首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
S100A6 is a calcium binding protein that, like some other members of the S100 protein family, is able to bind p53. This interaction may be physiologically relevant considering the numerous connotations of S100 proteins and of S100A6, in particular, with cancer and metastasis. In this work, we show that the interaction with S100A6 is limited to unmodified or phosphorylated p53 and is inhibited by p53 acetylation. Using in vitro acetylation assay, we show that the presence of S100A6 attenuates p53 acetylation by p300. Furthermore, using ELISA, we show that S100A6 and the TAZ2 domain of p300 bind p53 with similar affinities and that S100A6 effectively competes with TAZ2 for binding to p53. Our results add another element to the complicated scheme of p53 activation.  相似文献   

2.
Wheat seeds contain different lipid binding proteins that are low molecular mass, basic and cystine-rich proteins. Among them, the recently characterized puroindolines have been shown to inhibit the growth of fungi in vitro and to enhance the fungal resistance of plants. Experimental data, using lipid vesicles, suggest that this antimicrobial activity is related to interactions with cellular membranes, but the underlying mechanisms are still unknown. This paper shows that extracellular application of puroindolines on voltage-clamped Xenopus laevis oocytes induced membrane permeabilization. Electrophysiological experiments, on oocytes and artificial planar lipid bilayers, suggest the formation, modulated by voltage, of cation channels with the following selectivity: Cs(+) > K(+) > Na(+) > Li(+) > choline = TEA. Furthermore, this channel activity was prevented by addition of Ca(2+) ions in the medium. Puroindolines were also able to decrease the long-term oocyte viability in a voltage-dependent manner. Taken together, these results indicate that channel formation is one of the mechanisms by which puroindolines exert their antimicrobial activity. Modulation of channel formation by voltage, Ca(2+), and lipids could introduce some selectivity in the action of puroindolines on natural membranes.  相似文献   

3.
4.
Fesselin is a natively unfolded protein that is abundant in avian smooth muscle. Like many natively unfolded proteins, fesselin has multiple binding partners including actin, myosin, calmodulin and α-actinin. Fesselin accelerates actin polymerization and bundles actin. These and other observations suggest that fesselin is a component of the cytoskeleton. We have now cloned fesselin and have determined the cDNA derived amino acid sequence. We verified parts of the sequence by Edman analysis and by mass spectroscopy. Our results confirmed fesselin is homologous to human synaptopodin 2 and belongs to the synaptopodin family of proteins.  相似文献   

5.
Optical manipulation of Saccharomyces cerevisiae cells with high density green photons conferred protection against the deleterious effects of UV radiation. Combining chemical screening with UV irradiation of yeast cells, it was noted that the high density green photons relied on the presence of intact unfolded protein response (UPR) pathway to exert their protective effect and that the low Ca2+ conditions boosted the effect. UPR chemical inducers tunicamycin, dithiotreitol and calcium chelators augmented the green light effect in a synergic action against UV-induced damage. Photo-manipulation of cells was a critical factor since the maximum protection was achieved only when cells were pre-exposed to green light.  相似文献   

6.
Costunolide is an active sesquiterpene lactone of medicinal herbs with anti-inflammatory and potential anti-cancer activity. Nevertheless, the pharmacological pathways of costunolide have not yet been fully elucidated. In this study we showed that costunolide exerts a dose-dependent antiproliferative activity in the human breast cancer MCF-7 cells. In addition, light microscopy observations indicated that costunolide affected nuclear organization and reorganized microtubule architecture. The antiproliferative and antimicrotubular effects of costunolide were not influenced by paclitaxel, well-known microtubule-stabilizing anticancer agent. The microtubule-interacting activity of costunolide was confirmed by in vitro studies on purified microtubular protein. In fact, costunolide demonstrated polymerizing ability, by inducing the formation of well organized microtubule polymers. Our data suggest an interaction of costunolide with microtubules, which may represent a new intracellular target for this drug.  相似文献   

