首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The maturation pattern of sexual reproduction in Hizikia fusiformis (Harvey) Okamura (Sargassaceae, Phaeaophyta) was examined in 2003 at Yunao Bay, Nanao Island, Shantou, China. Maturation began in mid-April (seawater temperature 19–21 C), reached the peak in mid-May (maturation rate ca. 70%, and seawater temperature 23.5–25 C) and finished in late-June (seawater temperature 27.5–30 C). The Hizikia plants continued to gain the length from the beginning of maturation season to reach a maximum mean length of 34.8 cm in mid-May, after which the mean length was reduced drastically due to the senescence and rupture of the larger plants in size. The major portion of the mature plants belonged to the larger plants between April and May, but to the smaller ones in June. It is suggested that the plant must achieve a critical size before reproductive maturation occurred. There was a positive relationship between the number of receptacles (NR), as well as the reproductive allocation (RA), and the plant size of Hizikia population, with the recorded maximum values of NR and RA being 1220 and 64.3% respectively, for a single plant.  相似文献   

2.
McKee  Dermot  Atkinson  David 《Hydrobiologia》2000,420(1):55-62
Populations of the mayfly Cloeon dipterum from 48 ponds (3000 l fibre-glass tanks of 1 m depth) were monitored over the course of 1 year. To simulate possible patterns of climatic change, the ponds were subject to three temperature treatments: continuous heating to 3 °C above ambient; heating to 3 °C above ambient during the summer only; and no heating. Further experimental complexity included enhanced nutrient input into the ponds and the presence or absence of fish, giving a factorial combination of 3 temperature regimes × 2 nutrient levels × presence/absence of fish predation.Few nymphs were found in the presence of fish. Where fish were absent, the temperature treatments did not significantly affect nymph abundances, and only marginally influenced mean nymph body-lengths. In contrast, the nutrient treatment had significant effects on both nymph abundance and size, with greater numbers of generally larger nymphs occurring in those fish-free ponds receiving additional nutrients. Adult emergence began earlier in the year from the heated ponds, particularly those ponds receiving additional nutrients. Adult body-length differed between temperature treatments, but consistent patterns were difficult to ascertain because of interactions with nutrient treatment and seasonal effects.Our results show that during the short term at least, elevated temperature as a simulation of climate change does not have an overwhelming influence on either mayfly abundance or size. The influence of temperature is subtle and subject to complex interaction with other habitat variables. We therefore suggest that the direct consequences of small changes in temperature will likely be of little significance to C. dipterum, relative to indirect effects operating through interactions with predation and nutrient input.  相似文献   

3.
Preimaginal development, mortality, aphid consumption rate, and size and weight upon reaching the adult stage of the aphidophagous coccinellids Hippodamia convergens Guérin-Méneville and Coccinella septempunctata L. collected from Karditsa, central Greece, were examined at four constant temperatures (14, 17, 20 and 23 °C) and L16:D8. The coccinellids fed on the tobacco aphid, Myzus persicae nicotianae Blackman. Egg, larval and pupal mortality was highest at 14 °C reaching 85.0, 73.8 and 29.4% in H. convergens and 49.3, 75.4 and 58.8% in C. septempunctata, respectively. Total preimaginal development ranged from 57.2 to 70.4 days at 14 °C, and to 16.9 and 22.1 days at 23 °C in H. convergens and C. septempunctata, respectively. Heavier and larger adults of H. convergens were obtained at 17 and 20 ° C. In C. septempunctata temperature did not affect adult weight while the lowest size was observed at 14 and 17 °C. Day-degrees requirements for preimaginal development in H. corvengens were 212.9 above a developmental threshold of 11.0 °C. The corresponding values for C. septempunctata were 281.5 and 10.7 °C. In H. convergens total and daily aphid consumption ranged from 46.8 aphids at 14 °C to 85.0 aphids at 23 °C and from 1.5 aphids at 14 °C to 9.2 aphids at 23 °C, respectively. The corresponding values for C. septempunctata were 112.0 and 2.7 at 14 °C and 157.7 and 12.4 at 23 °C. The results show the high potential of both predators as biological control agents against the tobacco aphid. The knowledge obtained could be essential for their appropriate use and for the improvement of mass rearing systems.  相似文献   

