首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Kazuo Yamazaki 《Oikos》2010,119(5):796-801
Leaf‐mining insects produce conspicuous and distinct leaf mines on various types of plant leaves. The diversity of leaf‐mine morphology has typically been explained by several factors, such as selective feeding on plant tissues, improvement of microclimate, faecal disposal, reduction in the efficiency of parasitoid search behaviour and leafminer phylogeny. Although these factors are certainly associated with mining patterns, masking the mines, rather than making them conspicuous, appears to be more advantageous for deterring parasitoids and predators of leafminers. However, here, I propose that prominent leaf mines may serve to signal or cue herbivores to avoid feeding on the mined leaves. Because most leafminers are sessile and complete their development within a single leaf, herbivory of mined leaves is detrimental to leafminer survival. Other herbivores appear to avoid consuming mined leaves for a variety of reasons: leaf mines mimic leaf variegation or mottling; mined leaves induce chemical and physical defences against herbivores; and leaf mines mimic fungal infection, animal excrement, and necrosed plant tissues. Hence, natural selection may have favoured leafminers that produce conspicuous mines because of the increased survival and fecundity of thereby reducing herbivory on mined leaves.  相似文献   

2.
It has been suggested that plant physical and chemical traits vary considerably in space and time. Hence, leaf‐mining insects may adjust their oviposition in response to leaf attributes representing high quality. Moreover, herbivorous insects can modify leaf morphology by acting as stressors, increasing, for example, fluctuating asymmetry (FA) levels. Here, we investigate oviposition preference in Agnippe sp.2, a leaf‐mining moth of Erythroxylum tortuosum, in relation to differences in leaf nutritional quality (i.e. levels of water, nitrogen and tannin content), leaf area (i.e. quantity of resource hypothesis) and FA. We also verify whether temporal variation in plant nutritional quality emerges as an alternative hypothesis to explain oviposition distribution in time, and whether this leaf miner is a stress‐causing agent, increasing FA during larval development. Mined leaves and leaves with and without eggs were periodically collected from plants located in a Cerrado fragment in Brazil. In the laboratory, leaf traits were assessed (using image analysis software) and quantified (biochemical analysis) according to the aims previously determined. Oviposition probability did not change in relation to variations in nitrogen, tannins and FA of leaves. However, leaf‐miner females preferred to oviposit on leaves having large areas and low water contents. It was also verified that new leaves of E. tortuosum, which carried most leaf‐miner eggs, presented significantly lower tannins and greater levels of nitrogen and water than old leaves. The oviposition choice exhibited by leaf miners was found to be non‐random because they appear to use resource quantity and water content as cues as where to lay their eggs. The temporal variation of plant nutritional quality is likely to influence the time of leaf‐miner oviposition; and leaf FA was not increased during larval feeding, suggesting that these herbivores do not cause variations in FA levels.  相似文献   

3.
In prey‐predator systems, top‐down effects can be a powerful determinant for spatial distributions of prey through their search for enemy‐free space. Leafminers live and eat within leaves, making feeding tracks called mines, and mine conspicuousness exposes them to a high risk of parasitism. Those lepidopteran leafminers that use lower leaf surfaces as mining sites show wide evolutionary radiation. We hypothesized that leafminers making mines on the lower surface are less often detected by parasitoids and thus have a selective advantage in avoiding parasitism compared to those on the upper surface. To investigate the adaptiveness of lower‐surface mining, we examined the relationship between parasitism and within‐leaf mine distribution for 3 years using a field population of the leafminer Phyllocnistis spec. (Lepidoptera: Gracillariidae, Phyllocnistinae), which prefers the lower surface of leaves of the Japanese privet, Ligustrum japonicum Thunb. (Oleaceae). Parasitoid attack was more frequent in the upper‐surface mines than in the lower‐surface mines and on leaves with upper‐surface mines than on leaves with only lower‐surface mines. When both surfaces were mined, leafminers on the lower surface could avoid parasitism. Upper‐surface mines were attacked by more parasitoid species as compared to lower‐surface mines. Although the results demonstrated that mining on the lower surface was advantageous in avoiding parasitism, the vulnerability of lower‐surface mines to parasitism varied depending on their abundance. When many lower‐surface mines were present, lower‐surface mines suffered a higher parasitism rate than upper‐surface mines, probably because parasitoids formed search images for and concentrated on lower‐surface mines. This study suggests that the preferential use of the lower leaf surface by leafminers is in part attributed to interactions with parasitoids.  相似文献   