7.
We have compared the physical properties of a 15.51-kb constitutive heterochromatin segment and a 16.17-kb facultative heterochromatin segment that form part of the chicken β-globin locus. These segments were excised from an avian erythroleukemia cell line by restriction enzyme digestion and released from the nucleus, thus allowing measurement of the sedimentation coefficients by use of calibrated sucrose gradients. A determination of the buoyant density of the cross-linked particle in CsCl led to the total mass of the particles and their frictional coefficients, f. Despite the slight differences in nucleosome density, the measured value of f for both fragments was consistent with a rodlike particle having a diameter of 33-45 nm and a length corresponding to approximately six to seven nucleosomes per 11-nm turn. At higher ionic strengths we found no evidence of any abrupt conformational change, demonstrating that these chromatin fragments released from the nucleus did not assume the more compact conformations recently described for some reconstituted structures.  相似文献   

8.
Wang Z  Xie W  Chi F  Li C 《FEBS letters》2005,579(7):1683-1687
Although non-specific lipid transfer proteins (nsLTPs) are widely present in plants, their functions and regulations have not been fully understood. In this report, Arabidopsis nsLTP1 was cloned and expressed to investigate its binding to calmodulin (CaM). Gel overlay assays revealed that recombinant nsLTP1 bound to CaM in a calcium-independent manner. The association of nsLTP1 and CaM was corroborated using CaM-Sepharose beads to specifically isolate recombinant nsLTP1 from crude bacterial lysate. The CaM-binding site was mapped in nsLTP1 to the region of 69-80 amino acids. This region is highly conserved among plant nsLTPs, implicating that nsLTPs are a new family of CaM-binding proteins whose functions may be mediated by CaM signaling.  相似文献   

9.
Previous in vitro motility assays using bipolar myosin thick filaments demonstrated that actin filaments were capable of moving in both directions along the myosin filament tracks. The movements; however, were slower in the direction leading away from the central bare zone than towards it. To understand the mechanism underlying these different direction-dependent motilities, we have examined the effects of temperature on the velocities of the bidirectional movements along reconstituted myosin filaments. Activation energies of the movements were determined by Arrhenius plots at high and low concentrations of ATP. As a result, the thermal activation energy of the movement away from the central bare zone was significantly higher than that of the movement toward the zone. Given that the backward movement away from the central bare zone would cause the myosin heads to be constrained and the stiffness of the cross-bridges to increase, these results suggest that elastic energy required for the cross-bridge transition is supplied by thermal fluctuations.  相似文献   

10.
Ribonucleotide reductase (class I) contains two components: protein R1 binds the substrate, and protein R2 normally has a diferric site and a tyrosyl free radical needed for catalysis. In Chlamydia trachomatis RNR, protein R2 functions without radical. Enzyme activity studies show that in addition to a diiron cluster, a mixed manganese-iron cluster provides the oxidation equivalent needed to initiate catalysis. An EPR signal was observed from an antiferromagnetically coupled high-spin Mn(III)-Fe(III) cluster in a catalytic reaction mixture with added inhibitor hydroxyurea. The manganese-iron cluster in protein R2 confers much higher specific activity than the diiron cluster does to the enzyme.  相似文献   

11.
Regulation of muscle contraction via the myosin filaments occurs in vertebrate smooth and many invertebrate striated muscles. Studies of unphosphorylated vertebrate smooth muscle myosin suggest that activity is switched off through an intramolecular interaction between the actin-binding region of one head and the converter and essential light chains of the other, inhibiting ATPase activity and actin interaction. The same interaction (and additional interaction with the tail) is seen in three-dimensional reconstructions of relaxed, native myosin filaments from tarantula striated muscle, suggesting that such interactions are likely to underlie the off-state of myosin across a wide spectrum of the animal kingdom. We have tested this hypothesis by carrying out cryo-electron microscopy and three-dimensional image reconstruction of myosin filaments from horseshoe crab (Limulus) muscle. The same head-head and head-tail interactions seen in tarantula are also seen in Limulus, supporting the hypothesis. Other data suggest that this motif may underlie the relaxed state of myosin II in all species (including myosin II in nonmuscle cells), with the possible exception of insect flight muscle.The molecular organization of the myosin tails in the backbone of muscle thick filaments is unknown and may differ between species. X-ray diffraction data support a general model for crustaceans in which tails associate together to form 4-nm-diameter subfilaments, with these subfilaments assembling together to form the backbone. This model is supported by direct observation of 4-nm-diameter elongated strands in the tarantula reconstruction, suggesting that it might be a general structure across the arthropods. We observe a similar backbone organization in the Limulus reconstruction, supporting the general existence of such subfilaments.  相似文献   

