首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Flash-induced absorbance changes were measured in the Chl-c-containing alga Pleurochloris meiringensis (Xanthophyceae) between 430 and 570 nm. In addition to the bands originating from redox changes of cytochromes, three major positive and tow negative transient bands were observed both 0.7 and 20 ms after the exciting flash. These transient bands peaking at 520, 480 and 451 nm and 497 and 465 nm, respectively, could be assigned to an almost homogeneous shift of the absorbance bands with maxima at 506, 473 and 444 nm, respectively. The shape of the absorbance transients elicited from PS I or PS II was identical, and the two photosystems contributed nearly equally to the absorbance changes. Furthermore, the decay transients were sensitive to the preillumination of the cells. These data strongly suggest that the absorbance transients originate from an electrochromic response of carotenoid molecules. The pigment species responsible for the 506 nm absorption band, probably heteroxanthin or diatoxanthin, transferred excitation energy to both photosystems as shown by the aid of 77 K fluorescence excitation spectra.Abbreviation LHC light-harvesting complex  相似文献   

3.
In Tris-washed chloroplasts, completely lacking the oxygen-evolving capacity, absorption changes in the range of 420--560 nm induced by repetitive flash excitation have been measured in the presence and absence of electron donors. It was found: (1) At 520 nm flash-induced absorption changes are observed, which predominantly decay via a 100--200-mus exponential kinetics corresponding to that of the back reaction between the primary electron donor and acceptor of Photosystem II (Haveman, J. and Mathis, P. (1976) Biochim. Biophys. Acta 440, 346--355; Renger, G. and Wolff, Ch. (1976) Biochim. Biophys. Acta 423, 610--614). In the presence of hydroquinone/ascorbate as donor couple the amplitude is nearly doubled and the decay becomes significantly slowed down. (2) The difference spectrum of the absorption changes obtained in the presence of hydroquinone/ascorbate, which are sensitive to ionophores, is nearly identical with that of normal chloroplasts in the range of 460--560 nm (Emrich, H.M., Junge, W. and Witt, H.T. (1969) Z. Naturforsch. 24b, 114--1146). In the absence of hydroquinone/ascorbate the difference spectrum of the absorption changes, characterized by a 100--200-mus decay kinetics, differs in the range of 460--500 nm and by a hump in the range of 530--560 nm. The hump is shown to be attributable to the socalled C550 absorption change, which reflects the turnover of the primary acceptor of Photosystem II (van Gorkom, H.J.(1976) Thesis, Leiden), while the deviations in the range of 460--500 nm are understandable as to be due to the overlapping absorption changes of chlorphyll alpha II+. The problems arising with the latter explanation are discussed. (3) The electron transfer due to the rapid turnover at Photosystem II, which can be induced by flash groups with a short dark time between the flashes, is not able to energize the ATPase and to drive photophosphorylation. On the basis of the present results it is inferred, that in Tris-washed chloroplasts under repetitive flash excitation a rapid transmembrane vectorial electron shuttle takes place between the primary acceptor (X320) and donor (Chl alpha II) of Photosystem II, which is not able to energize the photophosphorylation. Furthermore, the data are shown to confirm the localization of X320 and Chl alpha II within the thylakoid membrane at the outer and inner side, respectively.  相似文献   

4.
Methods of preparing dried gelatin films containing purified reaction centers of Rhodopseudomonas sphaeroides are described. The spectral properties of reaction centers in solution are essentially maintained in dried gelatin films. These films are uniform and have excellent optical properties, showing little particulate scattering at temperatures down to about 4K. Film contraction on cooling to 90K is less than 1% in linear dimension. Linear dichroism spectra are reported for films at room and low temperature. Reaction centers show a moderate amount of linear dichroism in unstretched gelatin films; the magnitude of the linear dichroism becomes much greater when the films are stretched. In stretched films, linear dichroic ratios (AA; absorbance measured with electric vector parallel and perpendicular to stretching direction) between 1.7 and 2.2 were obtained for the 860 nm absorption band of the bacteriochlorophyll component that undergoes primary photooxidation. The relative polarizations of light-induced absorption changes of reaction centers in stretched films are similar to those reported by Vermeglio and Clayton ((1976) Biochim. Biophys. Acta 449, 500–515) and support their hypothesis that absorbance decreases, maximal near 860 and 810 nm, and an increase near 790 nm are associated with the respective disappearance and appearance of discrete bands characteristic of the reduced and oxidized bacteriochlorophyll dimer. This interpretation is also supported by the polarization of the absolute absorption spectrum near 810 and 860 nm. An absorption band near 540 nm, ascribed to the Qx transitions of two molecules of bacteriopheophytin in the reaction center, is split at low temperatures into two bands having similar polarizations. This splitting is probably not due to exciton coupling of the two molecules, since excition theory predicts different polarizations.  相似文献   

