased in this cell line after exposure to low concentrations (0.1 nmol/l and above) of PTH. IGF I at low doses (0.3 nmol/l and above) or insulin at higher doses (1 nmol/l and above) stimulated 2DG uptake and [(3)H] thymidine incorporation into DNA. 2DG transport was enhanced already after 30 min of IGF I treatment whereas the effect of PTH became significant after 6 h. It is concluded that IGF I rather than insulin may be a physiological regulator of 2DG transport and glycogen synthesis in osteoblasts.  相似文献   

11.
In vitro beryllium (Be) binding to rat liver nuclei has been reassessed (KAss = 2.0 X 10(6) M: n = 17 nmol Be/mg protein). Be also binds to rat liver nucleoli (KAss approx. 4 X 10(6) M: n = 10 nmol Be/mg protein). Examination of rat liver chromatin fractionated on a hydroxyapatite column shows that Be does not bind to histone or to the non-histone protein eluted by 0.05 M sodium phosphate. Be is strongly bound to the non-histone proteins eluted by 0.2 M sodium phosphate (KAss = 1.1 X 10(6) M: n = 55 nmol Be/mg protein) and also to the same extent to the fraction containing DNA which is subsequently eluted from the column. Evidence is provided that the latter binding is not due to DNA. The fractions containing the Be-binding proteins also contain the proteins which are phosphorylated to the greater extent.  相似文献   

12.
The rate of phosphorylation of 2-deoxyglucose (2DG) was determined by sequential pulsing of schistosomes (Schistosoma mansoni, S. japonicum, and S. haematobium) with 3H- and 14C-labeled 2-deoxy-D-glucose. Subsequent column chromatographic separation of the neutral [3H]2DG and [14C]2DG from the 3H- and 14C-labeled 2-deoxy-D-glucose 6-phosphate permitted estimation of the quantity of [3H]2DG phosphorylated in 2 min, and the proportion of [14C]2DG phosphorylated in 1 min; thus a phosphorylation rate was determined from a single tissue sample. The relative phosphorylation rate of 2-[3H]2DG to D-1-[14C]glucose (i.e., the phosphorylation coefficient) was also measured in male and female schistosomes. It was demonstrated that even though 2DG is taken up more rapidly than glucose, it is phosphorylated at a much slower rate in both S. mansoni and S. japonicum. In both of these species, mated males phosphorylate 2DG and glucose at a greater rate than do unmated males. Similarly, mated females phosphorylate and consume more glucose than do separated females. In contrast, the phosphorylation coefficient is greater in separated than in mated schistosomes. Intraspecific comparisons suggest that, at reduced substrate concentrations, glucose utilization rates are higher in S. japonicum, intermediate in S. mansoni, and lower in S. haematobium.  相似文献   

13.
Ionizing radiation (IR) and consequent induction of DNA double-strand breaks (DSBs) causes activation of the protein ataxia telangiectasia mutated (ATM). Normally, ATM is present as inactive dimers; however, in response to DSBs, the ATM dimer partners cross-phosphorylate each other on serine 1981, and kinase active ATM monomers are subsequently released. We have studied the presence of both nonphosphorylated as well as active serine 1981 phosphorylated ATM (pS1981-ATM) in the mouse testis. In the nonirradiated testis, ATM was present in spermatogonia and spermatocytes until stage VII of the cycle of the seminiferous epithelium, whereas pS1981-ATM was found only to be present in the sex body of pachytene spermatocytes. In response to IR, ATM became activated by pS1981 cross-phosphorylation in spermatogonia and Sertoli cells. Despite the occurrence of endogenous programmed DSBs during the first meiotic prophase and the presence of ATM in both spermatogonia and spermatocytes, pS1981 phosphorylated ATM did not appear in spermatocytes after treatment with IR. These results show that spermatogonial ATM and ATM in the spermatocytes are differentially regulated. In the mitotically dividing spermatogonia, ATM is activated by cross-phosphorylation, whereas during meiosis nonphosphorylated ATM or differently phosphorylated ATM is already active. ATM has been shown to be present at the synapsed axes of the meiotic chromosomes, and in the ATM knock-out mice spermatogenesis stops at pachytene stage IV of the seminiferous epithelium, indicating that indeed nonphosphorylated ATM is functional during meiosis. Additionally, ATM is constitutively phosphorylated in the sex body where its continued presence remains an enigma.  相似文献   

