共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of charge-modified thaumatins with different values of surface charge were partitioned in aqueous two-phase systems (ATPS) to study the effect of surface charge as a single property on partitioning. Electrophoretic mobility of the proteins in titration curves was used as a measure of surface charge. Four modified proteins derived from thaumatin with the following values of isoelectric point: 8.70, 8.15, 5.60, and 4.50 were used for partitioning. The resolution of the systems in terms of protein surface charge was calculated. Partitioning of modified thaumatins in PEG 4000/dextran systems with phosphate buffer, Tris buffer, NaCl, KCl, and sulfate salts was carried out. Among the sulfate salts tested, the addition of 50 mM Li(2)SO(4) to the system buffered with phosphate gave the highest value of resolution for differences in surface protein charge (RSPC). It shows a decrease in the value of K (partition coefficient) with an increase in the protein's charge. The addition of 100 mM KCl to the system promoted the opposite effect on the RSPC value. Charge-modified proteins were partitioned in PEG/salt systems to investigate the ability of these systems for resolving differences in surface charge. The PEG/citrate system seemed to have almost no ability for resolving proteins on the basis of surface charge differences; PEG/phosphate systems had some capability for resolving differently charged proteins. The more negative proteins tended to have higher values of K than the more positively charged fractions. The use of charge-modified proteins allowed the investigation of the effect of protein surface charge on partitioning in aqueous two-phase systems independently from other protein parameters as they were prepared from a common parent protein thaumatin. This technique provides an interesting novel tool to investigate the effect of protein surface charge on partitioning in ATPS taking protein charge as an independent parameter. (c) 1996 John Wiley & Sons, Inc. 相似文献
2.
Conservative chemical modification of proteins to study the effects of a single protein property on partitioning in aqueous two-phase systems 总被引:1,自引:0,他引:1
Relatively conservative modifications of three proteins were carried out to alter their surface properties. The protein properties modified were hydrophobicity and charge. This was done by acylation of amino groups with anhydrides. For the hydrophobic modification experiments, two proteins (beta-lactoglobulin and bovine serum albumin [BSA]) and four anhydrides (hexanoic, butyric, succinic, acetic) were used. For the modification of surface charge the protein thaumatin was selected and various proportions of the free amino groups were blocked with acetic anhydride to give a series of proteins with differing isoelectric points. Detailed characterization and purification of selected modified proteins was carried out including molecular weight measurements and conformational analysis. The criteria used for selecting the modified proteins for subsequent investigation of their partitioning in aqueous two-phase systems (ATPS) is described. With a judicious choice of starting material it was found that limited chemical modifications to proteins could effectively alter surface hydrophobicity or charge almost independently, with little effect on other molecular properties. It appears, however, that the method for chemical modification and the reaction conditions must also be carefully controlled. (c) 1996 John Wiley & Sons, Inc. 相似文献
3.
Tubio G Nerli B Picó G 《Journal of chromatography. B, Analytical technologies in the biomedical and life sciences》2004,799(2):293-301
In order to develop possible correlations to predict partioning behaviour of proteins, five mammalian albumins (goat, bovine, equine, human and pig ones) with similar physico-chemical properties (molecular mass and isoelectrical point) were chosen. Evaluation of the relationship between hydrophobicity and partitioning coefficient (Kr) in polyethylenglycol-dextran (PEG-DxT500) systems formed by polyethyleneglycols of different molecular mass (3350, 6000 and 10,000) was investigated by estimating relative surface hydrophobicity (So) with a fluorescent probe, 1 anilino-8-naphthalene sulfonate. No relationship between Kr and So was found for systems formed by PEG3350, while aqueous two-phase systems with PEG6000 and PEG10,000 gave better correlations. The results obtained may be explained on the basis of an increase in the interaction between the latter PEGs and the protein due to their higher hydrophobic character which increases as the PEG molecular mass does so. In this way, systems with PEGs of higher molecular mass give the highest resolution to exploit hydrophobicity in partitioning. 相似文献
4.
