首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The active form of one subunit of Escherichia coli ribonucleotide reductase (protein B2) contains an organic free radical localized to tyrosine 122 of its polypeptide chain. When this radical is scavenged, e.g. by treatment with hydroxyurea, the enzyme is inactivated (protein B2/HU). E. coli contains an enzyme system consisting of at least three proteins that in the presence of NADPH, FMN, dithiothreitol, and oxygen introduce the tyrosyl radical into B2/HU (Eliasson, R., J?rnvall, H., and Reichard, P. (1986) Proc. Natl. Acad. Sci. U. S. A. 83, 2373-2377). One of the three proteins was identified as superoxide dismutase. We now identify a second protein, previously provisionally named Fraction c, as an NAD(P)H:flavin oxidoreductase (flavin reductase). After 4,000-fold purification the protein moved as a single band on sodium dodecyl sulfate gel electrophoresis with a molecular weight of 28,000-29,000. The enzyme contained no flavin but reduced riboflavin, FMN, and FAD by NADH, or riboflavin and FMN by NADPH. It is a powerful ferric iron reductase. We propose that its complementing activity during radical generation involves participation in the reduction of the ferric iron center of protein B2/HU. Radical formation is then linked to the reoxidation of iron by oxygen. The flavin reductase may also participate in other aspects of iron metabolism of E. coli.  相似文献   

2.
The active form of protein B2, a homodimeric subunit of Escherichia coli ribonucleotide reductase, contains a diferric iron center and a cationic free radical localized to tyrosine 122 of one of the two polypeptide chains. Hydroxyurea scavenges this radical but leaves the iron center intact. The resulting metB2 (earlier named B2/HU) is enzymatically inactive. Crude extracts of E. coli catalyze the interconversion of metB2 and B2. Radical introduction into metB2 requires a flavin reductase together with a second poorly defined protein fraction ("Fraction b") as well as dioxygen, NAD(P)H, and a flavin (Fontecave, M., Eliasson, R., and Reichard, P. (1987) J. Biol. Chem. 262, 12325-12331). We now find that ferrous ions can substitute for Fraction b and that the diferric center of metB2 is reduced during anaerobic incubation of the system with reduced flavin and ferrous ions. Spectroscopic evidence and isotope experiments suggest an in situ reduction of the diferric to a diferrous center. Admission of oxygen then results in the instantaneous oxidation of tyrosine 122 to the cationic radical coupled to the reformation of the diferric center, giving enzymatically active B2. These data suggest that reduced diferrous B2 is an intermediate between metB2 and B2 during radical introduction. In addition, we find that anaerobic incubation of B2 with reduced flavin results in the loss of the tyrosyl radical and the formation of metB2. This reaction occurs in the absence of Fraction b or ferrous ions. Our experiments reconstitute with defined reagents the interconversion between metB2 and B2 observed earlier in the E. coli extract. The flavin reductase system catalyzes the interconversion in both directions with dioxygen as the critical factor deciding whether activation or inactivation of ribonucleotide reductase occurs.  相似文献   

3.
The enzyme NAD(P)H:flavin oxidoreductase (flavin reductase) catalyzes the reduction of soluble flavins by reduced pyridine nucleotides. In Escherichia coli it is part of a multienzyme system that reduces the Fe(III) center of ribonucleotide reductase to Fe(II) and thereby sets the stage for the generation by dioxygen of a free tyrosyl radical required for enzyme activity. Similar enzymes are known in other organisms and may more generally be involved in iron metabolism. We have now isolated the gene for the E. coli flavin reductase from a lambda gt11 library. After DNA sequencing we found an open reading frame coding for a polypeptide of 233 amino acids, with a molecular weight of 26,212 and with an N-terminal segment identical to that determined by direct Edman degradation. The coding sequence is preceded by a weak ribosome binding site centered 8 nucleotides from the start codon and by a promoterlike sequence centered at a distance of 83 nucleotides. In a Kohara library the gene hybridized to position 3680 on the physical map of E. coli. A bacterial strain that overproduced the enzyme approximately 100-fold was constructed. The translated amino acid sequence contained a potential pyridine nucleotide-binding site and showed 25% identity with the C-terminal part of one subunit (protein C) of methane monooxygenase from methanotropic bacteria that reduces the iron center of a second subunit (protein A) of the oxygenase by pyridine nucleotides.  相似文献   