14.
The phosphorylated intermediate in the (Na + K)-activated adenosine triphosphatase (Na-K ATPase) has been characterized as an L-glutamyl-γ-phosphate residue in the enzyme. This has been accomplished by digestion of the phosphorylated and nonphosphorylated forms of the enzyme with pepsin, reaction of the pepsin digests with [2,3-3H]N-(n-propyl)hydroxylmine, further digestion of the derivatized peptides with pronase in the presence of carrier L-glutamyl-γ-N-(n-propyl)hydroxamate and carrier L-aspartyl-N-(n-propyl)hydroxamate, and chromatographic purification. An increment in radioactivity migrated with authentic L-glutamyl-γ-N-(n-propyl)hydroxamate in a total of seven electrophoretic and chromatographic systems and on gel filtration. No increment in radioactivity was associated with authentic L-aspartyl-β-N-(n-propyl)hydroxamate in five out of the seven chromatographic and electrophoretic systems. At the last stage of purification the radioactivity from the phosphorylated enzyme which migrated as L-glutamyl-γ-N-(n-propyl)hydroxamate was 2½ times that from the nonphosphorylated enzyme. On the basis of these results it is concluded that the phosphorylated intermediate in the Na-K ATPase is an L-glutamyl-γ-phosphate residue. The beef brain Na-K ATPase has been solubilized with the nonionic detergent, Lubrol, and has been purified 10 times over that in the original microsomes. The soluble enzyme remains stable in the presence of ATP and either Na+ or K+. If the partially purified enzyme is electrophoresed in 3% polyacrylamide, followed by incubation with ATP, Na+, K+, and Mg++, a single, somewhat diffuse, ATPase band, which is ouabain-sensitive is seen. Protein impurities are also seen on the gel. Gel electrophoresis, after treatment of the partially purified enzyme with phenol-acetic acid-urea, shows about 12 discrete protein bands. Studies on the site-directed alkylation of the (Na + K)-activated adenosine triphosphatase with haloacetate derivatives of cardiotonic steroids are reviewed. Efforts are now underway to specifically alkylate the cardiotonic steroid site of the Na-K ATPase with hellebrigenin 3-[2-3H]iodoacetate and to purify the subunit of the enzyme containing the cardiotonic steroid site by following radioactivity. Finally, a working model for the role of the Na-K ATPase in the coupled transport of Na and K is presented.  相似文献   

15.
We examined the long-term effects of dietary diacylglycerol (DG) and triacylglycerol (TG) with similar fatty acid compositions on the development of obesity in C57BL/6J mice. We also analyzed the expression of genes involved in lipid metabolism at an early stage of obesity development in these mice. Compared with mice fed the high-TG diet, mice fed the high-DG diet accumulated significantly less body fat during the 8-month study period. Within the first 10 days, dietary DG stimulated beta-oxidation and lipid metabolism-related gene expression, including acyl-CoA oxidase, medium-chain acyl-CoA dehydrogenase, and uncoupling protein-2 in the small intestine but not in the liver, skeletal muscle, or brown adipose tissue, suggesting the predominant contribution of intestinal lipid metabolism to the effects of DG. Furthermore, analysis of digestion products of [(14)C]DG and those of [(14)C]TG revealed that the radioactivity levels detected in fatty acid, 1-monoacylglycerol, and 1,3-DG in intestinal mucosa were significantly higher after intrajejunal injection of DG rather than TG. Thus, dietary DG reduces body weight gain that accompanies the stimulation of intestinal lipid metabolism, and these effects may be related to the characteristic metabolism of DG in the small intestine.  相似文献   