4.
We explored the impacts of industrial air pollution on the behaviour of the leafmining moth Stigmella lapponica (Wocke) (Lepidoptera: Nepticulidae) by comparing the characteristics of larval gallery mines in mountain birch [Betula pubescens ssp. czerepanovii (Orlova) Hämet‐Ahti (Betulaceae)] leaves collected from unpolluted forests and from heavily polluted industrial barrens surrounding the copper‐nickel smelter in Monchegorsk in north‐western Russia. Population density of S. lapponica, survival of larvae, length of the completed mine, and width of its terminal part did not differ between polluted and unpolluted sites. Females in unpolluted sites only rarely (16%) oviposited on the apical half of the leaf and the larval mortality in mines that started in the apical part of the leaf was 83%. A significantly larger (38%) proportion of mines started in the apical half of the leaves in polluted sites, and the larval mortality in these mines was only 45%. The between‐habitat difference in the choice of the oviposition sites by S. lapponica is the first demonstration of the adaptive plasticity of oviposition behaviour in a leafmining insect. This difference was not explained by specific leaf weight which did not vary within leaves. Larvae mining in polluted leaves extended 25% farther between turns, and the galleries turned more sharply than in unpolluted leaves. This result confirms the abilities of leafmining larvae to evaluate the quality of the ingested food and adjust their behaviour accordingly. Thus, pollution modifies both the preference of S. lapponica females for oviposition sites within a birch leaf and the behaviour of S. lapponica larvae mining these leaves. This is one of the first records of changes in insect behaviour in natural environment disturbed by industrial pollution.  相似文献   

5.
1. Leafminer larvae are sedentary and make feeding tracks called mines. Their spatial distribution in trees affects their growth and survival through interaction with the heterogeneity of environments, such as leaf traits and microclimate. Lepidopteran leafminers that mine lower leaf surfaces have shown evolutionary radiation, suggesting that lower surfaces improve leafminer performance. 2. The lepidopteran multivoltine leafminer Phyllocnistis sp. Zeller (Gracirallidae: Phyllocnistinae) uses the Japanese privet Ligustrum japonicum Thunb. (Oleaceae). It mines only the lower‐surface epidermal layer of primary shoot leaves early in the occurrence season, but once lammas shoots appear, which happens in seasons other than spring, it preferentially uses the lower surface, but also uses the upper surface of the leaves. This study examined whether selection of oviposition sites was associated with the structural traits and microclimate of the leaf surface. 3. The shift of oviposition site from primary to lammas shoot leaves followed increasing hardness and epidermal cell wall thickness of primary shoot leaves during leaf development, and mine initiation rates decreased below 20% after oviposition on mature primary shoot leaves. Preference for the lower surface was related to the thinner cuticle. However, the thinner cuticle of the upper surface on lammas shoot leaves allowed Phyllocnistis sp. to expand its mining sites to both surfaces with no decrease in mine initiation and emergence rates. 4. Microclimates (leaf surface and mine temperatures) did not differ between upper and lower surfaces, suggesting that microclimate did not affect oviposition site selection by Phyllocnistis sp. These results suggest that the adaptive radiation of lower‐surface mining may have been influenced by the leaf surface characteristics.  相似文献   