4.
 Protein R2, the small component of ribonucleotide reductase from Escherichia coli, contains a diferric center and a catalytically essential tyrosyl radical. In vitro, this radical can be produced in the protein from two inactive forms, metR2, containing an intact diiron center and lacking the tyrosyl radical, and apoR2, lacking both iron and the radical. While activation of apoR2 requires only a source of ferrous iron and exposure to O2, activation of metR2 was achieved using a multienzymatic system consisting of an NAD(P)H:flavin oxidoreductase, superoxide dismutase and a poorly defined protein fraction, named fraction b (Fontecave M, Eliasson R, Reichard P (1987) J Biol Chem 262 : 12325–12331). In both reactions, reduced R2, containing a diferrous center, is a key intermediate which is subsequently converted to active R2 during reaction with O2. By in vivo labeling of E. coli with radioactive 59Fe, we show that fraction b contains iron. Depletion of the iron in fraction b inactivates it, and fraction b can be substituted for by ferric citrate solutions. Furthermore, aqueous Fe2+ in the presence of dithiothreitol is able to convert metR2 into reduced R2. Therefore we propose that the function of fraction b is to provide, in association with the flavin reductase, ferrous iron for reduction of the endogenous diiron center. Since fraction b is not a single well-defined protein, it remains to be shown whether, in vivo, that function resides in a specific protein. Exogenous iron can thus participate in activation of both apoR2 and metR2, but it is incorporated into R2 only in the former case. A unifying mechanism is proposed. Received: 13 November 1996 / Accepted: 3 April 1997  相似文献   

5.
A scheme for the detoxification of superoxide in Pyrococcus furiosus has been previously proposed in which superoxide reductase (SOR) reduces (rather than dismutates) superoxide to hydrogen peroxide by using electrons from reduced rubredoxin (Rd). Rd is reduced with electrons from NAD(P)H by the enzyme NAD(P)H:rubredoxin oxidoreductase (NROR). The goal of the present work was to reconstitute this pathway in vitro using recombinant enzymes. While recombinant forms of SOR and Rd are available, the gene encoding P. furiosus NROR (PF1197) was found to be exceedingly toxic to Escherichia coli, and an active recombinant form (rNROR) was obtained via a fusion protein expression system, which produced an inactive form of NROR until cleavage. This allowed the complete pathway from NAD(P)H to the reduction of SOR via NROR and Rd to be reconstituted in vitro using recombinant proteins. rNROR is a 39.9-kDa protein whose sequence contains both flavin adenine dinucleotide (FAD)- and NAD(P)H-binding motifs, and it shares significant similarity with known and putative Rd-dependent oxidoreductases from several anaerobic bacteria, both mesophilic and hyperthermophilic. FAD was shown to be essential for activity in reconstitution assays and could not be replaced by flavin mononucleotide (FMN). The bound FAD has a midpoint potential of −173 mV at 23°C (−193 mV at 80°C). Like native NROR, the recombinant enzyme catalyzed the NADPH-dependent reduction of rubredoxin both at high (80°C) and low (23°C) temperatures, consistent with its proposed role in the superoxide reduction pathway. This is the first demonstration of in vitro superoxide reduction to hydrogen peroxide using NAD(P)H as the electron donor in an SOR-mediated pathway.  相似文献   