12.
The contractile and enzymatic activities of myosin VI are regulated by calcium binding to associated calmodulin (CaM) light chains. We have used transient phosphorescence anisotropy to monitor the microsecond rotational dynamics of erythrosin-iodoacetamide-labeled actin with strongly bound myosin VI (MVI) and to evaluate the effect of MVI-bound CaM light chain on actin filament dynamics. MVI binding lowers the amplitude but accelerates actin filament microsecond dynamics in a Ca2+- and CaM-dependent manner, as indicated from an increase in the final anisotropy and a decrease in the correlation time of transient phosphorescence anisotropy decays. MVI with bound apo-CaM or Ca2+-CaM weakly affects actin filament microsecond dynamics, relative to other myosins (e.g., muscle myosin II and myosin Va). CaM dissociation from bound MVI damps filament rotational dynamics (i.e., increases the torsional rigidity), such that the perturbation is comparable to that induced by other characterized myosins. Analysis of individual actin filament shape fluctuations imaged by fluorescence microscopy reveals a correlated effect on filament bending mechanics. These data support a model in which Ca2+-dependent CaM binding to the IQ domain of MVI is linked to an allosteric reorganization of the actin binding site(s), which alters the structural dynamics and the mechanical rigidity of actin filaments. Such modulation of filament dynamics may contribute to the Ca2+- and CaM-dependent regulation of myosin VI motility and ATP utilization.  相似文献   

13.
Mamczur P  Rakus D  Gizak A  Dus D  Dzugaj A 《FEBS letters》2005,579(7):1607-1612
In skeletal muscles, FBPase-aldolase complex is located on alpha-actinin of the Z-line. In the present paper, we show evidence that stability of the complex is regulated by calcium ions. Real time interaction analysis, confocal microscopy and the protein exchange method have revealed that elevated calcium concentration decreases association constant of FBPase-aldolase and FBPase-alpha-actinin complex, causes fast dissociation of FBPase from the Z-line and slow accumulation of aldolase within the I-band and M-line. Therefore, the release of Ca2+ during muscle contraction might result, simultaneously, in the inhibition of glyconeogenesis and in the acceleration of glycolysis.  相似文献   

14.
Acid sensing ion channels (ASICs), Ca2+ and voltage-activated potassium channels (BK) are widely present throughout the central nervous system. Previous studies have shown that when expressed together in heterologous cells, ASICs inhibit BK channels, and this inhibition is relieved by acidic extracellular pH. We hypothesized that ASIC and BK channels might interact in neurons, and that ASICs may regulate BK channel activity. We found that ASICs inhibited BK currents in cultured wild-type cortical neurons, but not in ASIC1a/2/3 triple knockout neurons. The inhibition in the wild-type was partially relieved by a drop in extracellular pH to 6. To test the consequences of ASIC-BK interaction for neuronal excitability, we compared action potential firing in cultured cortical neurons from wild-type and ASIC1a/2/3 null mice. We found that in the knockout, action potentials were narrow and exhibited increased after-hyperpolarization. Moreover, the excitability of these neurons was significantly increased. These findings are consistent with increased BK channel activity in the neurons from ASIC1a/2/3 null mice. Our data suggest that ASICs can act as endogenous pH-dependent inhibitors of BK channels, and thereby can reduce neuronal excitability.  相似文献   

15.
16.
Joseph J  Dasso M 《FEBS letters》2008,582(2):190-196
The nucleoporin Nup358 resides on the cytoplasmic face of the interphase nuclear pore complex (NPC). During metaphase, its recruitment to kinetochores is important for correct microtubule-kinetochore attachment. Here, we report that a fraction of endogenous Nup358 interacts with interphase microtubules through its N-terminal region (BPN). Cells overexpressing the microtubule targeting domain of Nup358 displayed dramatic alteration in the microtubule organization including increased microtubule bundling and stability. Ectopic expression of BPN and full-length Nup358 exhibited significantly higher levels of acetylated microtubules that were resistant to nocodazole, a microtubule depolymerizing agent. Furthermore, RNAi mediated depletion of Nup358 affected polarized stabilization of microtubules during directed cell migration, confirming the in vivo role of Nup358 in regulating interphase microtubules.  相似文献   

