首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Quantitative variation for leaf trichome number is observed within and among Gossypium species, varying from glabrous to densely pubescent phenotypes. Moreover, economically important cotton lint fibers are modified trichomes. Earlier studies have mapped quantitative trait loci (QTLs) affecting leaf pubescence in Gossypium using allotetraploids. In this study, we mapped genes responsible for leaf trichome density in a diploid A genome cross. We were able to map 3 QTLs affecting leaf pubescence based on trichome counts obtained from young leaves (YL) and mature leaves (ML). When the F(2) progeny were classified as pubescent versus glabrous, their ratio did not deviate significantly from a 3:1 model, suggesting that glabrousness is inherited in a simple Mendelian fashion. The glabrous mutation mapped to linkage group A3 at the position of major QTL YL1 and ML1 and appeared orthologous to the t1 locus of the allotetraploids. Interestingly, a fiber mutation, sma-4(ha), observed in the same F(2) population cosegregated with the glabrous marker, which indicates either close linkage or common genetic control of lint fiber and leaf trichomes. Studies of A genome diploids may help to clarify the genetic control of trichomes and fiber in both diploid and tetraploid cottons.  相似文献   

2.
Leaf pubescence (hairiness) in wheat plays an important biological role in adaptation to the environment. However, this trait has always been methodologically difficult to phenotype. An important step forward has been taken with the use of computer technologies. Computer analysis of a photomicrograph of a transverse fold line of a leaf is proposed for quantitative evaluation of wheat leaf pubescence. The image-processing algorithm is implemented in the LHDetect2 software program accessible as a Web service at http://wheatdb.org/lhdetect2. The results demonstrate that the proposed method is rapid, adequately assesses leaf pubescence density and the length distribution of trichomes and the data obtained using this method are significantly correlated with the density of trichomes on the leaf surface. Thus, the proposed method is efficient for high-throughput analysis of leaf pubescence morphology in cereal genetic collections and mapping populations.  相似文献   

3.
In this study, genetic and monosomic analyses of the leaf pubescence of ANK 7A, ANK 7B, and ANK 7C wheat isogenic lines were carried out based on the Novosibirskaya 67 wheat variety. According to visual analysis, the recipient variety has a soft, uniform pubescence, and lines have trichomes on the surfaces of their leaves inherited from the two Chinese varieties and one Soviet variety. Using the high throughput phenotyping method LHDetect2, which allows one to allocate the phenotypic classes of offspring in crosses based on the quantitative characteristics of leaf pubescence, it was found that chromosome 7B of the isogenic lines has a gene that determines the presence of long trichomes, and chromosome 7D of the Novosibirskaya 67 variety has a gene that increases the density of pubescence. The obtained data allowed to formulate of a hypothesis for the existence of a homoallelic series of genes that control leaf pubescence in the chromosomes of the seventh homeologous group of bread wheat.  相似文献   

4.
The West Indian species Liabum oblanceolatum Urb. & Ekman was established on the basis of sterile young specimens represented by acaulescent herbs with rosulate leaves. However, these specimens have important traits that do not correspond to Liabum Adans. More than 90 genera of Asteraceae occur in Hispaniola (= Santo Domingo), but only 14 of them include species represented by acaulescent herbs with rosulate or grouped leaves at the base of the stem. From these genera, Chaptalia Vent. and Liabum are the most similar to the types of L. oblanceolatum . Habit, leaf arrangement, lamina shape, leaf margin, leaf surface, leaf margin intrasection, leaf venation, leaf pubescence, leaf trichomes, stomata and upper surface leaf cuticle were analysed in the type specimens of L. oblanceolatum and in species of Chaptalia and Liabum of Hispaniola. The vegetative trichomes are described in detail. The analysis reveals that the type specimens of L. oblanceolatum fit with all the vegetative traits of Chaptalia angustata Urb. © 2006 The Linnean Society of London, Botanical Journal of the Linnean Society , 2006, 150 , 479–486.  相似文献   