6.
Vanadate-dependent NAD(P)H oxidation, catalyzed by rat liver microsomes and microsomal NADPH-cytochrome P450 reductase (P450 reductase) and NADH-cytochrome b5 reductase (b5 reductase), was investigated. These enzymes and intact microsomes catalyzed NAD(P)H oxidation in the presence of either ortho- or polyvanadate. Antibody to P450 reductase inhibited orthovanadate-dependent NADPH oxidation catalyzed by either purified P450 reductase or rat liver microsomes and had no effect on the rates of NADH oxidation catalyzed by b5 reductase. NADPH-cytochrome P450 reductase catalyzed orthovanadate-dependent NADPH oxidation five times faster than NADH-cytochrome b5 reductase catalyzed NADH oxidation. Orthovanadate-dependent oxidation of either NADPH or NADH, catalyzed by purified reductases or rat liver microsomes, occurred in an anaerobic system, which indicated that superoxide is not an obligate intermediate in this process. Superoxide dismutase (SOD) inhibited orthovanadate, but not polyvanadate-mediated, enzyme-dependent NAD(P)H oxidation. SOD also inhibited when pyridine nucleotide oxidation was conducted anaerobically, suggesting that SOD inhibits vanadate-dependent NAD(P)H oxidation by a mechanism independent of scavenging of O2-.  相似文献   

7.
A scheme for the detoxification of superoxide in Pyrococcus furiosus has been previously proposed in which superoxide reductase (SOR) reduces (rather than dismutates) superoxide to hydrogen peroxide by using electrons from reduced rubredoxin (Rd). Rd is reduced with electrons from NAD(P)H by the enzyme NAD(P)H:rubredoxin oxidoreductase (NROR). The goal of the present work was to reconstitute this pathway in vitro using recombinant enzymes. While recombinant forms of SOR and Rd are available, the gene encoding P. furiosus NROR (PF1197) was found to be exceedingly toxic to Escherichia coli, and an active recombinant form (rNROR) was obtained via a fusion protein expression system, which produced an inactive form of NROR until cleavage. This allowed the complete pathway from NAD(P)H to the reduction of SOR via NROR and Rd to be reconstituted in vitro using recombinant proteins. rNROR is a 39.9-kDa protein whose sequence contains both flavin adenine dinucleotide (FAD)- and NAD(P)H-binding motifs, and it shares significant similarity with known and putative Rd-dependent oxidoreductases from several anaerobic bacteria, both mesophilic and hyperthermophilic. FAD was shown to be essential for activity in reconstitution assays and could not be replaced by flavin mononucleotide (FMN). The bound FAD has a midpoint potential of -173 mV at 23 degrees C (-193 mV at 80 degrees C). Like native NROR, the recombinant enzyme catalyzed the NADPH-dependent reduction of rubredoxin both at high (80 degrees C) and low (23 degrees C) temperatures, consistent with its proposed role in the superoxide reduction pathway. This is the first demonstration of in vitro superoxide reduction to hydrogen peroxide using NAD(P)H as the electron donor in an SOR-mediated pathway.  相似文献   

8.
B Lei  M Liu  S Huang    S C Tu 《Journal of bacteriology》1994,176(12):3552-3558
NAD(P)H-flavin oxidoreductases (flavin reductases) from luminous bacteria catalyze the reduction of flavin by NAD(P)H and are believed to provide the reduced form of flavin mononucleotide (FMN) for luciferase in the bioluminescence reaction. By using an oligonucleotide probe based on the partial N-terminal amino acid sequence of the Vibrio harveyi NADPH-FMN oxidoreductase (flavin reductase P), a recombinant plasmid, pFRP1, was obtained which contained the frp gene encoding this enzyme. The DNA sequence of the frp gene was determined; the deduced amino acid sequence for flavin reductase P consists of 240 amino acid residues with a molecular weight of 26,312. The frp gene was overexpressed, apparently through induction, in Escherichia coli JM109 cells harboring pFRP1. The cloned flavin reductase P was purified to homogeneity by following a new and simple procedure involving FMN-agarose chromatography as a key step. The same chromatography material was also highly effective in concentrating diluted flavin reductase P. The purified enzyme is a monomer and is unusual in having a tightly bound FMN cofactor. Distinct from the free FMN, the bound FMN cofactor showed a diminished A375 peak and a slightly increased 8-nm red-shifted A453 peak and was completely or nearly nonfluorescent. The Kms for FMN and NADPH and the turnover number of this flavin reductase were determined. In comparison with other flavin reductases and homologous proteins, this flavin reductase P shows a number of distinct features with respect to primary sequence, redox center, and/or kinetic mechanism.  相似文献   

