首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Renal cell carcinoma (RCC) is a heterogeneous histological disease and it is one of the most common kidney cancer. The treatment of RCC has been improved for the past few years, but its mortality still remains high. Chelerythrine (CHE) is a natural benzo[c]phenanthridine alkaloid and a widely used broad‐range protein kinase C inhibitor which has anti‐cancer effect on various types of human cancer cells. However, its effect on RCC has not been fully elucidated. In this study, we evaluated the effect and mechanism of CHE on RCC cells. Our study showed that CHE induced colony formation inhibition and G2/M cell cycle arrest in a dose‐dependent manner in RCC cells. In addition, CHE increased cellular ROS level, leading to endoplasmic reticulum (ER) stress, inactivating STAT3 activities and inducing apoptosis in RCC cells which were suppressed by NAC, a special ROS inhibitor. We further found that both knockdown of ATF4 protein and overexpression of STAT3 protein could reduce CHE‐induced apoptosis in Caki cells. These results demonstrated that the apoptosis induced by CHE was mediated by ROS‐caused ER stress and STAT3 inactivation. Collectively, our studies provided support for CHE as a potential new therapeutic agent for the management of RCC.  相似文献   

4.
Ye Z  Wong CK  Li P  Xie Y 《Biochimica et biophysica acta》2008,1780(12):1383-1387
Severe acute respiratory syndrome (SARS) coronavirus (CoV) spread from China to more than 30 countries, causing severe outbreaks of atypical pneumonia and over 800 deaths worldwide. CoV primarily infects the upper respiratory and gastrointestinal tract; however, SARS-CoV has a unique pathogenesis because it infects both the upper and lower respiratory tracts and leads to human respiratory diseases. SARS-CoV genome has shown containing 14 open reading frames (ORFs) and 8 of them encode novel proteins. Previous reports show that overexpression of ORF-3a, ORF-3b and ORF-7a induce apoptosis. In this report, we demonstrate that overexpression of ORF-6 also induces apoptosis and that Caspase-3 inhibitor and JNK inhibitor block ORF-6 induced apoptosis. Importantly, the protein level of ER chaperon protein, GRP94, was up-regulated when ORF-6 was overexpressed. All these data suggest that ORF-6 induces apoptosis via Caspase-3 mediated, ER stress and JNK-dependent pathways.  相似文献   

5.
6.
Androgens provide survival signals to prostate epithelial cells, and androgen ablation induces apoptosis in the prostate gland. However, the molecular mechanisms of actions of the androgen-signaling pathway in these processes are not fully understood. Here, we report that androgens induced expression of the cellular Fas/FasL-associated death domain protein-like inhibitory protein (c-FLIP) gene, which is a potent inhibitor of Fas/FasL-mediated apoptosis. The androgen receptor was recruited to the promoter of the c-FLIP gene in the presence of androgens. We found that c-FLIP promoter contained multiple functional androgen response elements. In addition, we show that c-FLIP overexpression accelerated progression to androgen independence by inhibiting apoptosis in LNCaP prostate tumors implanted in nude mice. Our results suggest that the androgen receptor affects survival and apoptosis of prostate cells through regulation of the c-FLIP gene in response to androgens.  相似文献   

7.
beta-Amyloid precursor protein binding protein 1 (APP-BP1) was previously identified based on its binding to the carboxyl terminal of beta-amyloid precursor protein. In this report, we have discovered that a mutation of dAPP-BP1 (Drosophila ortholog of APP-BP1) hinders tissue development, causes apoptosis in imaginal disc cells, and blocks the NEDD8 conjugation pathway. We show that dAPP-BP1 specifically binds the intracellular domain of APP-like protein (APPL). The dAPP-BP1 mutation partially suppresses the abnormal macrochaete phenotype of Appl(d), while overexpression of dAPP-BP1 causes abnormal macrochaetes. When APPL is overexpressed, the normal bristle pattern in the fly thorax is disturbed and apoptosis is induced in wing imaginal discs. APPL overexpression phenotypes are enhanced by reducing the level of dAPP-BP1. APPL overexpression is shown to inhibit the NEDD8 conjugation pathway. APPL-induced apoptosis is rescued by overexpression of dAPP-BP1. Our data suggest that APPL and dAPP-BP1 interact antagonistically during Drosophila development.  相似文献   