Correlations to describe the effect of surface hydrophobicity and charge of proteins with their partition coefficient in aqueous two-phase systems were investigated. Polyethylene glycol (PEG) 4000/phosphate, sulfate, citrate, and dextran systems in the presence of low (0.6% w/w) and high (8.8% w/w) levels of NaCl were selected for a systematic study of 12 proteins. The surface hydrophobicity of the proteins was measured by ammonium sulfate precipitation as the inverse of their solubility. The hydrophobicity values measured correlated well with the partition coefficients, K, obtained in the PEG/salt systems at high concentration of NaCl (r = 0.92-0.93). In PEG/citrate systems the partition coefficient correlated well with protein hydrophobicity at low and high concentrations of NaCl (r = 0.81 and 0.93, respectively). The PEG/citrate system also had a higher hydrophobic resolution than other systems to exploit differences in the protein's hydrophobicity. The surface charge and charge density of the proteins was determined over a range of pH (3-9) by electrophoretic titration curves; PEG/salt systems did not discriminate well between proteins of different charge or charge density. In the absence of NaCl, K decreased slightly with increased positive charge. At high NaCl concentration, K increased as a function of positive charge. This suggested that the PEG-rich top phase became more negative as the concentration of NaCl in the systems increased and, therefore, attracted the positively charged proteins. The effect of charge was more important in PEG/dextran systems at low concentrations of NaCl. In the PEG/dextran systems at lower concentration of NaCl, molecular weight appeared to be the prime determinant of partition, whereas no clear effect of molecular weight could be found in PEG/salt systems. 相似文献
5.
6.
Picó G Romanini D Nerli B Farruggia B 《Journal of chromatography. B, Analytical technologies in the biomedical and life sciences》2006,830(2):286-292
The partitioning of model proteins (bovine serum albumin, ovalbumin, trypsin and lysozyme) was assayed in aqueous two-phase systems formed by a salt (potassium phosphate, sodium sulfate and ammonium sulfate) and a mixture of two polyethyleneglycols of different molecular mass. The ratio between the PEG masses in the mixtures was changed in order to obtain different polymer average molecular mass. The effect of polymer molecular mass and polydispersivity on the protein partition coefficient was studied. The relationship between the logarithm of the protein partition coefficient and the average molecular mass of the phase-forming polymer was found to depend on the polyethyleneglycol molecular mass, the salt type in the bottom phase and the molecular weight of the partitioned protein. The polymer polydispersivity proved to be a very useful tool to increase the separation between two proteins having similar isoelectrical point. 相似文献
7.
The partitioning of proteins between the coexisting phases of two-phase aqueous polymer systems reflects an intricate and delicate balance of interactions between proteins, polymers, salts and water. Experimental investigations have suggested that a large number of factors influence protein partitioning, including the types of polymers, their molecular weight and concentration; the protein sizes, conformation and composition; salt type and concentration, and solution pH; and the presence of ligands attached to the polymer which may interact with surface sites of the protein. Complementary modelling attempts have been successful in illuminating several molecular-level mechanisms influencing protein partitioning using lattice-model techniques, viral expansions and a scaling-thermodynamic approach. In spite of these experimental and modelling approaches, many of the physical phenomena associated with these complex systems are not well understood. Notably, the precise nature of the protein-polymer interactions and the potent effect of inorganic salts on the partitioning of proteins in these systems remains poorly understood. 相似文献
8.