5.
(1) A flash number dependency of flash-induced absorbance changes was observed with whole cells of Rhodospirillum rubrum and chromatophores of R. rubrum and Rhodopseudomonas sphaeroides wild type and the G1C mutant. The oscillatory behavior was dependent on the redox potential; it was observed under oxidizing conditions only. Absorbance difference spectra measured after each flash in the 275--500 nm wavelength region showed that a molecule of ubiquinone, R, is reduced to the semiquinone (R-) after odd-numbered flashes and reoxidized after even-numbered flashes. The amount of R reduced was approximately one molecule per reaction center. (2) The flash number dependency of the electrochromic shift of the carotenoid spectrum was studied with chromatophores of Rps. sphaeroides wild type and the G1C mutant. At higher values of the ambient redox potential a relatively slow phase with a rise time of 30 ms was observed after even-numbered flashes, in addition to the fast phase (completed within 0.2 ms) occurring after each flash. Evidence was obtained that the slow phase represents the formation of an additional membrane potential during a dark reaction that occurs after flashes with an even number. This reaction is inhibited by antimycin A, whereas the oscillations of the R/R- absorbance changes remain unaffected. At low potentials (E = 100 mV) no oscillations of the carotenoid shift were observed: a fast phase was followed by a slow phase (antimycin-sensitive) with a half-time of 3 ms after each flash. (3) The results are discussed in terms of a model for the cyclic electron flow as described by Prince and Dutton (Prince, R.C. and Dutton, P.L. (1976) Bacterial Photosynthesis Conference, Brussels, Belgium, September 6--9, Abstr. TB4) employing the so-called Q-cycle.  相似文献   

6.
Triton-solubilized Photosystem I particles from spinach chloroplasts exhibit largely reversible P-700 absorption changes over the temperature range from 4.2 K to room temperature. For anaerobic samples treated with dithionite and neutral red at pH 10 and illuminated during cooling, a brief (1 microseconds) saturating flash produces absorption changes in the long wavelength region that decay in 0.95 +/- 0.2 ms from 4.2 to 50 K. Above 80 K a faster (100 +/- 30 microseconds) component dominates in the decay process, but this disappears again above about 180 K. The major decay at temperatures above 200 K occurs in about 1 ms. The difference spectrum of these absorption changes between 500 and 900 nm closely resembles that of P-700. Using ascorbate and 2.6-dichlorophenolindophenol as the reducing system with a sample of Photosystem I particles cooled in darkness to 4.2 K, a fully reversible signal is seen upon both the first and subsequent flashes. The decay time in this case is 0.9 +/- 0.3 ms.  相似文献   

7.
C Gergely  C Ganea    G Váró 《Biophysical journal》1994,67(2):855-861
The photocycle of the 13-cis retinal containing bacteriorhodopsin was studied by three different techniques. The optical multichannel analyzer monitored the spectral changes during the photocycle and gave information about the number and the spectrum of the intermediates. The absorption kinetic measurements provided the possibility of following the absorbance changes at several characteristic wavelengths. The electric signal provided information about the charge motions during the photocycle. The results reveal the existence of two intermediates in the 13-cis photocycle, one with a short lifetime having an average of 1.7 microseconds and an absorption maximum at 620 nm. The other, a long-living intermediate, has a lifetime of about 50 ms and an absorption maximum around 585 nm. The data analysis suggests that these intermediates are in two parallel branches of the photocycle, and branching from the intermediate with the shorter lifetime might be responsible for the light-adaptation process.  相似文献   