8.
9.
This study investigates apoptotic effects of protein kinase C (PKC) delta and theta in neuroblastoma cells. 12-O-tetradecanoylphorbol-13-acetate induces apoptosis in SK-N-BE(2) neuroblastoma cells overexpressing PKCdelta or PKCtheta, but not PKC epsilon. The PKC inhibitor GF109203X does not suppress this apoptotic effect, suggesting that it is independent of the catalytic activity of PKC. The isolated catalytic domains of PKCdelta and PKCtheta or the regulatory domain (RD) of PKCtheta also induce apoptosis in neuroblastoma cells. The apoptotic responses are suppressed by caspase inhibition and by Bcl-2 overexpression. The PKCtheta RD induced apoptosis also in Jurkat cells. Colocalisation analysis revealed that the PKCtheta RD primarily localises to the Golgi complex. The C1b domain is required for this localisation and removal of the C1b domain results in a PKCtheta construct that does not induce apoptosis. This suggests that the PKCtheta RD has apoptotic activity and that Golgi localisation may be important for this effect.  相似文献   

10.
Tumor necrosis factor-α (TNF-α) is suggested to induce mitochondrial dysfunction and apoptosis of renal tubular epithelial cells that possibly exacerbates renal function in chronic kidney disease (CKD). Here we investigated whether suppressor of cytokine signaling-1 (SOCS-1), an inhibitor of cytokine signaling, was involved in TNF-α-induced human renal tubular epithelial cells (HKCs) oxidative stress and apoptosis. TNF-α promoted the protein and mRNA expression of SOCS-1 in a time and dose dependent manner, along with increased cell apoptosis and activation of apoptosis signal regulating kinase-1(ASK1) in HKCs. Furthermore, overexpression of SOCS-1 in HKCs reduced TNF-α-mediated oxidative stress and apoptosis. Meanwhile, We also found that overexpression of SOCS-1 could regulate the activity of JAK/STAT signaling pathway. In addition, a specific JAK2 inhibitor, AG490, that both attenuated TNF-α-induced oxidative stress, also reduced apoptosis. Taken together, overexpression of SOCS-1 prevented TNF-α-mediated cell oxidative stress and apoptosis may be via suppression of JAK/STAT signaling pathway activation in HKCs.  相似文献   

11.
The oncogene Akt/PKB/RAC-PK is a serine/threonine kinase that mediates survival signals and has protective effects against apoptosis induced by a variety of stimuli. The kinase activity of Akt has been demonstrated to be critical in transmitting survival signals. We found that Akt protein was down-regulated during apoptosis. The down-regulation was blocked by a caspase inhibitor, indicating that Akt was cleaved by caspases during apoptosis. The Akt protein incubation with active caspases in vitro revealed that it was cleaved at three sites to produce 40- and 44-kDa fragments. The two cleavage sites were between the NH(2)-terminal pleckstrin homology domain (PH domain) and the kinase domain (TVAD(108 downward arrow)G and EEMD(119 downward arrow)F) and in the COOH-terminal regulatory domain (SETD(434 downward arrow)T). The loss of COOH-terminal domain of the Akt protein reduced its kinase activity and the overexpression of NH(2)-terminal and COOH-terminal-deleted Akt fragment increased the sensitivity to apoptosis-inducing stimuli. These results indicate that caspase-dependent cleavage of anti-apoptotic Akt turns off the survival signals, resulting in the acceleration of apoptotic cell death.  相似文献   