9.
The phototrophic bacterium Rhodobacter capsulatus E1F1 detoxifies 2,4-dinitrophenol by inducing an NAD(P)H-dependent iron flavoprotein that reduces this compound to the less toxic end product 2-amino-4-nitrophenol. This nitrophenol reductase was stable in crude extracts containing carotenes, but it became rapidly inactivated when purified protein was exposed to intense white light or moderate blue light intensities, especially in the presence of exogenous flavins. Red light irradiation had no effect on nitrophenol reductase activity. Photoinactivation of the enzyme was irreversible and increased under anoxic conditions. This photoinactivation was prevented by reductants such as NAD(P)H and EDTA and by the excited flavin quencher iodide. Addition of superoxide dismutase, catalase, tryptophan or histidine did not affect photoinactivation of nitrophenol reductase, thus excluding these reactive dioxygen species as the inactivating agent. Substantial protection by 2,4-dinitrophenol also took place when the enzyme was irradiated at a wavelength coinciding with one of the absorption peaks of this compound (365nm). These results suggest that the lability of nitrophenol reductase was due to the absorption of blue light by the flavin prosthetic group, thus producing an excited flavin that might irreversibly oxidize some functional group(s) necessary for enzyme catalysis. Nitrophenol reductase may be preserved in vivo from blue light photoinactivation by the high content of carotenes and excess of reducing equivalents in phototrophic growing cells.Abbreviations 2,4-DNP 2,4-dinitrophenol - ANP 2-amino-4-nitrophenol - EDTA ethylenediamine tetraacetic acid - MES 2-(N-Morpholino) ethanesulfonic acid - NPR nitrophenol reductase  相似文献   

10.
Type 2 isopentenyl diphosphate:dimethylallyl diphosphate isomerase requires redox co-enzymes, i.e., flavin mononucleotide (FMN) and NAD(P)H, for activity, although it catalyzes a non-redox reaction. Spectrometric studies and enzyme assays under anaerobic conditions indicate that FMN is reduced through the reaction and is sufficient for activity. The sole function of NAD(P)H appears to be the reduction of FMN since it could be replaced by an alternate reducing agent. When the enzyme was reconstructed with a flavin analogue, no activity was detected, suggesting that the isomerase reaction proceeds via a radical transfer mechanism.  相似文献   

11.
It has been reported that vanadate-stimulated oxidation of NAD(P)H by microsomal systems can proceed anaerobically, in contrast to the general notion that the oxidation proceeds exclusively by an O(2-)-dependent free radical chain mechanism. The current study indicates that microsomal systems are endowed with a vanadate-reductase property, involving a NAD(P)H-dependent electron transport cytochrome P450 system. Our ESR measurements demonstrated the formation of a vanadium(IV) species in a mixture containing vanadate, rat liver microsomes, and NAD(P)H. This vanadium(IV) species was identified as the vanadyl ion (VO2+) by comparison with the ESR spectrum of VOSO4. The initial rate of vanadium(IV) formation depends linearly on the concentration of microsomes. The Michaelis-Menten constants were found to be: km = 1.25 mM and Vmax = 0.066 mumol (min)-1 (mg microsomes)-1, respectively. Pretreatment of the microsomes with carbon monoxide or K3Fe(CN)6 reduced vanadium(IV) generation, suggesting that the NAD(P)H-dependent electron transport cytochrome P450 system plays a significant role in the microsomal reduction of vanadate. Measurements under argon or in the presence of superoxide dismutase caused only minor (less than 10%) reductions in vanadium(IV) generation. The VO2+ species was also detected in NAD(P)H oxidation by fructose plus vanadate, a reaction known to proceed via an O(2-)-mediated chain mechanism. However, the amount of vanadium(IV) generated by this reaction was an order of magnitude smaller than that by the microsomal system and was inhibitable by superoxide dismutase, affirming the conclusion that the microsomal/NAD(P)H system is endowed with the (O(2-)-independent) vanadium(V) reductase property.  相似文献   