8.
The ability of the Ca2+-selective microelectrode to measure fast Ca2+ transients intracellularly is reviewed. In vitro, Ca microelectrodes can respond to Ca2+ injections with time to peaks as small as 40 ms. We present methods to improve the dynamic response of Ca microelectrodes and to make Ca-buffered solutions in high ionic strength. Examples of measurements of intracellular free Ca2+ [( Ca2+]i) transients in Aplysia neurons and in Limulus photoreceptors are shown. To show the validity of those measurements, simultaneous recordings of the Arsenazo III (AIII) absorbance and of the Ca-selective electrode potential were made in voltage-clamped neurons of the abdominal ganglion of Aplysia californica. Pressure injection of AIII to a concentration of 300-500 microM induced a rise in resting [Ca2+]i; injection of higher [AIII] led to buffering of [Ca2+]i transients. Both techniques responded to changes in resting [Ca2+]i in the same direction except that AIII showed an increase in absorbance in 0 [Ca2+]o. Voltage-clamp pulses transiently increased both the AIII absorbance and the Ca2+ electrode potential. Reducing or increasing the driving force for Ca2+ entry changed the magnitude of both signals in the right direction. Examples of spatial localization of [Ca2+]i increases and Ca2+ gradients within the cytoplasm were demonstrated using the Ca electrode. The use of optical techniques to measure local [Ca2+]i changes is briefly reviewed.  相似文献   

9.
Triton-solubilized Photosystem I particles from spinach chloroplasts exhibit largely reversible P-700 absorption changes over the temperature range from 4.2 K to room temperature. For anaerobic samples treated with dithionite and neutral red at pH 10 and illuminated during cooling, a brief (1 μs) saturating flash produces absorption changes in the long wavelength region that decay in 0.95 ± 0.2 ms from 4.2 to 50 K. Above 80 K a faster (100 ± 30 μs) component dominates in the decay process, but this disappears again above about 180 K. The major decay at temperatures above 200 K occurs in about 1 ms. The difference spectrum of these absorption changes between 500 and 900 nm closely resembles that of P-700. Using ascorbate and 2,6-dichlorophenolindophenol as the reducing system with a sample of Photosystem I particles cooled in darkness to 4.2 K, a fully reversible signal is seen upon both the first and subsequent flashes. The decay time in this case is 0.9 ± 0.3 ms.  相似文献   

10.
B.G. De Grooth  J. Amesz 《BBA》1977,462(2):247-258
An analysis was made of the changes of pigment absorption upon illumination of chromatophores of Rhodopseudomonas sphaeroides at ?35 °C, described in the preceding paper (de Grooth, B. G. and Amesz, J. (1977) Biochim. Biophys. Acta 462, 237–246). Comparison of the light-induced difference spectra in the carotenoid region obtained without additions, and in the presence of N-methylphenazonium methosulphate and ascorbate as donor-acceptor system showed that the latter spectrum was not only about 10 times larger in amplitude, but also red-shifted with respect to the first one. Together with the shape of the difference spectrum, this indicated that the spectrum obtained in the presence of a donor-acceptor system is due to an electrochromic shift of the absorption spectrum of a carotenoid by a few nm towards longer wavelength, caused by a delocalized potential across the chromatophore membrane. The results of an analysis of the kinetics of the absorbance changes near the zero points of the spectrum were in quantitative agreement with the extent of the red shift and indicated a shift of 0.25 nm for a single electron transfer per reaction center, and shifts of up to 4 nm when the electron transport is stimulated by a donor-acceptor system. For bacteriochlorophyll B-850 the shift is three times smaller.Analysis of the overall absorption spectrum showed that there are at least two pools of carotenoid. The carotenoid that shows electrochromism has absorption bands at 452, 481 and 515 nm, and comprises about one-third of the total carotenoid present; the remaining pool absorbs at about 7 nm shorter wavelength and does not show an electrochromic response to illumination. Both pools presumably consist of spheroidene; the differences in band location may be explained by the assumption that only the first pool is subjected to a local electric field which induces an electric dipole even at zero membrane potential. Similar results were obtained at room temperature and with a mutant of Rps. sphaeroides (G1C)-containing neurosporene.  相似文献   