12.
Death receptor 5 (DR5/TRAIL-R2) is an apoptosis-inducing membrane receptor for tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). In this study, we show that rosiglitazone sensitizes human renal cancer cells to TRAIL-mediated apoptosis, but not normal human mesangial cells. Furthermore, because rosiglitazone-enhanced TRAIL-mediated apoptosis is induced in various types of cancer cells but is not interrupted by Bcl-2 overexpression, this combinatory treatment may provide an attractive strategy for cancer treatment. We found that treatment with rosiglitazone significantly induces DR5 expression at both its mRNA and its protein levels, accompanying the generation of reactive oxygen species (ROS). Both treatment with DR5/Fc chimeric protein and silencing of DR5 expression using small interfering RNAs attenuated rosiglitazone plus TRAIL-induced apoptosis, showing the critical role of DR5 in this cell death. Pretreatment with GSH significantly inhibited rosiglitazone-induced DR5 up-regulation and the cell death induced by the combined treatment with rosiglitazone and TRAIL, suggesting that ROS mediate rosiglitazone-induced DR5 up-regulation, contributing to TRAIL-mediated apoptosis. However, both DR5 up-regulation and sensitization of TRAIL-mediated apoptosis induced by rosiglitazone are likely PPARgamma-independent, because a dominant-negative mutant of PPARgamma and a potent PPARgamma inhibitor, GW9662, failed to block DR5 induction and apoptosis. Interestingly, we also found that rosiglitazone treatment induced down-regulation of cellular FLICE-inhibitory protein (c-FLIPs), and ectopic expression of c-FLIPs attenuated rosiglitazone plus TRAIL-mediated apoptosis, demonstrating the involvement of c-FLIPs in this apoptosis. Taken together, the results of this study demonstrate that rosiglitazone enhances TRAIL-induced apoptosis in various cancer cells by ROS-mediated DR5 up-regulation and down-regulation of c-FLIPs.  相似文献   

13.
Focal adhesion kinase (FAK) has been implicated to play a role in suppression of apoptosis. In this study, we have demonstrated that UV irradiation induced cleavage of FAK and two of its interacting proteins Src and p130(Cas) in Madin-Darby canine kidney cells, concomitant with an increase in cell death. The cleavage of these proteins upon UV irradiation was completely inhibited by ZVAD-FMK, a broad range inhibitor of caspases, and apparently delayed by Bcl2 overexpression. To examine if FAK plays a role in suppressing UV-induced apoptosis, stable Madin-Darby canine kidney cell lines overexpressing FAK were established. Our results showed that a marked (30-40%) increase in cell survival upon UV irradiation was achieved by this strategy. In our efforts to determine the mechanism by which FAK transduces survival signals to the downstream, we found that a FAK mutant deficient in binding to phosphatidylinositol 3-kinase failed to promote cell survival. Moreover, the expression of the Src homology 3 domain of p130(Cas), which competed with endogenous p130(Cas) for FAK binding, abrogated the FAK-promoted cell survival. Together, these results suggest that the integrity of FAK and its binding to phosphatidylinositol 3-kinase and p130(Cas) are required for FAK to exert its antiapoptotic function.  相似文献   