4.
Synopsis Contraction time of an isolated white muscle from the temperate water Girella tricuspidata is proportional to temperature and inversely proportional to fish size. Between ambient (14°C) and 8° C muscle from all sizes of fish is similary affected by temperature; the lower the temperature the more the contraction time is slowed. Below 8° C muscle from large fish is affected more than is muscle from small fish. Contraction time of white muscle in the antarctic notothenioid Pagothenia borchgrevinki is about twice as fast as that of Girella tricuspidata at temperatures between 2–12°C, but at normal body temperature, contraction time of muscle from Girella tricuspidata (14°C) is about twice as fast as that of Pagothenia borchgrevinki (–1.9°C).  相似文献   

5.
Seasonal variation of egg size and number in a Daphnia pulex population   总被引:4,自引:4,他引:0  
Seasonal variation of egg size and number was examined in a Daphnia pulex population inhabiting a vernal pond. In this population, size at maturity declines at midseason, probably as an adaptive response to size-selective predation by larvae of the salamander Ambystoma. The larger early season individuals produce more and larger eggs than the smaller late season individuals. Age at maturity does not vary between seasons. Laboratory experiments indicate that temperature may affect egg size, egg number and size at maturity. However, field data suggest that temperature accounts for only a small fraction of the total variation in egg size and number. Indirect measures of nutrition indicate that food limitation does not cause the seasonal decline in egg size and number. The seasonal change in reproductive traits is well correlated with changes in invertebrate and vertebrate predation. Examination of predator feeding preferences and their impact on Daphnia mortality indicate that variation of reproductive traits is most likely a complex adaptation to changing predation regimes.  相似文献   

6.
Jost Borcherding 《Oecologia》1991,87(2):208-218
Summary The annual development of the gonads of Dreissena polymorpha was studied at three sampling sites in two lakes over 3 and 1 1/2 years, respectively. A resting stage occurred after the last spawning in summer/autumn. Oogenesis (accompanied by multiplying segmentation of the oogonia and early growth processes of its oocytes) restarted in specimens at least 1 year old at low temperatures (below 10° C) during winter and early spring. At one location (Fühlinger See) the onset of the spawning season was correlated with an increase of water temperatures above 12° C. At 2 m depth, two main spawning periods in May and August were normally recognized, the first at temperatures of 12–16° C, the second at 16–21° C. It was clearly demonstrated for the first time in Dreissena polymorpha that the oocytes became mature in successive cohorts within one gonad. A female mussel may spawn several times during the reproductive season. At 9 m depth, the onset of spawning also started at about 12° C; this occurred in late summer, with two spawning periods within 1 month at a temperature range of 12–16° C. At another location (Heider Bergsee) the size of the gonads and the oocytes was reduced during April of both years studied, when food supply was low simultaneously with rapidly rising water temperatures in this shallow lake. There was no spawning period during spring. The major spawning period was delayed until July (temperatures 19–22°C). This shows (1) the synchronizing influence of low winter temperatures on the annual reproductive cycle and (2) a temperature threshold of at least 12° C for the start of the spawning processes. The results are discussed with regard to the geographical limits of further spread of Dreissena polymorpha.  相似文献   

7.
Increased growth during winter increased the incidence of age 1+ Salmo salar smolts in spring. High condition factor in spring and good growth in summer was associated with a high incidence of sexually mature males in autumn. In two experiments, groups (n=160–237 per group) of individually identified parr, either ungraded (lower and upper modal groups: LMG, UMG) or size-graded (LMG only), were reared at either 10, 6 or 3 °C overwinter (Nov to May). At 10 °C, up to 51% of parr originally in the LMG became smolts in spring at age 1+. In contrast, at either 6 or 3 °C (control), < 6% of LMG parr became smolts. The probability of being recruited into the UMG overwinter was positively related to initial body size, and was increased by size-grading. Smolt recruitment was two-fold higher among females compared to males; a proportion of males by age 0+ had already opted to mature at age 1+ rather than smolt at age 1+. In contrast, smolting at age 1+ was not inhibited in males previously mature at age 0+. During summer (May to Nov), all experimental groups were reared at ambient temperature, each subdivided between fresh water (max 21 °C) or seawater (max 15 °C). Good growth in seawater of winter recruits into the UMG confirmed they had completed smolting. Mortality in seawater among parr was 41–83%, and among smolts was 10–22%. Specific growth rate during summer was inversely related to winter rearing temperature. The incidence of sexual maturity in autumn at age 1+ among male parr was positively related to winter rearing temperature, fork length and condition factor in May, but there was large variation among individuals with respect to body size and maturity. Summer rearing in seawater reduced growth and the incidence of maturation. Parr and post-smolt maturity was 84–99% and 100% in fresh water respectively, 21–58% and 0% in seawater.  相似文献   