Berggren K Wolf A Asenjo JA Andrews BA Tjerneld F 《Biochimica et biophysica acta》2002,1596(2):253-268
It is of great interest and importance how different amino acid residues contribute to and affect the properties of a protein surface. Partitioning in aqueous two-phase systems has the potential to be used as a rapid and simple method for studying the surface properties of proteins. The influence on partitioning of the surface exposed amino acid residues of eight structurally determined monomeric proteins has been studied. The proteins were characterized in terms of surface exposed residues with a computer program, Graphical Representation and Analysis of Surface Properties (GRASP), and partitioned in two EO30PO70-dextran aqueous two-phase systems, only differing in polymer concentrations (system I: 6.8% EO30PO70, 7.1% dextran; system II: 9% EO30PO70, 9% dextran). We show for the first time that the partitioning behaviour of different monomeric proteins can be described by the differences in surface exposed amino acid residues. The contribution to the partition coefficient of the residues was found to be best characterized by peptide partitioning in the aqueous two-phase system. Compared to hydrophobicity scales available in the literature, each amino acid contribution is characterized by the slope given by the graph of log K against peptide chain length, for peptides of different length containing only one kind of residue. It was also shown that each amino acid contribution is relative to the total protein surface and the other residues on the surface. Surface hydrophobicity calculations realized for systems I and II gave respectively correlation coefficients of 0.961 and 0.949 for the linear relation between log K and calculated hydrophobicity values. To study the effect on the partition coefficient of different amino acids, they were grouped into classes according to common characteristics: the presence of an aromatic group, a long aliphatic chain or the presence of charge. Using these groups it was possible to confirm that aromatic residues have the strongest effect on the partition coefficient, giving preference to the upper EO30PO70 phase of the system; on the other hand the presence of charged amino acids on the protein surface enhances the partition of the protein to the lower dextran phase. It is also important to note that the sensitivity of the EO30PO70-dextran system for the surface exposed residues was increased by increasing the polymer concentrations. The partition coefficient of a monomeric protein can thus be predicted from its surface exposed amino acid residues and the system can also be used to characterize protein surfaces of monomeric proteins in general. 相似文献
9.
Farruggia B Nerli B Picó G 《Journal of chromatography. B, Analytical technologies in the biomedical and life sciences》2003,798(1):25-33
The theoretical framework based only on the excluded volume forces is not enough to explain the bovine serum albumin partitioning behaviour in aqueous biphasic systems. The goal of this work is to look at the phase separation via the polymer effect on the water structure. Our findings suggest that polyethyleneglycol 600-protein interaction is conducted by van der Waals forces between the hydrophobic surfaces from PEG and protein molecules, which implies the rupture of hydrogen bonds from the structured water in their neighbours. Therefore, the protein will concentrate in the most water-structured phase (polyethyleneglycol) in order to reach the minimal free energy condition. When polyethyleneglycol molecular weight increases, its exclusion from protein surface prevails, thus pushing the bovine serum albumin to the bottom phase. 相似文献
10.
We have examined the effect of genetically engineered charge modifications on the partitioning behavior of proteins in dextran/polyethylene glycol two-phase systems containing potassium phosphate. By genetically altering a protein's charge, the role of charge on partitioning can be assessed directly without the need to modify the phase system. The charge modifications used are of two types: Charged tails of polyaspartic acid fused to beta-galactosidase and charge-change point mutations of T4 lysozyme which replace positive lysine residues with negative glutamic acids. The partition coefficient K(p) for these proteins was related to measured interfacial potential differences Deltaphi using the simple thermodynamic model, In K(p) = In K(o) + (F/RT)Z(p) deltaphi. The protein net charge Z(p) was determined using the Henderson-Hasselbalch relationship with modifications based on experimentally determined titration and isoelectric point data. It was found that when the electropartitioning term Z(p) deltaphi was varied by changing the pH, the partitioning of T4 lysozyme was quantitatively described by the thermodynamic model. The beta-galactosidase fusions displayed qualitative agreement, and although less than predicted, the partitioning increased more than two orders of magnitude for the pH range examined. Changes in the partitioning of lysozyme due to the various mutations agreed qualitatively with the thermodynamic model, but with a smaller than expected dependence on the estimated charge differences. The beta-galactosidase fusions, on the other hand, did not display a consistent charge based trend, which is likely due either to the enzyme's large size and complexity or to nonelectrostatic contributions from the tails. The lack of quantitative fit with the model described above suggests that the assumptions made in developing this model are oversimplified. (c) 1994 John Wiley & Sons, Inc. 相似文献
11.