6.
The leaf-mining fly Calycomyza eupatorivora Spencer (Diptera: Agromyzidae) was released in the eastern coastal regions of South Africa for the biological control of the invasive shrub Chromolaena odorata (L.) King and Robinson. Despite widespread establishment, its ability to inflict sufficient foliar damage has been questioned. This laboratory study was initiated to provide some insight into how increasing fly populations (represented by 1, 5 and 10 mating pairs per plant) are likely to influence leaf-mining intensity and the levels of damage. On average, individual plants exposed to five mating pairs displayed significantly more larval mines (248) than those exposed to single pairs (69), while plants exposed to 10 mating pairs were intermediate (125). Similarly, at densities of five mating pairs per plant, the percentages of available leaves that were exploited peaked at 36%, while the percentages of available leaf area that were removed by larval leaf mining peaked at 22%. The non-linear relationship between leaf mining and fly density and the high percentages of unexploited leaves suggest that leaf mining may be influenced by leaf quality, the nature of which is currently unconfirmed. These results also suggest that the levels of leaf exploitation by C. eupatorivora will be too low to have any meaningful impact in the field. Field evaluations, to be reported in a later contribution, have indeed confirmed that the impact of C. eupatorivora on mature populations of C. odorata is negligible.  相似文献   

7.
1. Foliar trichomes clearly reduce chewing damage and efficiency of movement by some insect herbivores, but the effect of trichomes on insect oviposition is less well characterised. Trichomes are likely to have particularly strong, negative effects on species that require secure attachment of the egg to the leaf epidermis for successful transition to the feeding stage – a group that includes many leaf mining insects. 2. One such species, Micrurapteryx salicifoliella, must initially enter leaf cells directly from an egg adhered to the cuticle, but later instars can move between leaves and initiate new mines from the leaf exterior. 3. Natural patterns of occurrence by M. salicifoliella were quantified on 10 sympatric Salix species varying in trichome expression to test whether trichomes were associated with reduced oviposition, larval survival and leaf damage. 4. Mean egg density and leaf mining damage were negatively related to mean trichome density across Salix species. Survival of M. salicifoliella from egg to pupa was positively related to trichome density, suggesting that initiation of new mines by late‐instar larvae was not adversely affected by trichomes. There was no evidence that trichomes benefited leaf miner larvae indirectly by decreasing density‐dependent mortality; rather, the positive relationship between trichome density and larval survival may reflect less effective chemical defence by Salix species expressing high trichome density. 5. The results suggest that foliar trichomes serve as an effective defence against M. salicifoliella by deterring oviposition, but do not reduce the survivorship of those individuals that successfully transition from egg to larva.  相似文献   

8.
The leaf-mining fly Calycomyza eupatorivora Spencer (Diptera: Agromyzidae) has become widely established in the eastern regions of South Africa, following its release for the biological control of the invasive shrub Chromolaena odorata (L.) King and Robinson. This study was conducted to gain some insight into the impact of C. eupatorivora populations, by assessing their seasonal activity, habitat preferences, levels of leaf exploitation and extent of larval mortality in the field over a 1-year period. Leaf mining intensity was poorly synchronised with leaf availability, with leaf exploitation peaking at the end of the growing season of C. odorata. Although significantly more mines were recovered on plants growing in shaded situations, the percentage of available leaves that were exploited for mining was not significantly different between plants growing in shaded versus open situations. Overall, the levels of leaf damage were trivial with mines recovered from <5% of available leaves that were sampled during the study. Besides leaf-quality requirements, these low levels of leaf exploitation may have been influenced by high larval mortality which varied between 60 and 83%, depending on whether lower or higher estimates were used. These evaluations have verified the results of earlier laboratory studies which suggested that the impact of C. eupatorivora on mature populations of C. odorata in South Africa will be negligible.  相似文献   