16.
Neither insulin nor epinephrine influenced the incorporation of glucose into the acid-soluble or acid-insoluble glycogen pool of mouse embryos at the morula-early blastocyst stage during 5 h culture in the presence of radiolabelled glucose. During a 5 h chase culture of pulse-labelled embryos at this stage of development, acid-soluble glycogen labelled during the pulse was not utilized by the embryo but acid-insoluble glycogen was reduced. Addition of glucagon, insulin, epinephrine, cAMP, theophylline or caffeine during chase culture had no effect on the turnover of label in the glycogen pools of the embryo. These results indicate that the turnover of embryonic glycogen observed in vivo is not due to the direct effect of the hormones that regulate glycogen metabolism in the mother. Insulin was found to stimulate incorporation of glucose into non-glycogen macromolecules during both pulse and chase culture. Thus, whilst an effect of insulin on glycogen metabolism was absent, the anabolic effects of this hormone appear to have been expressed in the embryo at this stage of development.  相似文献   

17.
Mouse preimplantation embryo development is characterized by a switch from a dependence on the tricarboxylic acid cycle pre-compaction to a metabolism based on glycolysis post-compaction. In view of this, the role of glucose in embryo culture medium has come under increased analysis and has lead to improved development of outbred mouse embryos in glucose free medium. Another type of embryo that has proven difficult to culture is the parthenogenetic (PN) mouse embryo. With this in mind we have investigated the effect of glucose deprivation on PN embryo development in vitro. Haploid and diploid PN embryos were grown in medium M16 with or without glucose (M16-G) and development, glycolytic rate, and methionine incorporation rates assessed. Haploid PN and normal embryo development to the blastocyst stage did not differ in either M16 or M16-G. In contrast, although diploid PN embryos formed blastocysts in M16 (28.3%), they had difficulty in undergoing the morula/blastocyst transition in M16-G (7.6%). There was no significant difference in mean cell numbers of haploid PN, diploid PN and normal embryos cultured in M16 and M16-G at the morula and blastocyst stage. Transfer of diploid PN embryos from M16-G to M16 at the four- to eight-cell stage dramatically increased blastocyst development. At the morula stage diploid PN embryos grown in M16-G exhibited a higher glucose metabolism and protein synthesis compared to those grown in M16 and to haploid PN embryos. Difficulties of diploid PN embryos in undergoing the morula/blastocyst transition in absence of glucose infer the existence of a link between the maternally inherited components and the preimplantation embryos dependence on glucose. © 1996 Wiley-Liss, Inc.  相似文献   

18.
Protein kinases associated with the transforming proteins of a number of retroviruses are specific for tyrosine. Several proteins in cells transformed by these viruses are phosphorylated at tyrosine. We have now identified three unrelated abundant nonphosphorylated cellular proteins of 46,000, 39,000 and 28,000 daltons in chick embryo cells, which are the unphosphorylated forms of phosphotyrosine-containing proteins and thus are substrates for tyrosine protein kinases. By two-dimensional gel analysis, we have found that the 46,000-dalton protein exists in two unphosphorylated forms of which the more acidic is a minor species. This latter form is phosphorylated, chiefly at serine, in both normal and transformed cells, generating a yet more acidic species. In transformed but not normal cells, the major form is phosphorylated at tyrosine and serine, yielding a fourth isoelectric variant. The 46,000-dalton unphosphorylated protein has been partially purified, and antiserum to it recognizes all four isoelectric variants of the protein. The 39,000-dalton protein has two unphosphorylated forms of which the more acidic is a minor species. The major form is phosphorylated at tyrosine and serine in transformed cells only. The 39,000-dalton unphosphorylated protein has been partially purified, and antiserum raised to it recognizes all three isoelectric variants. The 28,000-dalton protein has a single phosphorylated form which contains serine in normal cells, but both serine and tyrosine in transformed cells.  相似文献   