12.
Several amino acids and peptides were partitioned in poly(ethylene glycol) (PEG)/magnesium sulfate (MgSO4) aqueous two-phase systems. The partition coefficients measured for amino acids and peptides were proportional to the difference in PEG concentration between the phases. The partitioning data were used to calculate the relative hydrophobicities of individual amino acids, which were then used to estimate the hydrophobicities of peptides. The partition coefficients of several dipeptides were predicted from these estimated hydrophobicities. A series of peptide fragments that compose the pentapeptide leucine enkephalin was also partitioned in the PEG/MgSO4 system. Again, the partitioning depended upon the hydrophobicities of the individual exposed amino acids. 相似文献
13.
This report continues or examination of the effect of genetically engineered charge modifications on the partitioning behavior of proteins in aqueous two-phase extration. The genetic modifications consisted of the fusion of charged peptide tails to beta-galactosidase and charge-change point mutations to T4 lysozyme. Our previous article examined the influence of these charge modifications on partitioning as a function of interfacial potential difference. In this study, we examined charge directed partitioning behavior in PEG/dextran systems containing small amounts of the charged polymers diethylaminoethyl-dextran (DEAE-dextran) or dextran sulfate. The best results were obtained when attractive forces between the protein and polymer were present. Nearly 100% of the beta-galactosidase, which carries a net negative charge, partitioned to the DEAE-dextran-rich phase regardless of whether the phase was dextran or PEG. In these cases, cloudiness of the protein-rich phases suggest that strong charge interactions resulted in protein/polymer aggregation, which may have contributed to the extreme partitioning. Unlike the potentialdriven partitioning reported previously, consistent partitioning trends were observed as a result of the fusion tails, with observed shifts in partition coefficient (K(p)) of up to 37-fold. However, these changes could not be solely attributed to charge-based interactions. Similarly, T4 lysozyme, carrying a net positive charge, partitioned to the dextran sulfate-containing phase, and displayed four- to sevenfold shifts in K(p) as a result of the point mutations. These shifts were two to four times stronger than those observed for potential driven partitioning. Little effect on partitioning was observed when the protein and polymer had the same charge, with the exception of beta-galactosidase with polyarginine tails. The high positive charge density of these tails provided for a localized interaction with the dextran sulfate, and resulted in 2- to 15-fold shifts in K(p). (c) 1995 John Wiley & Sons, Inc. 相似文献
14.
Phase diagram data at 4 degrees C was determined for the aqueous two-phase systems composed of polyethylene glycol, dextran, and water. The Flory-Huggins theory of polymer thermodynamics was used to correlate partitioning of biomolecules in these aqueous two-phase systems resulting in a simple linear relationship between the natural logarithm of the partition coefficient and the concentration of polymers in the two phases. This relationship was verified by partitioning a series of dipeptides which differ from one another by the addition of a CH(2) group on the c-terminal amino acid residue and by utilizing a set of low-molecular-weight proteins. The slope of the line could be expressed in terms of the interactions of the biomolecule with the phase forming polymers and water. The main result for the dipeptides was that knowledge of the partition coefficient in any of the PEG/dextran/water systems, regardless of polymer molecular weight, enabled prediction of the coefficient in all of the systems. The dipeptides were also used for determination of the Gibbs free energy of transfer of a CH(2) group between the phases. This quantity was correlated with polymer concentration, thus establishing a hydrophobicity profile for the PEG/ dextran/water systems. The methodology for predicting dipeptide partition coefficients was extended to proteins, where it was found that low-molecular-weight proteins gave a linear relationship with the tie line compositions of a phase diagram. 相似文献
15.
Summary PEG has been activated using epoxy-oxirane, epichlorohydrin and periodate based reactions. The coupling to activated PEG of several protein ligands of different sizes was investigated. Glutathione, trypsin inhibitor, Protein A and anti-BSA have been bound to PEG and used to increase the selectivity of protein separation in aqueous two-phase systems. 相似文献
16.