5.
The epidermis of wheat (Triticum aestivum L.) leaves contains trichomes that contribute to resistance to insect pests and drought tolerance. In the present study, we examined the effects of 6-benzylaminopurine (BA) and methyl jasmonate (MeJA) treatment on trichome development on the leaves of wheat cv. Norin 61 seedlings. Without phytohormone treatment, trichomes on the adaxial leaf surface were short (90 μm) and their density was low (3.6 trichomes/mm2). Both BA and MeJA treatments significantly increased the density of trichomes, and there were no significant differences between the phytohormone treatments. BA treatment increased trichome length to five times as long as that in the control, whereas MeJA treatment did not significantly affect trichome length. Since BA treatment concurrently increased the DNA content of the nuclei in trichome cells, endoreduplication of the nuclei is probably involved in trichome enlargement. These results indicate that even wheat cultivars with short trichomes retain the mechanisms for trichome enlargement and stimuli such as BA application can induce increased pubescence on wheat leaves.  相似文献   

6.
Density of leaf trichomes in Salix borealis affected both the choice of individual host plants and feeding behaviour of adults and last instar larvae of the willow feeding leaf beetle, Melasoma lapponica. Beetles clearly preferred shaved disks to unshaved ones taken from the same leaf; this preference was highest in leaves of the most pubescent plants. High leaf pubescence explained the low preference for willow clones from the high density site in among-site preference trials; shaving significantly increased the consumption of these pubescent willow clones. In no-choice experiments, the food consumption by both adults and last instar larvae decreased with an increase in leaf pubescence. The time budget of adults did not depend on leaf pubescence of the host plants, however adults compelled to feed on highly pubescent plants changed their feeding sites twice as often as on less pubescent willow clones. Larvae feeding on highly pubescent plants spend moving three times as much time as larvae feeding on less pubescent plants. Combined with our earlier observations on the increase in leaf pubescence in the year(s) following defoliation, these data suggest that leaf hairiness may have contributed to the delayed induced resistance in S. borealis by disturbing the feeding behaviour of M. lapponica.  相似文献   

7.
The micromorphology of foliar trichomes of Hypoestes aristata var. aristata was studied using stereo, light and scanning microscopy (SEM). This genus belongs to the advanced angiosperm family Acanthaceae, for which few micromorphological leaf studies exist. Results revealed both glandular and non-glandular trichomes, the latter being more abundant on leaf veins, particularly on the abaxial surface of very young leaves. With leaf maturity, the density of non-glandular trichomes decreased. Glandular trichomes were rare and of two types: long-stalked capitate and globose-like peltate trichomes. Capitate trichomes were observed only on the abaxial leaf surface, while peltate trichomes were distributed on both adaxial and abaxial leaf surfaces.  相似文献   

8.
Leaf-cutter ant plant material choice is essential for colony maintenance and growth. Plant material is used as a substrate for cultivating symbiotic fungus, and the ants’ preference for particular leaves, tends to be determined by vegetal age-related physicochemical factors. The plant species Virola sebifera Aubl. (Myristicaceae), for example, shows a large number of leaf surface trichomes. Although non-glandular, V. sebifera trichomes may gradually retain an increasing amount of chemical compounds over the lifetime of the leaf. Thus, the present study aims to investigate the role of plant chemical compounds on Atta sexdens rubropilosa preference for V. sebifera leaves of different ages. For this purpose, the chemical composition of trichomes on young and senescent leaves was analyzed, and ants’ preference tested. The chemical compositions differ between V. sebifera young and senescent leaves, with triacontane (C30) predominance in young leaves and tetratriacontane (C34) predominance in senescent leaves. Ants’ preference choice was tested by randomly offering leaves of different ages to A. sexdens rubropilosa workers, following six different treatments: (1) young leaf fragments; (2) young leaf fragments with few trichomes removed; (3) loose trichomes from young leaves; (4) senescent leaf fragments; (5) senescent leaf fragments with few trichomes removed, and (6) loose trichomes from senescent leaves. Ants’ preference was observed for young leaves fragments with a few trichomes removed and also for young leaves loose trichomes. Ants’ preference might be due to specific volatile compounds (GLV) preset in V. sebifera young leaves. Results suggest occurrence of ants’ selectivity resulting from changes on trichomes chemical composition between V. sebifera leaves different age stages.  相似文献   