14.
Bcl-2 protein family members function either to promote or inhibit programmed cell death. Bcl-2, typically an inhibitor of apoptosis, has also been demonstrated to have pro-apoptotic activity (Cheng, E. H., Kirsch, D. G., Clem, R. J., et al. (1997) Science 278, 1966-1968). The pro-apoptotic activity has been attributed to the cleavage of Bcl-2 by caspase-3, which converts Bcl-2 to a pro-apoptotic molecule. Bcl-2 is a membrane protein that is localized in the endoplasmic reticulum (ER) membrane, the outer mitochondrial membrane, and the nuclear envelope. Here, we demonstrate that transient expression of Bcl-2 at levels comparable to those found in stably transfected cells induces apoptosis in human embryonic kidney 293 cells and in the human breast cell line MDA-MB-468 cells. Furthermore, we have targeted Bcl-2 specifically to either the ER or the outer mitochondrial membrane to test whether induction of apoptosis by Bcl-2 is dependent upon its localization within either of these membranes. Our findings indicate that Bcl-2 specifically targeted to the mitochondria induces cell death, whereas Bcl-2 that is targeted to the ER does not. The expression of Bcl-2 does result in its cleavage to a 20-kDa protein; however, mutation of the caspase-3 cleavage site (D34A) does not inhibit its ability to induce cell death. Additionally, we find that transiently expressed ER-targeted Bcl-2 inhibits cell death induced by Bax overexpression. In conclusion, the ability of Bcl-2 to promote apoptosis is associated with its localization at the mitochondria. Furthermore, the ability of ER-targeted Bcl-2 to protect against Bax-induced apoptosis suggests that the ER localization of Bcl-2 may play an important role in its protective function.  相似文献   

15.
Ornithine decarboxylase (ODC), the key enzyme of polyamine biosynthesis, has paradoxical roles in apoptosis. Our published papers show overexpression of ODC prevents the apoptosis induced by many cytotoxic drugs. Thapsigargin (TG) is an inhibitor of the sarcoplasmic/endoplasmic reticulum (ER) Ca2+ ATPase (SERCA) pumps and causes ER stress-induced apoptosis. We used ODC overexpressing cell lines to examine whether overexpression of ODC inhibits TG-induced apoptosis. Our results indicated overexpression of ODC attenuated TG-induced apoptosis. Overexpression of ODC blocked procaspse-4 cleavage and phosphorylation of protein kinase-like ER-resident kinase (PERK), triggered by TG. It also attenuated the increase in CAAT/enhancer binding protein homologous protein (CHOP). Cells with overexpressed ODC had greater Bcl-2 expression. Overexpression of ODC preserved the expression of Bcl-2, inhibited the increase in Bak and stabilized mitochondrial membrane potential without the influences of TG. Cytochrome c release and down-stream caspase activation were blocked. That is, overexpression of ODC inhibits the mitochondria-mediated apoptotic pathway, induced by TG. Finally, overexpression of ODC maintains the protein and mRNA expression of SERCA. In conclusion, overexpression of ODC suppresses TG-induced apoptosis by blocking caspase-4 activation and PERK phosphorylation, attenuating CHOP expression and inhibiting the mitochondria-mediated apoptotic pathway.  相似文献   

16.
Tissue inhibitors of metalloproteinases (TIMPs) are important regulators of matrix metalloproteinase (MMP) and adamalysin metalloproteinase activity. We previously reported that overexpression of TIMP-3 inhibits MMPs and induces apoptotic cell death in a variety of cell types and demonstrated that apoptosis is mediated through the N terminus of TIMP-3, which harbors the MMP inhibitory domain. However, little is known about the mechanisms underlying TIMP-3-induced apoptosis. Here we demonstrate that overexpression of TIMP-3 induced activation of initiator caspase-8 and -9 and promoted caspase-mediated cleavage of the death substrates poly(ADP-ribose) polymerase and focal adhesion kinase. Furthermore, TIMP-3 induced mitochondrial activation as demonstrated by loss of mitochondrial membrane potential and release of cytochrome c. Intervention studies demonstrated that overexpression of Bcl-2, the anti-apoptotic mitochondrial membrane protein, or CrmA, a viral serpin inhibitor of caspase-8, completely inhibited TIMP-3-induced apoptosis. Furthermore, a dominant-negative Fas-associated death domain mutant inhibited TIMP-3-induced death substrate cleavage and apoptotic death. Taken together, these results indicate that TIMP-3 overexpression induces a type II apoptotic pathway initiated via a Fas-associated death domain-dependent mechanism.  相似文献   