8.
There has been an increasing interest in using the brackish water mysid Neomysis integer as a toxicological test species for Western European estuarine systems. In this respect, more data on growth, moulting and development in this species is needed. The influence of prevailing environmental variables (e.g. temperature, salinity) and age on these processes as well as their optimal range have to be known in order to develop optimal laboratory cultures and to differentiate between chemically induced variability and natural variability in toxicity testing. Individual post-marsupial growth (size, intermoult period, growth factor) was studied from first day neonates until adulthood at eight environmentally relevant temperature-salinity conditions. Three salinities (5, 15 and 30 psu) were tested at 15 and 20 °C, and two more extreme temperatures (8 and 25 °C) were tested at a salinity of 5 psu.Survival and growth of N. integer were detected within the whole range tested, but sexual maturation was only possible in the narrower range of 15-25 °C and 5-15 psu. The size at maturity of N. integer increased with decreasing temperature and increasing salinity. Salinity seems to have a stronger effect than temperature on the duration of maturation. The sigmoid von Bertalanffy growth model was fitted to the individual and pooled data, except for the 8 °C experiment where growth was linear. Estimates from pooled data were comparable with individually based estimates, but generally underestimated the asymptotic length. Temperature was negatively correlated with the asymptotic length and positively correlated with the growth constant K. Higher temperatures caused smaller intermoult periods but had no effect on the growth increment, while salinity effects were less straightforward and dependent on the water temperature. A tool is provided to estimate the age, moult number, intermoult period, growth factor and growth rate from the body standard length of N. integer. Experimentally derived von Bertalanffy parameter estimates resulted in a higher growth performance index compared with field-based estimates for the Schelde estuary and Galgenweel populations of N. integer.  相似文献   

9.
McCarthy  Brian C.  Quinn  James A. 《Oecologia》1992,91(1):30-38
Summary Fruit survival patterns, from fertilization to maturation, were examined for Carya ovata and C. tomentosa in a New Jersey USA forest. We observed fruiting and shoot growth characteristics over a 3-yr period to determine: (1) the patterns of fruit survivorship (from initiation to maturity) within and among years, (2) the relationships between shoot growth, fruit initiation, and fruit survival to maturity, and (3) the influence of phytophagous insects on fruit survival. We found that within years, smaller infructescences (1–2 fruits) exhibited greater relative survivorship than larger ones (3–4 fruits); however, absolute nut production was greatest for mid-sized infructescences (2–3 fruits). Among years, fruit survivorship varied considerably within populations. Across the 3-yr period we observed average fruit survivorship to be convex, linear, and concave, respectively. Likewise, shoot characteristics (length, width, number of leaves) varied concomitantly (decreasing fruit survivorship was accompanied by decreasing shoot length and number of leaves). Within years, we found no strong relationship between shoot characteristics and infructescence size and survival. The patterns of tree-to-tree variation suggested a strong genetic basis to shoot growth and fruit maturation. However, patterns of variation within and among years also indicated a strong environmental influence on these traits as well. Natural phytophagy by insects was observed to be low (<5%); however, shoot defoliations of 10–25% were not uncommon. Experimental defoliations (ambient, 10–15%, 20–40%, and 75–100%) did not result in reduced survival to maturity. Collectively, the data suggest that year-to-year variability in shoot growth has a greater influence on fruit maturation patterns than within year fruit-shoot relations.  相似文献   

10.
The effects of temperature and larval density on survival of larvae, growth rate, age at pupation, and adult size (measured as wing length and dry weight) of laboratory-reared Anopheles gambiae (Diptera: Culicidae) were studied. Larvae were reared at three temperatures (24, 27 and 30°C) and three densities (0.5, 1 and 2 larvae/cm2). The effects of density and temperature strongly interacted to determine the mosquitoes' life-history parameters. Survival was highest at the intermediate temperature of 27°C. The differences between the temperatures increased with increasing density. At 30°C survival decreased as density increased, but at 27°C increasing density led to higher survival. Age at pupation increased as temperature decreased from 30°C to 24°C and as density decreased from 2 to 0.5 larvae/cm2. Adult size also increased as temperature decreased, but showed a negative correlation with density only at 27°C. In contrast, at 24°C and 30°C a decrease in density led to a decrease in adult size. Growth rate showed a similar pattern. At 27°C growth rate decreased as density increased, but at other temperatures the opposite trend was observed.  相似文献   