M. T. Prez A. I. García-Prez L. Lucas P. Sancho 《Journal of chromatography. B, Analytical technologies in the biomedical and life sciences》1996,680(1-2):183-188
Rat carrier erythrocytes prepared by hypotonic dialysis (80 mOsm/kg) are a heterogeneous cell population that can be fractionated into two-well-defined cell subpopulations by a single partition step, in charge-sensitive dextran-poly(ethylene glycol) aqueous two-phase systems. One subpopulation (65% of total cells) has a decreased cell surface charge and is partitioned at the interface in a single step and then fractionated by counter-current distribution as a low-G subpopulation. The other subpopulation (35% of total cells) has charge surface properties more like those of the untreated control rat erythrocytes. These last cells are partitioned in the top phase in a single step and then fractionated by counter-current distribution as a high-G subpopulation. Partitioning is more effective in reducing cell heterogeneity in hypotonized rat erythrocyte populations than is density separation in Ficoll-paque which only separates a small less dense cell subpopulation (5% of total cells), with the most fragile cells, from a larger and more dense cell subpopulation (95% of total cells), with a mixture of fragile and normal cells. This simple cell separation procedure quickly reduces carrier erythrocyte heterogeneity in a single partitioning step so it can be used to prepare cells for in vivo studies. 相似文献
17.
G.M. Zijlstra M.J.F. Michielsen C.D. de Gooijer L.A. van der Pol J. Tramper 《Bioseparation》1998,7(2):117-126
The effect of the important ATPS- and bufferparameters on IgG and hybridoma partitioning in ATPSscontaining a PEG-dye-ligand was studied. Objective wasto establish selection criteria for effective ligandsfor extractive fermentations with animal cells inATPSs.In the presence of 1% PEG-dye-ligand the binding ofIgG to the PEG-ligand was affected severely by theNa-chloride concentration. The tie-line length and pHaffected IgG partitioning to a lesser extent. Thedesired partitioning of IgG into the top phase, wasonly obtained when, in addition to the 10 mmol/kgK-phosphate buffer, no Na-chloride was present. In anATPS culture medium, with ± 35 mmol/kg Na-bicarbonateand 60 mmol/kg Na-chloride, increasing thePEG-dye-ligand concentration up to 100% did increasethe partition coefficient, but was not effective inconcentrating the IgG in the top phase of ATPS culturemedium at a pH of 7.8.Furthermore, addition of the PEG-dye-ligand to ATPSculture medium changed the hybridoma cell partitioningfrom the bottom phase to the interface. 相似文献
18.
A new simple and rapid method for the determination of protein-protein association constants is described. By maximizing experimental conditions in which size becomes the controlling variable, analysis of the effect of protein concentration on the partitioning behavior of proteins in aqueous two-phase polymer systems permits an accurate estimate of protein association constants. When employed to investigate the tetramer-dimer dissociation of human oxy- and methemoglobin in the presence and absence of high salt concentration, values for the dissociation constant are obtained that are consistent with those obtained by other methods. 相似文献
19.
Homoserine has been analyzed quantitatively by gas-liquid chromatography of its N-heptafluorobutyryl isopropyl ester. The method was confirmed by analysis of the soluble amino acid fraction of pea leaves. The possible use of the method for analysis of methionine is discussed. 相似文献
20.
A modified Flory–Huggins equation accounting for the solvation of polymer molecules by water molecules was used to model the phase behavior of aqueous two-phase systems (ATPS) formed by poly(ethylene glycol) (PEG) and dextran. The parameters of the equation were obtained by fitting experimental equilibrium data either accounting for or disregarding dextran polidispersity. The modified equation was subsequently applied to calculate partition coefficients of biomolecules in these systems. It was found that accounting for polidispersity did not affect significantly the calculated phase equilibrium, but increased the agreement of calculated partition coefficients with experimental data. Further improvement was obtained by using a size dependent interaction parameter for dextran pseudo-components. 相似文献