11.
Photoactive retinal pigments in haloalkaliphilic bacteria   总被引:3,自引:0,他引:3  
Light-induced fast transient absorbance changes were detected by time-resolved spectroscopy in 38 of 51 haloalkaliphilic isolates from alkaline salt lakes in Kenya and the Wadi Natrun in Egypt. They indicate the presence of two retinal pigments, Pf and Ps, which undergo cyclic photoreactions with half-times of 2 ms and 500 ms respectively. Pf absorbs maximally near 580 nm and Ps near 500 nm. The pigments differ in their sensitivity to hydroxylamine and detergent bleaching and the photoreactions of Pf are strongly dependent on chloride concentration. Of the 38 pigment-containing strains, 29 possess both Pf and Ps, 9 possess only Ps. Inhibition of retinal synthesis with nicotine blocks pigment formation and addition of retinal restores it. Hydroxylamine-bleached pigments can be reconstituted with retinal or retinal analogues. Their similarity to the retinal pigments of Halobacterium halobium strongly suggests that they are also rhodopsin-like retinyledene proteins. Pf in all properties tested is almost identical to halorhodopsin, the light-driven chloride pump of H. halobium, and may serve the same function in the haloalkaliphiles. Ps has photocycle kinetics similar to sensory rhodopsin and a far-blue-shifted long-lived photocycle intermediate, but its ground state absorption maximum is near 500 nm instead of 587 nm. We have not found a bacteriorhodopsin-like pigment in the haloalkaliphiles.  相似文献   

12.
The absorption spectrum of arsenazo III in media containing K+, Mg2+ and Ca2+ is sharply influenced by pH in the range of 7.5--5.0. The effect of pH is particularly pronounced in the wavelength range 532--602 nm due to the large pH dependence of the dissociation constant of Mg-arsenazo III complex. Therefore absorption changes at these wavelengths during muscle contraction cannot be used as reliable indicators of free ionized Ca2+ concentration in the cell. The effect of pH is less pronounced, but still noticeable at the wavelength pairs 575--650 or 660--685 nm. Multiple layers of muscle cells grown on polystyrene coils permit measurement of absorption changes of arsenazo III, introduced into the cells, by equilibration with 0.5 mM arsenazo III under routine culture conditions. The absorbance changes recorded at 660--685 nm are probably related to changes in intracellular free Ca2+ concentration.  相似文献   

13.
An analysis has been made of the spectrum of the carotenoid absorption band shift generated by continuous illumination of chromatophores of the GlC-mutant of Rhodopseudomonas sphaeroides at room temperature by means of three computer programs. There appears to be at least two pools of the same carotenoid, only one of which, comprising about 20% of the total carotenoid content, is responsible for the light-induced absorbance changes. The 'remaining' pool absorbs at wavelengths which were about 5 nm lower than those at which the 'changing' pool absorbs. This difference in absorption wavelength could indicate that the two pools are influenced differently by permanent local electric fields. The electrochromic origin of the absorbance changes has been demonstrated directly; the isosbestic points of the absorption difference spectrum move to shorter wavelengths upon lowering of the light-induced electric field. Band shifts up to 1.7 nm were observed. A comparison of the light-induced absorbance changes with a KCl-valinomycin-induced diffusion potential has been used to calibrate the electrochromic shifts. The calibration value appeared to be 137 +/- 6 mV per nm shift.  相似文献   

14.
This paper comments on the evaluation of Erin and co-workers (Biochim. Biophys. Acta 774 (1984) 96-102) of equilibrium constants for alpha-tocopherol interactions with fatty acids on the basis of the changes of absorbance in a 200 nm ultraviolet region. It is concluded that the ultraviolet method is inadequate because it is affected by absorption in that region of the solvent, ethanol and fatty acids which they used.  相似文献   

15.
16.
A double-beam rapid-scanning stopped-flow spectrophotometer.   总被引:1,自引:0,他引:1       下载免费PDF全文
A double-beam rapid-wavelength-scanning stopped-flow spectrophotometer system based on the Norcon model 501 spectrometer was construced, which enables u.v.-or visible absorbance spectra to be recorded at the rate of 800/s after the rapid mixing (within 3ms) of two reactant solutions. Each spectrum spans about 200nm in 1ms. It is possible to record difference spectra during reactions with half-lives less than 10ms involving absorbance changes of less than 0.1 absorbance unit. Analogue circuitry is used to produce spectra of absorbance against wavelength. Up to 32 such spectra can be recorded at pre-selected times during a reaction and stored in an 8Kx8-bit-word hard-wired data-capture system to be subsequently displaned individually or simultaneously. Time-courses at different wavelengths can also be displayed. By averaging up to 216 spectra it is possible to record spectra under conditions of low signal-to-noise ratios...  相似文献   