11.
Summary Pterostichus oblongopunctatus belongs to the type of spring breeding carabids with adult hibernation. Ovarian maturation is under the control of photoperiod: the females need a change of day length to mature. The first step of egg maturation (previtellogenesis) is bound to short day, the second step (vitellogenesis) to long day.The short day effect is achieved almost only at temperatures of 10 to 15°C; it is completely suppressed by 20°.The males mature under very different photoperiods and temperatures, but long day diminishes the percentage of mature males slightly, as well as does the higher temperature of 20°C in short day as compared with 15°C.Simulation of climatic conditions as experienced by the beetles from autumn throughout winter until spring in the laboratory showed that a short span of favourable temperatures at short day as experienced in nature in autumn allows the females to accomplish the short day development. But this maturation effect is still more diminished the longer temperatures below 5°C act on the beetles. Following that, a second period of temperatures between 10–15°C must restore the short day maturation effect if full maturity shall be gained in the following long day.The beetles are able to store reserve materials under long day at 20°C. After such a period they are able to have a normal previtellogenesis in spite of a severe shortage of food during short day. These experiments indicate that the failure in short day development outside the temperature range of 10–15°C is not a matter of an especially well balanced over-all metabolism in this favourable temperature range. It seems rather that hormonal systems involved in the short day phase of oogenesis act only within this span of temperature.Supportet by the Deutsche Forschungsgemeinschaft.  相似文献   

12.
To understand the physiological and ecological responses of marine fishes to the change of water temperature, newly-hatched larvae of Yellowtail clownfish Amphiprion clarkii were reared in captivity at water temperatures of 23, 26 and 29 °C till they completed the metamorphosis to juvenile phase, and larval survival, development, growth and feeding were evaluated during the experimental period. The results showed that water temperature influenced the physiological performance of larvae of A. clarkii significantly. The survival and growth rates of larvae of A. clarkii increased significantly with the increase of water temperature from 23 to 29 °C (P < 0.05). Water temperature also influenced larval development of A. clarkii significantly and larvae reared at 23 °C took longer time for post-larval development and metamorphosis compared to 26 and 29 °C (P < 0.05). Total length and body weight for post-larval development and metamorphosis decreased with the increase of water temperature from 23 to 29 °C (P < 0.05). Q10 in developmental rate was higher than in daily growth rate at the same rearing temperature, indicating that at water temperature had greater influence on larval development than on growth. Water temperature also influenced larval feeding of A. clarkii significantly with feed ration (FR) and feed conversion efficiency (FCE) increased with the increase of water temperature from 23 to 29 °C (P < 0.05). There was a positive correlation between FR and specific growth rate (SGR) (P < 0.05) but not between FCE and SGR (P > 0.05), indicating that FR influenced growth rate significantly in larvae of A. clarkii. This study demonstrated that the physiological responses of larvae of A. clarkii to the change of water temperature and confirmed that water temperature influenced larval survival, development, growth and feeding significantly. This study suggests that the decline of larval survival and growth rates, extension of pelagic larval duration and reduction of larval feeding at lower temperature have ecological impacts on larval dispersal and metamorphosis, juvenile settlement and population replenishment in A. clarkii in the wild.  相似文献   

13.
The fish species Cyprinidon artifrons, Floridichthys carpio, and Gambusia yucatana inhabit shallow mangrove ponds off the coast of Belize. Portions of these ponds experience a diurnal temperature change from 26 °C at night to 40 °C and above during midday. Repeated field observations indicate Cyprinidon prefer the warmer (and much larger) portions of the ponds whereas the other two species stay in the cooler areas.The hypothesis that temperature is serving as a cue for partitioning within the ponds was supported by laboratory thermal gradient tests in which Cyprinidon preferred temperatures clearly higher than the other two species.The critical thermal maximum (CTM) was determined for the three species using members that had been acclimated to either a daily cycling temperature similar to that for the ponds, or to the mean of the 24-hour cycle (30 °C). Cyprinidon acclimated to the cycling temperature had a CTM of 45.5 °C, which apparently sets a new record for fish CTM. Acclimation to a constant 30 °C lowered the CTM to 43.7 °C. Floridichthys and Gambusia acclimated to the cycled temperature had CTMs of 43.9 and 43.3 °C respectively, and 42.5 and 42.6 °C for those acclimated to 30 °C.All three species appear to have the ability to tolerate the high temperatures throughout the ponds but only Cyprinidon utilize the whole pond during the day. This may help to explain the large populations of Cyprinodon found in these mangrove ponds compared to the other species.  相似文献   