19.
Abstract— A method has been developed for the simultaneous measurement of the rates of glucose consumption in the various structural and functional components of the brain in vivo. The method can be applied to most laboratory animals in the conscious state. It is based on the use of 2-deoxy-D-[14C]glucose ([14C]DG) as a tracer for the exchange of glucose between plasma and brain and its phosphorylation by hexokinase in the tissues. [14C]DG is used because the label in its product, [14C]deoxyglucose-6-phosphate, is essentially trapped in the tissue over the time course of the measurement. A model has been designed based on the assumptions of a steady state for glucose consumption, a first order equilibration of the free [14C]DG pool in the tissue with the plasma level, and relative rates of phosphorylation of [14C]DG and glucose determined by their relative concentrations in the precursor pools and their respective kinetic constants for the hexokinase reaction. An operational equation based on this model has been derived in terms of determinable variables. A pulse of [14C]DG is administered intravenously and the arterial plasma [14C]DG and glucose concentrations monitored for a preset time between 30 and 45min. At the prescribed time, the head is removed and frozen in liquid N2-chilled Freon XII, and the brain sectioned for autoradiography. Local tissue concentrations of [14C]DG are determined by quantitative autoradiography. Local cerebral glucose consumption is calculated by the equation on the basis of these measured values. The method has been applied to normal albino rats in the conscious state and under thiopental anesthesia. The results demonstrate that the local rates of glucose consumption in the brain fall into two distinct distributions, one for gray matter and the other for white matter. In the conscious rat the values in the gray matter vary widely from structure to structure (54-197 μmol/100 g/min) with the highest values in structures related to auditory function, e.g. medial geniculate body, superior olive, inferior colliculus, and auditory cortex. The values in white matter are more uniform (i.e. 33–40 μmo1/100 g/min) at levels approximately one-fourth to one-half those of gray matter. Heterogeneous rates of glucose consumption are frequently seen within specific structures, often revealing a pattern of cytoarchitecture. Thiopental anesthesia markedly depresses the rates of glucose utilization throughout the brain, particularly in gray matter, and metabolic rate throughout gray matter becomes more uniform at a lower level.  相似文献   

20.
Alterations in energy (glucose) metabolism are key events in the development and progression of cancer. In pancreatic adenocarcinoma (PDAC) cells, we investigated changes in glucose metabolism induced by resistance to the receptor tyrosine kinase inhibitor (RTKI) axitinib. Here, we show that human cell lines and mouse PDAC cell lines obtained from the spontaneous pancreatic cancer mouse model (KrasG12DPdx1-cre) were sensitive to axitinib. The anti-proliferative effect was due to a G2/M block resulting in loss of 70–75% cell viability in the most sensitive PDAC cell line. However, a surviving sub-population showed a 2- to 3-fold increase in [C-14]deoxyglucose ([C-14]DG) uptake. This was sustained in axitinib-resistant cell lines, which were derived from parental PDAC. In addition to the axitinib-induced increase in [C-14]DG uptake, we observed a translocation of glucose transporter-1 (Glut-1) transporters from cytosolic pools to the cell surface membrane and a 2-fold increase in glycolysis rates measured by the extracellular acidification rate (ECAR). We demonstrated an axitinib-induced increase in phosphorylated Protein Kinase B (pAkt) and by blocking pAkt with a phosphatidylinositol-3 kinase (PI3K) inhibitor we reversed the Glut-1 translocation and restored sensitivity to axitinib treatment. Combination treatment with both axitinib and Akt inhibitor in parental pancreatic cell line resulted in a decrease in cell viability beyond that conferred by single therapy alone. Our study shows that PDAC resistance to axitinib results in increased glucose metabolism mediated by activated Akt. Combining axitinib and an Akt inhibitor may improve treatment in PDAC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号