9.
Trichomes excrete secondary metabolites that may alter the chemical composition of the leaf surface, reducing damage caused by herbivores, pathogens and abiotic stresses. We examined the surface exudates produced by Nicotiana attenuata Torr. Ex Wats., a plant known to contain and secrete a number of secondary metabolites that are toxic or a deterrent to herbivorous insects. Extractions specific to the leaf surface, the trichomes, and the laminar components demonstrated the localization of particular compounds. Diterpene glycosides occurred exclusively in leaf mesophyll, whereas nicotine was found in both the trichomes and mesophyll. Neither rutin nor nicotine was found on the leaf surface. Quercetin and 7 methylated derivatives were found in the glandular trichomes and appeared to be excreted onto the leaf surface. We examined the elicitation of these flavonols on the leaf surface with a surface-area allometric analysis, which measures changes in metabolites independent of the effects of leaf expansion. The flavonols responded differently to wounding, methyl jasmonate (MeJA), herbivore attack and UV-C radiation, and the response patterns corresponded to their compound-specific allometries. Finding greater amounts of quercetin on younger leaves and reduced amounts after herbivore feeding and MeJA treatment, we hypothesized that quercetin may function as an attractant, helping the insects locate a preferred feeding site. Consistent with this hypothesis, mirids (Tupiocoris notatus) were found more often on mature leaves sprayed with quercetin at a concentration typical of young leaves than on unsupplemented mature leaves. The composition of metabolites on the leaf surface of N. attenuata changes throughout leaf development and in response to herbivore attack or environmental stress, and these changes are mediated in part by responses of the glandular trichomes.  相似文献   

10.
Structural features of leaves, including size, shape, and surfaces, vary greatly throughout the plant kingdom. In both functional and phylogenetic analyses of leaves, the various morphological aspects are often considered independently of each other, although it is likely that many combinations of features do not occur at random due to either functional constraint or genetic correlation. The distribution of variation in leaf morphology in the highly variable Begonia dregei species complex was examined in natural populations and in F(2) offspring from a cross between plants from two populations. Leaf shape was quantified using several morphometric measures, and trichomes on leaves were counted and measured. Correlations between leaf shape and the numbers and size of trichomes were examined. There were significant correlations between the shapes of leaves and the presence, number, and size of trichomes among populations and in hybrid plants. Deeply incised leaves had larger numbers of longer trichomes at the sinuses. Higher numbers of trichomes on upper leaf surfaces occurred together with trichomes at the petiole and on the abaxial surface. The potential for independent evolution of leaf shape and trichomes in this group is limited. Hypotheses to explain the correlated development of leaf shape and trichomes are discussed.  相似文献   

11.
Plant trichomes vary in their structure and cellular composition. Glandular trichomes contain a bulk of specific (secondary) metabolites of diverse nature. Trichomes are connected with various adaptive processes, which include protection against herbivores and pathogens as well. Our study investigates the allelopathic contribution of structures present on the leaf surface of Nicotiana plumbaginifolia Viv. against seedling growth of Cicer arietinum L. The infusion obtained after dipping Nicotiana leaves in Dichloromethane (DCM) for 10 seconds (s) was the most phytotoxic among all the infusions. The observed inhibition in Cicer growth was not only dependent on type of infusion but also the concentration. Scanning electron microscopy of the leaf samples showed the modifications in trichomes under the influence of the different concentration of DCM. Glandular trichomes were most dehydrated at 10 seconds in DCM, suggesting their role for the observed allelopathy. Such study on the biochemistry of trichomes and their phytotoxicity may develop highly valuable objects for plant metabolic engineering.  相似文献   