12.
The reduction of flavin in hepatic NADH-cytochrome b5 reductase by the hydrated electron (eaq-) was investigated by pulse radiolysis. The eaq- reduced the flavin of NADH-cytochrome b5 reductase to form the red semiquinone between pH 5 and 9. The spectrum of the red semiquinone differs from that of enzyme reduced by dithionite in the presence of NAD+. After the first phase of the reduction, conversion of the red to blue semiquinone was observed at acidic pH. Resulting products are the blue (neutral) or red (anionic) semiquinone or a mixture of the two forms. The pK value for this flavin radical was approximately 6.3. Subsequently, the semiquinone form reacted by dismutation to form the oxidized and the fully reduced forms of the enzyme with a rate constant of 1 x 10(3) M-1 s-1 at pH 7.1. In the presence of NAD+, eaq- reacted with NAD+ to yield NAD(.). Subsequently, NAD. transferred an electron to NAD+-bound oxidized enzyme to form the blue and red semiquinone or mixture of the two forms of the enzyme, where pK value of this flavin radical was approximately 6.3. The blue semiquinone obtained at acidic pH was found to convert to the red semiquinone with a first order rate constant of 90 s-1, where the rates were not affected by pH or the concentration of NAD+. The final product is NAD+-bound red semiquinone of the enzyme.  相似文献   

13.
Xanthine oxidase has been hypothesized to be an important source of biological free radical generation. The enzyme generates the superoxide radical, .O2- and has been widely applied as a .O2- generating system; however, the enzyme may also generate other forms of reduced oxygen. We have applied electron paramagnetic resonance (EPR) spectroscopy using the spin trap 5,5'-dimethyl-1-pyrroline-N-oxide (DMPO) to characterize the different radical species generated by xanthine oxidase along with the mechanisms of their generation. Upon reaction of xanthine with xanthine oxidase equilibrated with air, both DMPO-OOH and DMPO-OH radicals are observed. In the presence of ethanol or dimethyl sulfoxide, alpha-hydroxyethyl or methyl radicals are generated, respectively, indicating that significant DMPO-OH generation occurred directly from OH rather than simply from the breakdown of DMPO-OOH. Superoxide dismutase totally scavenged the DMPO-OOH signal but not the DMPO-OH signal suggesting that .O2- was not required for .OH generation. Catalase markedly decreased the DMPO-OH signal, while superoxide dismutase + catalase totally scavenged all radical generation. Thus, xanthine oxidase generates .OH via the reduction of O2 to H2O2, which in turn is reduced to .OH. In anaerobic preparations, the enzyme reduces H2O2 to .OH as evidenced by the appearance of a pure DMPO-OH signal. The presence of the flavin in the enzyme is required for both .O2- and .OH generation confirming that the flavin is the site of O2 reduction. The ratio of .O2- and .OH generation was affected by the relative concentrations of dissolved O2 and H2O2. Thus, xanthine oxidase can generate the highly reactive .OH radical as well as the less reactive .O2- radical. The direct production of .OH by xanthine oxidase in cells and tissues containing this enzyme could explain the presence of oxidative cellular damage which is not prevented by superoxide dismutase.  相似文献   

14.
The 2.1 A resolution crystal structure of flavin reductase P with the inhibitor nicotinamide adenine dinucleotide (NAD) bound in the active site has been determined. NAD adopts a novel, folded conformation in which the nicotinamide and adenine rings stack in parallel with an inter-ring distance of 3.6 A. The pyrophosphate binds next to the flavin cofactor isoalloxazine, while the stacked nicotinamide/adenine moiety faces away from the flavin. The observed NAD conformation is quite different from the extended conformations observed in other enzyme/NAD(P) structures; however, it resembles the conformation proposed for NAD in solution. The flavin reductase P/NAD structure provides new information about the conformational diversity of NAD, which is important for understanding catalysis. This structure offers the first crystallographic evidence of a folded NAD with ring stacking, and it is the first enzyme structure containing an FMN cofactor interacting with NAD(P). Analysis of the structure suggests a possible dynamic mechanism underlying NADPH substrate specificity and product release that involves unfolding and folding of NADP(H).  相似文献   