9.
Summary The effects of a number of factors, notably leaf mining insects, on the longevity of beech and holm oak leaves have been studied. The regular monitoring of individually labelled leaves was complemented by analysis of leaf fall data. Both methods confirm that these mining insects have only a slight impact on their host trees. The presence of first generation Phyllonorycter maestingella mines on beech leaves and winter generation P. messaniella mines on holm oak leaves accelerates leaf loss. Beech leaves mined by second generation P. maestingella and Rhynchaenus fagi did not show this accelerated loss. Their patterns of leaf fall can be explained by within-tree variation in both mine distribution and the timing of leaf fall. It is argued that this premature leaf fall is a damage response, and is not an attempt by the tree to regulate miner numbers.  相似文献   

10.
Ayabe Y  Ueno T 《PloS one》2012,7(2):e32594
Because insect herbivores generally suffer from high mortality due to their natural enemies, reducing the risk of being located by natural enemies is of critical importance for them, forcing them to develop a variety of defensive measures. Larvae of leaf-mining insects lead a sedentary life inside a leaf and make conspicuous feeding tracks called mines, exposing themselves to the potential risk of parasitism. We investigated the defense strategy of the linear leafminer Ophiomyia maura Meigen (Diptera: Agromyzidae), by focusing on its mining patterns. We examined whether the leafminer could reduce the risk of being parasitized (1) by making cross structures in the inner area of a leaf to deter parasitoids from tracking the mines due to complex pathways, and (2) by mining along the edge of a leaf to hinder visually searching parasitoids from finding mined leaves due to effective background matching of the mined leaves among intact leaves. We quantified fractal dimension as mine complexity and area of mine in the inner area of the leaf as interior mine density for each sample mine, and analyzed whether these mine traits affected the susceptibility of O. maura to parasitism. Our results have shown that an increase in mine complexity with the development of occupying larvae decreases the probability of being parasitized, while interior mine density has no influence on parasitism. These results suggest that the larval development increases the host defense ability through increasing mine complexity. Thus the feeding pattern of these sessile insects has a defensive function by reducing the risk of parasitism.  相似文献   

11.
The seasonal occurrence and among-plant and within-plant spatial distribution of the multivoltine leafminer Ophiomyia maura Meigen (Diptera: Agromyzidae) on the herbaceous plant Aster ageratoides Turcz. subsp. ovatus (Asteraceae) were investigated in the field. O. maura has at least four generations a year and mines per leaf fluctuate with a mean of 0.007 throughout the occurrence period. Seasonal occurrence is associated with abundance of new host leaves, suggesting O. maura females prefer to oviposit in newly emerged leaves. The among-plant distribution of O. maura is described by a Poisson distribution early in the season but tends to be weakly clumped later. The within-plant vertical distribution of larval mines increased from middle to upper leaves during plant development, because mined leaves in the middle position early in the season move downward with the emergence of new leaves, shifting mined leaves from the position where O. maura oviposits eggs. Later in the season, mined leaves remain where they are deposited because few new leaves emerge. The spatial distribution of O. maura , resource utilization patterns, and host plant characteristics are discussed.  相似文献   

12.
Oviposition site preference and larval mortality in a leaf-mining moth   总被引:1,自引:0,他引:1  
Abstract. 1. The univoltine leaf-mining moth, Lithocolletis quercus Ams., is endemic to Israel, where it spends its 10.5 month larval period feeding only in the leaves of Quercus calliprinos Webb.
2. We compared patterns of egg deposition and sources of larval mortality to test whether oviposition patterns and site preferences confer an enhanced likelihood of larval survival.
3. Dominant sources of larval mortality were premature leaf abscission and death from unknown causes, whereas predation, parasitism and intraspecific interference accounted for relatively little larval mortality.
4. Eggs, and thus mines, were aggregated among leaves of host trees even though premature leaf abscission was positively correlated with density of mines per leaf. Interference competition among larvae was the only other density-dependent mortality factor.
5. Oviposition patterns within leaves mitigated the probability of death from larval interference, and probably also from early leaf abscission.
6. Despite these density-dependent mortality factors, overall probability of larval survival to pupation was independent of initial density of mines on a leaf.
7. The long larval period allows synchrony between oviposition flights and times of predictable resource availability.  相似文献   