12.
Structures on the surfaces of leaves, such as dense layers of non-glandular trichomes, strongly affect phylloplane mite activities. On the other hand the feeding of eriophyoid mites on leaf surfaces can cause hyperplasia of leaf trichomes (erinea formation). In many cases the hyperplasia is accompanied by the accumulation of pigments within trichome cells, causing an impressive red-brown colouration of the erineum. There is no information, however, on the structure of these pigments as well as on the chemical alterations in the phenolic content of plant trichomes in response to mite attack. Erinea formation on the abaxial surface of Quercus ilex leaves upon Aceria ilicis (Acari: Eriophyoidea) attack provides an excellent model on this topic. Differences in the structure and chemical composition of isolated trichomes derived either from healthy (normal trichomes) or mite attacked (hypertrophic trichomes) leaves were examined. Carbon investment was comparable between the two different trichome types, but the cell walls of the hypertrophic trichomes appeared thinner and did not contain microcrystalline cellulose. Observations under the fluorescence microscope showed that the emitted fluorescence was different between the two trichome types, indicating a different composition in fluorescencing phenolic compounds. The chemical analyses confirmed that hypertrophic trichomes contained higher concentrations of the feeding deterrents proanthocyanidin B3 and catechin, as well as of quercetin-3-O-glucoside, but lower concentrations of acylated flavonoid glycosides, than the normal ones. The results showed that the structural and functional changes in leaf trichomes upon mite attack may be an effort of the leaf to compensate the damage caused by the pest.  相似文献   

13.
BACKGROUND AND AIMS: Depending on cultivar, surfaces of young leaves of Vitis vinifera may be glabrous-green ('Soultanina') or transiently have anthocyanins ('Siriki') or pubescence ('Athiri'). A test is made of the hypothesis that anthocyanins and pubescence act as light screens affording a photoprotective advantage to the corresponding leaves, and an assessment is made of the magnitude of their effect. METHODS: Measurements were made on young leaves of the three cultivars in spring under field conditions. Photosynthetic gas-exchange and in vivo chlorophyll fluorescence were measured. Photosynthetic and photoprotective pigments were analysed by HPLC. KEY RESULTS: Compared with glabrous-green leaves, both anthocyanic and pubescent leaves had greater dark-adapted PSII photochemical efficiency and net photosynthesis. In leaves possessing either anthocyanins or pubescence, the ratio of xanthophyll cycle components to total chlorophyll, and mid-day de-epoxidation state of the xanthophyll cycle were considerably smaller, than in glabrous-green leaves. These differences were more evident in pubescent leaves, probably indicating that trichomes were more effective in decreasing light stress than anthocyanins in the epidermis. CONCLUSIONS: Light screens, especially in the form of pubescence, decrease the risk of photoinhibition whilst allowing leaves to maintain a smaller content of xanthophyll cycle components and depend less on xanthophyll cycle energy dissipation. This combination of photoprotective features, i.e. decreased photon flux to the photosynthetic apparatus and lower xanthophyll cycle utilization rates may be particularly advantageous under stressful conditions.  相似文献   

14.
城市绿化植物叶片表面特征对滞尘能力的影响   总被引:15,自引:0,他引:15  
王会霞  石辉  李秧秧 《应用生态学报》2010,21(12):3077-3082
以西安市21种常见绿化植物为对象,采用人工降尘方法测定植物叶片的最大滞尘量,研究植物叶片表面绒毛、润湿性、表面自由能及其分量对滞尘能力的影响.结果表明: 21种供试植物叶片的最大滞尘量在0.8~38.6 g·m-2,不同树种最大滞尘量差异显著,物种间相差40倍以上.叶片表面绒毛数量及其形态、分布特征对滞尘能力具有重要影响,可能与绒毛和颗粒物间的作用方式有关.除叶片表面着生绒毛的悬铃木、国槐、榆叶梅和毛梾4个物种外,其他植物叶片接触角与最大滞尘量均呈显著负相关.接触角较小、易润湿的植物叶片最大滞尘量在2.0~8.0 g·m-2,而接触角较大的银杏、三叶草、紫叶小檗和鸡爪槭的最大滞尘量均<2.0 g·m-2.叶片表面自由能主要表现分子间色散力的作用,而极性分量对表面自由能的贡献低于20%,可能与叶片表面含有的非极性或弱极性物质有关.最大滞尘量与叶片表面自由能及其色散分量呈显著正相关,而与极性分量的相关关系不显著.  相似文献   