15.
Kinetic, circular dichroism, and NADH and NADPH fluorescence quenching studies indicate that these compounds interact with the antimalarial drug primaquine (PQ). The affinity of both pyridine nucleotides for PQ is similar. The data are in contrast with a previous report (Thornalley et al. (1983) Biochem. Pharmacol. 32, 3571-3575) suggesting specificity for the interaction with NADPH. The complex was seen to facilitate electron transfer from NAD(P)H to oxygen, generating oxygen-free radicals which were detected by the spin-trapping technique and to flavin nucleotides, giving rise to flavin semiquinone radicals which were demonstrated by direct ESR spectroscopy under anaerobic conditions. A twofold increase in oxygen uptake and hydroxyl radical generation by the NAD(P)H-PQ complex was observed in the presence of hemoglobin. This effect was independent of heme concentration (in the range 1 X 10(-5)-1 X 10(-4) M) and oxidation state of the iron. Under anaerobic conditions, the NAD(P)H-PQ complex reduces Fe-III to Fe-II hemoglobin, and under aerobic conditions about 65% of the heme chromophore is irreversibly destroyed. Superoxide dismutase inhibits hydroxyl radical generation by the NAD(P)H-PQ pair; this effect is not observed in the presence of hemoglobin. In the presence of microsomes there is a 10-fold increase in both oxygen consumption and hydroxyl radical generation by the NAD(P)H-PQ pair. The fact that both pyridine nucleotides are active, and the inability of SKF 525A in decreasing hydroxyl radical generation, suggests that microsomal reductases are involved in the catalysis.  相似文献   

16.
The interaction of heme nonapeptide (a proteolytic product of cytochrome c) with purified NADH:cytochrome b5 (EC 1.6.2.2) and NADPH:cytochrome P-450 (EC 1.6.2.4) reductases was investigated. In the presence of heme nonapeptide, NADH or NADPH were enzymatically oxidized to NAD+ and NADP+, respectively. NAD(P)H consumption was coupled to oxygen uptake in both enzyme reactions. In the presence of carbon monoxide the spectrum of a carboxyheme complex was observed during NAD(P)H oxidation, indicating the existence of a transient ferroheme peptide. NAD(P)H oxidation could be partially inhibited by cyanide, superoxide dismutase and catalase. Superoxide and peroxide ions (generated by enzymic xanthine oxidation) only oxidized NAD(P)H in the presence of heme nonapeptide. Oxidation of NAD(P)H was more rapid with O2- than O2-2. We suggest that a ferroheme-O2 and various heme-oxy radical complexes (mainly ferroheme-O-2 complex) play a crucial role in NAD(P)H oxidation.  相似文献   

17.
S Zenno  K Saigo  H Kanoh    S Inouye 《Journal of bacteriology》1994,176(12):3536-3543
The gene encoding the major NAD(P)H-flavin oxidoreductase (flavin reductase) of the luminous bacterium Vibrio fischeri ATCC 7744 was isolated by using synthetic oligonucleotide probes corresponding to the N-terminal amino acid sequence of the enzyme. Nucleotide sequence analysis suggested that the major flavin reductase of V. fischeri consisted of 218 amino acids and had a calculated molecular weight of 24,562. Cloned flavin reductase expressed in Escherichia coli was purified virtually to homogeneity, and its basic biochemical properties were examined. As in the major flavin reductase in crude extracts of V. fischeri, cloned flavin reductase showed broad substrate specificity and served well as a catalyst to supply reduced flavin mononucleotide (FMNH2) to the bioluminescence reaction. The major flavin reductase of V. fischeri not only showed significant similarity in amino acid sequence to oxygen-insensitive NAD(P)H nitroreductases of Salmonella typhimurium, Enterobacter cloacae, and E. coli but also was associated with a low level of nitroreductase activity. The major flavin reductase of V. fischeri and the nitroreductases of members of the family Enterobacteriaceae would thus appear closely related in evolution and form a novel protein family.  相似文献   