13.
The life history and host range of the herringbone leaf-mining fly Ophiomyia camarae, a potential biological control agent for Lantana spp., were investigated. Eggs were deposited singly on the underside of leaves. Although several eggs can be laid on a single leaf and a maximum of three individual mines were seen on a single leaf, only one pupa per leaf ever developed. The generation time (egg to adult) was about 38 days. Females (mean 14 days) lived longer than males (mean 9 days) and produced about 61 mines. Oviposition and larval development occurred on all five lantana phenotypes tested. Eleven plant species representing six families were tested to determine the host range. Oviposition and larval development occurred on only lantana and another nonnative plant Lippia alba (Verbenaceae), with both species supporting populations over several generations. A CLIMEX model showed that most of the coastal areas of eastern Australia south to 30°16′ S (Coffs Harbour) would be suitable for O. camarae. O. camarae was approved for release in Australia in October 2007 and mines have been observed on plants at numerous field sites along the coast following releases.  相似文献   

14.
1 The tri‐voltine moth Prays oleae Bern. spends its larval stages on the native olive tree (Olea europaea L. var. sylvestris Brot. and five cultivars, Oleaceae) mining the leaves, the flowers and the fruits in each generation; it seldom switches to other native or introduced confamilial plant species. 2 In this study the pattern of oviposition of the olive moth was examined in olive fields and natural vegetation, in relation to in situ recruitment as an outcome of processes such as density dependence or risk spreading. 3 Larval body size (width of epicranial sclerites) was also examined and compared between host substrates, years and morphological, physiological, ecological and nutritional attributes of the host. 4 The factors influencing the oviposition pattern of the olive moth such as the carbon/nitrogen ratio, number of flowers, branch length and previous leaf damage were ranked differently in different cultivars. 5 ‘Hot spots’, i.e. olive trees or parts of trees receiving a high egg load, were found to be the result of in situ recruitment. 6 Physiological mortality among first instar larvae was significantly negatively correlated with the number of oviposited upon leaves; suggesting that the adult selects for oviposition the best available substrate. 7 As adult moths selected leaves with minimal probability of abscission for oviposition, leaf abscission was not a major mortality factor, although first instar larvae reduced leaf longevity. 8 Host quality did not affect all larval stages in the same way. 9 The more nutritionally poor the substrate, the longer the duration of the larval stage feeding on it. The phenological timing of the insect life stages very closely tracks the phenological phases of its host plant, primarily focusing on the most nutritious host stage in terms of larval performance.  相似文献   

15.
The mining of leaves of Aesculus hippocastanum caused by the larvae of Cameraria ohridella leads to precocious defoliation of trees. Damage to plant productivity was estimated in terms of the photosynthetic performance as well as of leaf water relations and hydraulics of increasingly mined leaves from infested plants in comparison with the same variables measured in non-mined leaves (controls). Electron microscopy and photosynthesis measurements revealed that chloroplasts within the green portions of mined leaves were still intact and photosynthesis of these areas was close to that of non-mined leaves, i.e. damage to functional integrity of the photosynthetic system did not extend beyond the mines. Stomata below the mines were functional as they maintained their physiological kinetics but most chloroplasts in the spongy parenchyma below the mines were degraded so that a 1:1 relationship existed between photosynthesis loss and loss of leaf green areas. Leaf conductance to water vapour and transpiration rate were 60% lower in mined leaf areas but equal to controls in green portions of mined leaves. Leaf water potential was insensitive to the amount of mined leaf area and so was leaf hydraulic conductance. Anatomical observations of leaf minor veins revealed that they were structurally and functionally intact even in leaves with 90% mined surface area. Our conclusion was that the actual damage to A. hippocastanum plants in terms of loss of photosynthates and water and nutrient transport was less than that visually estimated in recent studies.  相似文献   