15.
MILLER, I. M., GARDNER, I. C. & SCOTT, A., 1984. Structure and function of trichomes in the shoot tip of Ardisia crispa (Thunb.) A.DC. (Myrsinaceae). The trichomes in the shoot tip of the myrsinaceous leaf-nodulated species Ardisia crispa (Thunb.) A.DC. have been studied at the ultrastructural level. Two distinct kinds of trichomes are found. Small peltate scales arise from the abaxial protoderrn of the developing leaves. Multicellular stellate trichomes on the adaxial surface of young leaves are uniseriate, rotate and consist of up to eight multicellular arms radiating from a central stalk. The multicellular arms terminate distally in swollen club-shaped tips. The stellate trichomes secrete large quantities of carbohydrate-containing mucilage. Colonies of leaf nodule bacteria are found resident in this mucilage. The role of the peltate scales and the stellate trichomes n the maintenance of the cyclic leaf nodule symbiosis is discussed.  相似文献   

16.
R. Baur  S. Binder  G. Benz 《Oecologia》1991,87(2):219-226
Summary The grey alder compensates leaf area losses due to insect grazing by continuously producing new leaves throughout the vegetative period. Different degrees of defoliation were attained experimentally by a controlled release of the oligophagous beetle Agelastica alni on arbitrarily selected trees from a homogenous population of young alders. The reduction in leaf area per tree significantly influenced the density of leaf trichomes, assessed 10–30 days later, on newly sprouting leaves only. Cross-correlations between leaf area reduction and trichome density were strongest for leaves which completed unfolding 14–21 days after damage. Dualchoice assays suggested a negative influence of trichomes on oviposition rate of A. alni. Removal of trichomes by shaving demonstrated the highly significant effect of trichomes on feeding behavior of adults and larvae in dual-choice assays. The role of the induced increase in trichome density as a possible short-term defense reaction against herbivorous insects is discussed.  相似文献   

17.
The morphology, ultrastructure, density and distribution of trichomes on leaves of Betula pendula, B. pubescens ssp. pubescens, B. pubescens ssp. czerepanovii and B. nana were examined by means of light, scanning and transmission electron microscopy. The composition of flavonoids in ethanolic leaf surface extracts was analysed by high pressure liquid chromatography. All taxa examined contained both glandular and non-glandular trichomes (short and/or long hairs) but differed from each other in trichome ultrastructure, density and location on the leaf. Leaves of B. pubescens were more hairy than those of B. pendula, but the latter species had a higher density of glandular trichomes. Of the two subspecies of B. pubescens, leaves of ssp. pubescens had more short hairs on the leaf surface and four times the density of glandular trichomes of leaves of ssp. czerepanovii, whereas, in the latter subspecies, short hairs occurred largely on leaf veins, as in B. nana. The glandular trichomes were peltate glands, consisting of medullar and cortical cells, which differed structurally. Cortical cells possessed numerous small, poorly developed plastids and small vacuoles, whereas medullar cells had several large plastids with well-developed thylakoid systems and fewer vacuoles. In B. pubescens subspecies, vacuoles of the glandular cells contained osmiophilic deposits, which were probably phenolic, whereas in B. pendula, vacuoles of glandular trichomes were characterized by the presence of numerous myelin-like membranes. The composition of epicuticular flavonoids also differed among species. The two subspecies of B. pubescens and B. nana shared the same 12 compounds, but five of these occurred only in trace amounts in B. nana. Leaf surface extracts of B. pendula contained just six flavonoids, three of which occurred only in this species. In summary, the structure, density and distribution of leaf trichomes and the composition of epicuticular flavonoids represent good taxonomic markers for Finnish birch species.  相似文献   