14.
Eight water monitor lizards, Varanus s. salvator, were captured; four individuals from an oil palm estate on the Malayan peninsula, and four from fresh water-deficient Tulai island 65 km off-shore in the South China Sea. They were fitted with a radio transmitter attached to a thermistor which was inserted into the cloaca of the animals and released. The heating rate during basking was measured as 0.117 and 0.118 °C·min-1 while the daily cloacal temperature fluctuated between 29.5–37.3 °C. Cloacal temperature was measured on other individuals caught at random times during the day, which revealed a considerable daily and individual variation. The average cloacal temperature during activity was 30.4 °C. The peak activity appeared when body temperature was 31 °C. Thermoregulation by behavioural means included cooling in water and reducing heat loss at night by sleeping in burrows. The cooling rate for two individuals when submerged in 29 °C water was 0.308 and 0.340 °C·min-1. There appeared to be a strong correlation between ambient temperature and cloacal temperature.Abbreviations bw body weight - T a ambient temperature - T a body temperature - T c cloacal temperature - TOP Timor Oil Palm Estate - TUL Tulai Island  相似文献   

15.
The effect of temperature on predation by Ilione albiseta (Diptera: Sciomyzidae) on Lymnaea peregra was investigated at 14°, 17°, 20°, 23° and 26°C. The mean dry weight of snail tissue (Lymnaea peregra) attacked and consumed per day by first and second instar I. albiseta larvae was highest at 20°C while for third instar and total larval duration period it was greatest at 23°C. The mean number of snails killed per day during the third instar was also highest at 23°C. The total amount of snail tissue consumed by I. albiseta larvae increased significantly from first to second instar and from second to third instar at each constant temperature. Mean survival period of unfed first instar larvae decreased from 28.4 days at 14°C to 11 days at 26°C and the mean length of the second instar cephalopharyngeal skeleton decreased with increasing temperatures. As temperature increased the rate of consumption of oxygen (dissolved in water) by first and third instar larvae rose.  相似文献   

16.
The energetic adaptations of non-breeding Tengmalm's owls (Aegolius funereus) to temperature and fasting were studied during the birds' autumnal irruptions in western Finland. Allometric analysis (including literature data and two larger owl species measured in this study) indicates that the basal metabolic rate of owls is below the mean level of non-passerine birds. However, the basal metabolic rate of the 130-g Tengmalm's owl (1.13 W) is higher than in other owls of similar size. This is probably related to its northern distribution and nomadic life history. Relative to its size, Tengmalm's owl has excellent cold resistance due to effective insulation (lower critical temperature +10°C, minimum conductance 0.19 mW·cm-2·°C-1). Radiotelemetric measurements of body temperature showed that the level of body temperature is lower than for birds in general (39.4°C at zero activity) and that the amplitude of the diurnal cycle is also low (0.2–0.6°C). In contrast to many other small birds, Tengmalm's owls do not enter hypothermia during a 5-day fast at thermoneutrality or in cold. Moreover, while the metabolic rate per bird shows the expected mass-dependent decrease, the mass-specific rate decreases only slightly during the fast. In line with this, there was no decrease in the plasma triiodothyronine concentration during the fast in the owl, whereas a dramtic drop was observed in the pigeon and Japanese quail that were used as a reference. Despite this, the owl has an excellent capacity for fasting because of its ability to accumulate extensive fat depots and its low overall metabolic rate. Fasting reduced evaporative water loss to 50% of that in the fed state. Calculations show that the oxygen consumption observed in fasting birds would involve a production of metabolic water barely sufficient to compensate for evaporative water loss. The threat of dehydration may thus set a limit to the decrease in metabolic rate in fasting owls (owls rely totally on water either ingested with food or produced metabolically). We conclude that the metabolic strategy in Tengmalm's owl is largely dictated by an evolutionary pressure for fasting endurance. With the restrictions set by small body size and water economy, this bird has apparently taken these adaptations to an extreme. The constraints that preclude hypothermia, which could increase the capacity for fasting even more, remain unknown.Abbreviations BM body mass - BMR basal metabolic rate - EWL vaporative water loss - MR metabolic rate - T3 triiodothyronine - T a ambient temperature - T b body temperature - VO2 oxygen consumption  相似文献   