16.
Summary Leaf miner deaths resulting from the death of their leaves were assessd by collecting falling leaves of holm oak and beech. The Phyllonorycter mines thus captured were examined to ascertain the cause of death. For both mining species the mortality from leaf shedding accounted for less than 2.8% of the mining cohorts. It is argued that the level of mortality is insufficient for population regulation, as has been previously suggested.  相似文献   

17.
Fossil evidence of predation on leaf mines and galls opens the way to analyzing regulatory circuits in plant–insect interaction systems and assessing their evolutionary advancement. In the Cretaceous (mid-Turonian) flora of Negev, Israel, predation traces vary from the entire gall or mine excisions to minute punctures and slits over the mine tracks. Bite marks on the borders of predation holes representing different mouthpart morphologies may show how diverse the predators were. The efficiency of predation as a top down regulation force is attested on the basis of the gall and mine abundance, gall morphologies, mine configurations, co-occurrence of different mine types on leaves, and temporary mining. In turn, the regulation efficiency is considered as a criterion of evolutionary advancement of the plant–insect community as a whole. It is suggested that the coeval Cretaceous coastal and inland communities differed in the relative significance of top-down regulation.  相似文献   

18.
19.
Aim Introduced plant species are less likely to be attacked by herbivores than are native plant species. Isolated oceanic islands provide an excellent model system for comparing the associations between herbivore species and plant species of different residency histories, namely endemic, indigenous (non‐endemic) or introduced (naturalized or cultivated) species. My aim was to test the prediction that, on isolated oceanic islands, introduced plant species have a lower tendency to have an association with insect herbivores than do endemic and indigenous plant species. Location Ogasawara (Bonin) Islands in the western Pacific Ocean. Methods I examined the presence/absence of leaf‐mining and leaf‐galling insect species on 71 endemic, 31 indigenous, 18 naturalized and 31 cultivated (introduced but not naturalized) species of woody plants from 2004 to 2008. Results Leaf‐mining insect species were found on 53.5%, 35.5%, 11.1% and 16.1% and leaf‐galling species were found on 14.1%, 9.7%, 5.6% and 0% of endemic, indigenous, naturalized and cultivated plant species, respectively. Species of Lepidoptera (moths) and Hemiptera (primarily psyllids) comprised the dominant types of leaf miners and leaf gallers, respectively. Main conclusions The incidence of leaf miners and leaf gallers differed as a function of residency history of the plant species. Introduced (naturalized and cultivated) species were less frequently associated with leaf miners and leaf gallers than were native (endemic and indigenous) species, indicating that the leaf‐mining and leaf‐galling insect species, most of which feed on leaves of a particular native plant genus (i.e. they show oligophagy), have not yet begun to utilize most introduced plant species.  相似文献   

20.
Internally feeding herbivorous insects such as leaf miners have developed the ability to manipulate the physiology of their host plants in a way to best meet their metabolic needs and compensate for variation in food nutritional composition. For instance, some leaf miners can induce green‐islands on yellow leaves in autumn, which are characterized by photosynthetically active green patches in otherwise senescing leaves. It has been shown that endosymbionts, and most likely bacteria of the genus Wolbachia, play an important role in green‐island induction in the apple leaf‐mining moth Phyllonorycter blancardella. However, it is currently not known how widespread is this moth‐Wolbachia‐plant interaction. Here, we studied the co‐occurrence between Wolbachia and the green‐island phenotype in 133 moth specimens belonging to 74 species of Lepidoptera including 60 Gracillariidae leaf miners. Using a combination of molecular phylogenies and ecological data (occurrence of green‐islands), we show that the acquisitions of the green‐island phenotype and Wolbachia infections have been associated through the evolutionary diversification of Gracillariidae. We also found intraspecific variability in both green‐island formation and Wolbachia infection, with some species being able to form green‐islands without being infected by Wolbachia. In addition, Wolbachia variants belonging to both A and B supergroups were found to be associated with green‐island phenotype suggesting several independent origins of green‐island induction. This study opens new prospects and raises new questions about the ecology and evolution of the tripartite association between Wolbachia, leaf miners, and their host plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号