18.
Leaf pubescence mediates intraguild predation between predatory mites   总被引:1,自引:0,他引:1  
Plant morphological traits such as leaf pubescence may affect herbivores and their natural enemies at the individual, population and community levels. Leaf pubescence has been repeatedly shown to mediate predator‐herbivore interactions whereas the influence of leaf pubescence on predator–predator interactions such as intraguild predation (IGP) has seldom been investigated. Using a three‐pronged approach we assessed the influence of leaf pubescence on the predatory mites Kampimodromus aberrans and Euseius finlandicus. Both predators occur on broad‐leaved trees in Europe. Euseius finlandicus is mostly found on trees with glabrous leaves whereas K. aberrans mainly occurs on trees with pubescent leaves. We hypothesized that leaf pubescence mediates IGP between K. aberrans and E. finlandicus and thereby determines their dominance and proportional abundance. A field survey on apple revealed that the abundance of K. aberrans and E. finlandicus is negatively correlated, with the former predominating on cultivars with strongly pubescent leaves and the latter predominating on cultivars with little pubescent or glabrous leaves. Microhabitat choice tests showed that K. aberrans preferentially resides on pubescent leaves whereas E. finlandicus preferentially resides on glabrous leaves. The effects of leaf pubescence on survival and development of immature IG predators and IG prey were reversed for K. aberrans and E. finlandicus. In the presence of the IG predator E. finlandicus, immature K. aberrans had higher survival probabilities on pubescent leaves than on glabrous ones. In contrast, the survival chances of immature E. finlandicus were higher on glabrous leaves than on pubescent ones when the IG predator K. aberrans was present. Artificial leaf pubescence enhanced IG prey capture by immature K. aberrans and prolonged their longevity but impaired IG prey capture by immature E. finlandicus and shortened their longevity. We conclude that leaf pubescence mediates IGP strength and symmetry and discuss the implications to natural and biological control.  相似文献   

19.
Differences in anatomy and morphology of the kiwifruit leaves and leaf petioles might play a considerable role in the sex-determination. Three months after bud break (June), the kiwifruit leaves of both male and female plants, grown on the vegetative and generative shoots showed different leaf area (128.6 ± 13.45 cm2 in male and 104.5 ± 4.02 cm2 in female plants) and shape. The most frequently leaf shape was determined as "folium cordatum" and "folium rotundato-cordatum". Higher values of total leaf thickness of the female leaves (190 ± 3.84 μm) in comparison to male leaves (174 ± 3.52 μm) were estimated, resulting in the thicker adaxial leaf epidermis and especially in thicker palisade parenchyma in female leaves (136 ± 2.76 μm in comparison to 104 ± 1.61 μm in male leaves). Typically bifacial leaves were observed in both male and female leaves. Anomocytic stomata in hypostomatic leaves were found. The reticulate venation appears to be the main type of leaf venation. Stalked stellate multicellular trichomes on the abaxial leaf side were frequently observed in the leaves of both sexes. No important differences between male and female plants were found in the structures of vascular system in leaves and leaf petioles. Thus leaf thickness and surface morphology of adaxial leaf epidermis can be considered as important structural parameters in the sex determination. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
BACKGROUND AND AIMS: Changes in number of trichomes and in composition and concentrations of their exudates throughout leaf development may have important consequences for plant adaptation to abiotic and biotic factors. In the present study, seasonal changes in leaf trichomes and epicuticular flavonoid aglycones in three Finnish birch taxa (Betula pendula, B. pubescens ssp. pubescens, and B. pubescens ssp. czerepanovii) were followed. METHODS: Trichome number and ultrastructure were studied by means of light, scanning and transmission electron microscopy, while flavonoid aglycones in ethanolic leaf surface extracts were analysed by high-pressure liquid chromatography. KEY RESULTS: Density of both glandular and non-glandular trichomes decreased drastically with leaf expansion while the total number of trichomes per leaf remained constant, indicating that the final number of trichomes is established early in leaf development. Cells of glandular trichomes differentiate before those of the epidermis and produce secreted material only during the relatively short period (around 1-2 weeks) of leaf unfolding and expansion. In fully expanded leaves, glandular trichomes appeared to be at the post-secretory phase and function mainly as storage organs; they contained lipid droplets and osmiophilic material (probably phenolics). Concentrations (mg g(-1) d. wt) of surface flavonoids decreased with leaf age in all taxa. However, the changes in total amount ( microg per leaf) of flavonoids during leaf development were taxon-specific: no changes in B. pubescens ssp. czerepanovii, increase in B. pendula and in B. pubescens ssp. pubescens followed by the decline in the latter taxon. Concentrations of most of the individual leaf surface flavonoids correlated positively with the density of glandular trichomes within species, suggesting the participation of glandular trichomes in production of surface flavonoids. CONCLUSIONS: Rapid decline in the density of leaf trichomes and in the concentrations of flavonoid aglycones with leaf age suggests that the functional role of trichomes is likely to be most important at the early stages of birch leaf development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号