17.
Heat shock proteins are molecular chaperones linked to a myriad of physiological functions in both prokaryotes and eukaryotes. In this study, we show that the Aspergillus nidulans hsp30 (ANID_03555.1), hsp70 (ANID_05129.1), and hsp90 (ANID_08269.1) genes are preferentially expressed in an acidic milieu, whose expression is dependent on the palA + background under optimal temperature for fungal growth. Heat shock induction of these three hsp genes showed different patterns in response to extracellular pH changes in the palA+ background. However, their accumulation upon heating for 2 h was almost unaffected by ambient pH changes in the palA background. The PalA protein is a member of a conserved signaling cascade that is involved in the pH-mediated regulation of gene expression. Moreover, we identified several genes whose expression at pH 5.0 is also dependent on the palA + background. These results reveal novel aspects of the heat- and pH-sensing networks of A. nidulans.  相似文献   

18.
The interaction between the calcium-binding protein S100A4 and the C-terminal fragments of nonmuscle myosin heavy chain IIA has been studied by equilibrium and kinetic methods. Using site-directed mutants, we conclude that Ca2+ binds to the EF2 domain of S100A4 with micromolar affinity and that the Kd value for Ca2+ is reduced by several orders of magnitude in the presence of myosin target fragments. The reduction in Kd results from a reduced dissociation rate constant (from 16 s− 1 to 0.3 s− 1 in the presence of coiled-coil fragments) and an increased association rate constant. Using peptide competition assays and NMR spectroscopy, we conclude that the minimal binding site on myosin heavy chain IIA corresponds to A1907-G1938; therefore, the site extends beyond the end of the coiled-coil region of myosin. Electron microscopy and turbidity assays were used to assess myosin fragment filament disassembly by S100A4. The latter assay demonstrated that S100A4 binds to the filaments and actively promotes disassembly rather than just binding to the myosin monomer and displacing the equilibrium. Quantitative modelling of these in vitro data suggests that S100A4 concentrations in the micromolar region could disassemble myosin filaments even at resting levels of cytoplasmic [Ca2+]. However, for Ca2+ transients to be effective in further promoting dissociation, the elevated Ca2+ signal must persist for tens of seconds. Fluorescence recovery after photobleaching of A431/SIP1 cells expressing green fluorescent protein-myosin IIA, immobilised on fibronectin micropatterns to control stress fibre location, yielded a recovery time constant of around 20 s, consistent with in vitro data.  相似文献   

19.
Residue Ser151 of cardiac troponin I (cTnI) is known to be phosphorylated by p21-activated kinase 3 (PAK3). It has been found that PAK3-mediated phosphorylation of cTnI induces an increase in the sensitivity of myofilament to Ca2+, but the detailed mechanism is unknown. We investigated how the structural and kinetic effects mediated by pseudo-phosphorylation of cTnI (S151E) modulates Ca2+-induced activation of cardiac thin filaments. Using steady-state, time-resolved Förster resonance energy transfer (FRET) and stopped-flow kinetic measurements, we monitored Ca2+-induced changes in cTnI-cTnC interactions. Measurements were done using reconstituted thin filaments, which contained the pseudo-phosphorylated cTnI(S151E). We hypothesized that the thin filament regulation is modulated by altered cTnC-cTnI interactions due to charge modification caused by the phosphorylation of Ser151 in cTnI. Our results showed that the pseudo-phosphorylation of cTnI (S151E) sensitizes structural changes to Ca2+ by shortening the intersite distances between cTnC and cTnI. Furthermore, kinetic rates of Ca2+ dissociation-induced structural change in the regulatory region of cTnI were reduced significantly by cTnI (S151E). The aforementioned effects of pseudo-phosphorylation of cTnI were similar to those of strong crossbridges on structural changes in cTnI. Our results provide novel information on how cardiac thin filament regulation is modulated by PAK3 phosphorylation of cTnI.  相似文献   

20.
The thiol oxidase Erv1 and the redox-regulated receptor Mia40/Tim40 are components of a disulfide relay system which mediates import of proteins into the intermembrane space (IMS) of mitochondria. Here we report that Erv1 requires Mia40 for its import into mitochondria. After passage across the translocase of the mitochondrial outer membrane Erv1 interacts via disulfide bonds with Mia40. Erv1 does not contain twin “CX3C” or twin “CX9C” motifs which are crucial for import of typical substrates of this pathway and it does not need two “CX2C” motifs for import into mitochondria. Thus, Erv1 represents an unusual type of substrate of the Mia40-dependent import pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号