17.
Damage to primary photosynthetic reactions by drought, excess light and heat in leaves of Macroptilium atropurpureum Dc. cv. Siratro was assessed by measurements of chlorophyll fluorescence emission kinetics at 77 K (-196°C). Paraheliotropic leaf movement protected waterstressed Siratro leaves from damage by excess light (photoinhibition), by heat, and by the interactive effects of excess light and high leaf temperatures. When the leaves were restrained to a horizontal position, photoinhibition occurred and the degree of photoinhibitory damage increased with the time of exposure to high levels of solar radiation. Severe inhibition was followed by leaf death, but leaves gradually recovered from moderate damage. This drought-induced photoinhibitory damage seemed more closely related to low leaf water potential than to low leaf conductance. Exposure to leaf temperatures above 42°C caused damage to the photosynthetic system even in the dark and leaves died at 48°C. Between 42 and 48°C the degree of heat damage increased with the time of exposure, but recovery from moderate heat damage occurred over several days. The threshold temperature for direct heat damage increased with the growth temperature regime, but was unaffected by water-stress history or by current leaf water status. No direct heat damage occurred below 42°C, but in water-stressed plants photoinhibition increased with increasing leaf temperature in the range 31–42°C and with increasing photon flux density up to full sunglight values. Thus, water stress evidently predisposes the photosynthetic system to photoinhibition and high leaf temperature exacerbates this photoinhibitory damage. It seems probable that, under the climatic conditions where Siratro occurs in nature, but in the absence of paraheliotropic leaf movement, photoinhibitory damage would occur more frequently during drought than would direct heat damage.Abbreviations and symbols PFD photon flux area density - PSI, PSII photosyntem I, II - F M, F O, F V maximum, instantaneous, variable fluorescence emission - PLM paraheliotropic leaf movement; all data of parameter of variation are mean ± standard error  相似文献   

18.
Field observations on temperature and pH of a small pond showed that a amphipod population of Hyalella azteca was exposed to variable seasonal pH between 5.10–5.85, and water temperatures between 2–21 °C. Laboratory experiments were designed to simulate seasonal temperatures and field pHs of a small pond habitat. Laboratory bioassay experiments were conducted to determine the survival of Hyalella azteca at pHs 4, 5, 6 and 7, and varying temperatures of 5°, 10°, 15°, 20° and 25 °C.The LT100 at pH 4 and 25 °C was 5.7 ± 0.47 days, compared to 47.3 ± 2.49 days at 5 °C. An Analysis of Variance (ANOVA) showed temperature was a significant (p > 0.0001) source of variation in the acute lethality of pH to H. azteca. A Duncans Multiple Range Test (DMRT) further showed that in laboratory experiments at pH 4, there was a significant difference ( = 0.01) between the LT100s at 5°, 10°, 15° and 20 °C, but not between temperatures 20° and 25 °C.  相似文献   

19.
Summary A bioenergetics simulation model of the growth and life history of the aquatic predator Nephelopsis obscura Verrill was developed and validated using both experimentation and sensitivity analysis. Sensitivity analysis demonstrated that the model's internal feedbacks resulted in stability similar to homeostatic biological mechanisms. The experimental validation showed the model very accurately predicts growth at 10°C and 15°C but is slightly biased at 20°C. Simulation output was also consistent with the observed data on Nephelopsis from the site from which the simulation input data were obtained and indicated that Nephelopsis growth is more sensitive to prey variation among years than to temperature variation. Although built using data from a population at one extreme of the spectrum observed in life history and growth, the model was able to emulate the growth of Nephelopsis throughout its range. Thus, the variability in size and life history observed in the field can be explained as the result of a plastic phenotype responding to different habitat conditions.  相似文献   

20.
M. Yúfera 《Hydrobiologia》1987,147(1):319-322
The embryonic development times of two strains of Brachionus plicatilis (Bs and S-1) cultured on three different algal diets (Nannochloris oculata, N. maculata and Nannochloropsis gaditana), have been determined at 20°C, 25°C and 30°C. As expected, the embryonic development times decreased with increasing temperature in all cases. However, embryos from adults fed on N. gaditana tended to develop more slowly than those of individuals fed on the other algal species. Mean egg volume was also affected by diet, larger eggs being produced by females fed on N. gaditana. No obvious relationship between egg size and temperature was detected.Two principal factors seemed to affect the embryonic development time. The first was temperature which acts through its well known effect on metabolic rates. The second was maternal diet which probably affects development time through its effect on yolk content, as reflected in the size of the egg.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号