17.
An analysis has been made of the spectrum of the carotenoid absorption band shift generated by continuous illumination of chromatophores of the GlC-mutant of Rhodopseudomonas sphaeroides at room temperature by means of three computer programs. There appears to be at least two pools of the same carotenoid, only one of which, comprising about 20 % of the total carotenoid content, is responsible for the light-induced absorbance changes. The ‘remaining’ pool absorbs at wavelengths which were about 5 nm lower than those at which the ‘changing’ pool absorbs. This difference in absorption wavelength could indicate that the two pools are influenced differently by permanent local electric fields.

The electrochromic origin of the absorbance changes has been demonstrated directly; the isosbestic points of the absorption difference spectrum move to shorter wavelengths upon lowering of the light-induced electric field. Band shifts up to 1.7 nm were observed. A comparison of the light-induced absorbance changes with a KCl-valinomycin-induced diffusion potential has been used to calibrate the electrochromic shifts. The calibration value appeared to be 137 ± 6 mV per nm shift.  相似文献   


18.
19.
Femtosecond excitation of the red edge of the chlorophyll a Q(Y) transition band in photosystem I (PSI), with light of wavelength > or = 700 nm, leads to wide transient (subpicosecond) absorbance changes: positive DeltaA between 635 and 665 nm, and four negative DeltaA bands at 667, 675, 683, and 695 nm. Here we compare the transient absorbance changes after excitation at 700, 705, and 710 nm at 20 K in several PSI preparations of Chlamydomonas reinhardtii where amino acid ligands of the primary donor, primary acceptor, or connecting chlorophylls have been mutated. Most of these mutations influence the spectrum of the absorbance changes. This supports the view that the chlorophylls of the electron transfer chain as well as the connecting chlorophylls are engaged in the observed absorbance changes. The wide absorption spectrum of the electron transfer chain revealed by the transient measurements may contribute to the high efficiency of energy trapping in photosystem 1. Exciton calculations, based on the recent PSI structure, allow an assignment of the DeltaA bands to particular chlorophylls: the bands at 675 and 695 nm to the dimers of primary acceptor and accessory chlorophyll and the band at 683 nm to the connecting chlorophylls. The subpicosecond transient absorption bands decay may reflect rapid charge separation in the PSI reaction center.  相似文献   

20.
A mild detergent, the monolauryl ester of sucrose (LS), at concentrations which ranged from 0.008 to 0.03%, enhanced amphotericin B (AmB) toxicity against Saccharomyces cerevisiae and Cryptococcus neoformans cells. At higher concentrations, 0.06 to 2.5%, LS inhibited AmB effects on these two fungi. We analyzed changes in the absorption spectrum of AmB induced by LS at these two concentration ranges by comparing ratios (R values) of AmB absorbance at 409 nm, the wavelength characteristic of non-aggregated (monomeric) AmB, to absorbance at 328 nm, the wavelength characteristic of aggregated AmB. Low concentrations of LS caused a decrease in R, whereas the higher LS concentrations increased R. Therefore, LS had concentration-dependent dual effects on the antifungal activity of AmB which correlated with shifts in the physical states of AmB. The concentration range of LS required to inhibit the antifungal effects of AmB was about 1000-fold greater than the previously reported concentrations required to inhibit AmB toxicity to mammalian cells (Gruda, I., Gauthier, E., Elberg, S., Brajtburg, J. and Medoff, G. (1988) Biochem. Biophys. Res. Commun. 154, 954-958). This suggests that LS may be a useful agent to decrease AmB toxicity to host cells without affecting the antifungal effects. Moreover, increase in AmB toxicity induced by low concentrations of LS suggests the possibility that synergistic interaction between fatty acid esters and polyene antibiotics may have therapeutic value.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号