17.
TRIM32, which belongs to the tripartite motif (TRIM) protein family, has the RING finger, B-box, and coiled-coil domain structures common to this protein family, along with an additional NHL domain at the C terminus. TRIM32 reportedly functions as an E3 ligase for actin, a protein inhibitor of activated STAT y (PIASy), dysbindin, and c-Myc, and it has been associated with diseases such as muscular dystrophy and epithelial carcinogenesis. Here, we identify a new substrate of TRIM32 and propose a mechanism through which TRIM32 might regulate apoptosis. Our overexpression and knockdown experiments demonstrate that TRIM32 sensitizes cells to TNFα-induced apoptosis. The RING domain is necessary for this pro-apoptotic function of TRM32 as well as being responsible for its E3 ligase activity. TRIM32 colocalizes and directly interacts with X-linked inhibitor of apoptosis (XIAP), a well known cancer therapeutic target, through its coiled-coil and NHL domains. TRIM32 overexpression enhances XIAP ubiquitination and subsequent proteasome-mediated degradation, whereas TRIM32 knockdown has the opposite effect, indicating that XIAP is a substrate of TRIM32. In vitro reconstitution assay reveals that XIAP is directly ubiquitinated by TRIM32. Our novel results collectively suggest that TRIM32 sensitizes TNFα-induced apoptosis by antagonizing XIAP, an anti-apoptotic downstream effector of TNFα signaling. This function may be associated with TRIM32-mediated tumor suppressive mechanism.  相似文献   

18.
19.
Smac/DIABLO, a recently identified inhibitor of apoptosis protein (IAP)-binding protein, is released from the mitochondria during apoptosis and reportedly potentiates apoptosis by relieving the inhibition of IAPs on caspases. We now describe the molecular characterization of Smac beta, an alternatively spliced form of Smac, which lacks the mitochondrial-targeting sequence found in Smac and has a cortical distribution in both human embryonic kidney 293 and breast epithelial tumor MCF-7 cells. Smac beta, which binds IAPs in vitro, does not bind IAPs in intact cells due to cellular processing and removal of its NH(2)-terminal IAP-binding domain. Despite its inability to interact with IAPs in cells, processed Smac beta is proapoptotic, as demonstrated by its ability to potentiate apoptosis induced by both death receptor and chemical stimuli. Furthermore, expression of a NH(2)-terminally truncated Smac mutant (Delta75), which lacks the entire IAP-interacting domain, potentiates apoptosis to the same extent as Smac and Smac beta. Our data support the hypothesis that the main proapoptotic function of Smac and Smac beta is due to a mechanism other than IAP binding.  相似文献   

20.
Membrane-type 1 matrix metalloproteinase (MT1-MMP) has been suggested to play an essential role in angiogenesis. Based on recent evidence suggesting that the sprouting and branching of capillaries during angiogenesis involves apoptosis, we investigated the involvement of this process in MT1-MMP-dependent morphogenic differentiation of EC into capillary-like structures. We found that MT1-MMP sensitizes EC to apoptosis, since reduction of MT1-MMP expression abolished vimentin fragmentation in apoptotic HUVECs while overexpression of the enzyme induced caspase-3 activity in BAECs subjected to pro-apoptotic treatments. MT1-MMP-mediated caspase-3 activation likely occurs through the mitochondrial pathway since it was abrogated by Bcl-2, but not by CrmA overexpression. Reduction of MT1-MMP expression in HUVECs reduced morphogenic differentiation that was correlated with diminished vimentin fragmentation, whereas its overexpression in BAECs stimulated both processes. Inactivation of the catalytic activity or removal of the cytoplasmic domain of MT1-MMP markedly reduced its ability to induce both morphogenic differentiation and caspase-3 activation. The inhibitory effects of the anti-apoptotic protein Bcl-2 and the caspase inhibitor zVAD-fmk further suggested the involvement of apoptosis during MT1-MMP-mediated morphogenic differentiation. Our results show that the ability of MT1-MMP to induce EC morphogenic differentiation involves its activation of a caspase-dependent mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号