18.
The nicotinamide nucleotide dimers (NAD)2 and (NADP)2, obtained by electrochemical reduction of NAD+ and NADP+, are able to reduce such single-electron acceptors as the proteins cytochrome c, azurin and methaemoglobin, though at different rates. Under the same conditions the reduced nicotinamide coenzymes NADH and NADPH are not able to reduce these proteins at measurable rates unless a catalyst (phenazine methosulphate or NADH-cytochrome c reductase in the case of cytochrome) is present. The redox mechanism seems to involve the formation of an NAD(P). radical that in the presence of O2 gives rise to superoxide (O2.-), since superoxide dismutase inhibited these reactions.  相似文献   

19.
The NAD(P)H cytochrome b5 oxidoreductase, Ncb5or (previously named b5+b5R), is widely expressed in human tissues and broadly distributed among the animal kingdom. NCB5OR is the first example of an animal flavohemoprotein containing cytochrome b5 and chrome b5 reductase cytodomains. We initially reported human NCB5OR to be a 487-residue soluble protein that reduces cytochrome c, methemoglobin, ferricyanide, and molecular oxygen in vitro. Bioinformatic analysis of genomic sequences suggested the presence of an upstream start codon. We confirm that endogenous NCB5OR indeed has additional NH2-terminal residues. By performing fractionation of subcellular organelles and confocal microscopy, we show that NCB5OR colocalizes with calreticulin, a marker for endoplasmic reticulum. Recombinant NCB5OR is soluble and has stoichiometric amounts of heme and flavin adenine dinucleotide. Resonance Raman spectroscopy of NCB5OR presents typical signatures of a six-coordinate low-spin heme similar to those found in other cytochrome b5 proteins. Kinetic measurements showed that full-length and truncated NCB5OR reduce cytochrome c actively in vitro. However, both full-length and truncated NCB5OR produce superoxide from oxygen with slow turnover rates: kcat = approximately 0.05 and approximately 1 s(-1), respectively. The redox potential at the heme center of NCB5OR is -108 mV, as determined by potentiometric titrations. Taken together, these data suggest that endogenous NCB5OR is a soluble NAD(P)H reductase preferentially reducing substrate(s) rather than transferring electrons to molecular oxygen and therefore not an NAD(P)H oxidase for superoxide production. The subcellular localization and redox properties of NCB5OR provide important insights into the biology of NCB5OR and the phenotype of the Ncb5or-null mouse.  相似文献   

20.
The B2 subunit of ribonucleotide reductase from Escherichia coli contains a tyrosine radical which is essential for enzyme activity. In the reaction between ribonucleotide reductase and the substrate analogue 2'-azido-2'-deoxycytidine 5'-diphosphate a new transient radical is formed. The EPR characteristics of this new radical species are consistent with a localization of the unpaired electron at the sugar moiety of the nucleotide. The radical shows hyperfine couplings to a hydrogen and a nitrogen nucleus, the latter probably being part of the azide substituent. The formation of the nucleotide radical in this suicidal reaction is concomitant with the decay of the tyrosine radical of the B2 subunit. Kinetic data argue for a first (pseudosecond) order decay of the B2 radical via generation of the nucleotide radical followed by a slower first order decay of the nucleotide radical. End products in the reaction are cytosine and radical-free protein B2. In the reaction between bacteriophage T4 ribonucleotide reductase and 2'-azido-2'-deoxycytidine 5'-diphosphate an identical nucleotide radical is formed. The present results are consistent with the hypothesis that the appearance and structure of the transient radical mimic stages in the normal reaction pathway of ribonucleotide reductase, postulated to proceed via 3'-hydrogen abstraction and cation radical formation of the substrate nucleotide (Stubbe, J., and Ackles, D. (1980) J. Biol. Chem. 255, 8027-8030). The nucleotide radical described here might be equivalent to such a cation radical intermediate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号