首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Linear narrow wounds produced on cultured bovine corneal endothelial monolayers heal by actin cable formation at the wound border and lamellar crawling of cells into the injured area. We report the novel finding that membrane potential depolarization occurs at the leading edge of wounds and gradually extends inward toward the neighboring cells. We have determined that the replacement of extracellular Na+ by choline and the incorporation of phenamil, an inhibitor of the epithelial Na+ channel (ENaC), provoke a decrease in the actin cable and depolarization areas and in the lamellar activity of the wound edges. To the contrary, extracellular Li+ can successfully replace Na+ in the determination of the depolarization and cytoskeletal responses. This finding supports the idea that membrane depolarization, not the increase in intracellular Na+ concentration, is responsible for the formation of the actin cable, a result that is in agreement with previous evidence showing that nonspecific depolarization of the plasma membrane potential (PMP) of epithelial cells may promote characteristic cytoskeletal rearrangements per se (Chifflet S, Hernández JA, Grasso S, and Cirillo A. Exp Cell Res 282: 1–13, 2003). We suggest that spontaneous depolarization of the PMP of the cells at the wound borders determined by a rise in the ENaC activity of these cells constitutes an additional factor in the intermediate cellular processes leading to wound healing in some epithelia. actin; epithelial sodium channel  相似文献   

2.
To investigate a role of thrombospondin-1 (TSP-1), a multifunctional extracellular matrix protein, in corneal epithelial wound healing, we analyzed the expression of TSP-1 in the normal and wounded mouse corneal epithelia and the effect of exogenous TSP-1 on the wound healing. In immunohistochemical analyses of unwounded corneas, TSP-1 was only detectable in endothelial cells. In contrast, TSP-1 appeared on the wounded corneal surface and on the corneal stroma, at 30 min and 8-16 h, respectively, after making an abrasion on the corneal epithelium. This expression of TSP-1 disappeared after 36-48 h, when re-epithelialization was completed. The TSP-1 mRNA level in the wounded corneas increased as much as three fold compared with that in the unwounded corneas. In organ culture, exogenous TSP-1 stimulated the re-epithelialization of corneal epithelial wounds whereas anti-TSP-1 antibody significantly inhibited the re-epithelialization. These findings suggest the possibility that epithelial defects in the corneas stimulate the expression of TSP-1 in the wound area, resulting in the accelerated re-epithelialization of the cornea.  相似文献   

3.
PCR analysis and Western blotting revealed the expression of the mineralocorticoid receptor (MCR) and the epithelial sodium channel (ENaC) genes at the level of RNA, DNA, and protein in several leukemic cell lines, fibroblasts from human cornea, and epithelial cells from ocular tissues. Following immunofluorescence, the MCR appeared to be primarily nuclear whereas the ENaC was almost exclusively membrane-bound. Paradoxically, the MCR-specific antagonist ZK 91587 actually stimulated the multiplication of human erythroblastic leukemia cells, contrary to the inhibitory effect of the antagonist RU 26752 on the multiplication of corneal fibroblasts; both effects were opposed by aldosterone. In quantitative PCR, both basal and aldosterone-induced levels of ENaC were diminished by ZK 91587 in the corneal fibroblast, in contrast to the stimulation observed in the retinal pigmentary epithelium. Thus, contrary to the existing notions, (a) antimineralocorticoids can act both as agonists and antagonists, and (b) the receptor-mediated action of mineralocorticoids on the sodium channel is not restricted to the epithelial cell.  相似文献   

4.
Heme oxygenase (HO) represents an intrinsic cytoprotective system based on its anti‐oxidative and anti‐inflammatory properties mediated via its products biliverdin/bilirubin and carbon monoxide (CO). We showed that deletion of HO‐2 results in impaired corneal wound healing with associated chronic inflammatory complications. This study was undertaken to examine the role of HO activity and the contribution of HO‐1 and HO‐2 to corneal wound healing in an in vitro epithelial scratch injury model. A scratch wound model was established using human corneal epithelial (HCE) cells. These cells expressed both HO‐1 and HO‐2 proteins. Injury elicited a rapid and transient increase in HO‐1 and HO activity; HO‐2 expression was unchanged. Treatment with biliverdin or CORM‐A1, a CO donor, accelerated wound closure by 10% at 24 h. Inhibition of HO activity impaired wound closure by more than 50%. However, addition of biliverdin or CORM‐A1 reversed the effect of HO inhibition on wound healing. Moreover, knockdown of HO‐2 expression, but not HO‐1, significantly impaired wound healing. These results indicate that HO activity is required for corneal epithelial cell migration. Inhibition of HO activity impairs wound healing while amplification of its activity restores and accelerates healing. Importantly, HO‐2, which is highly expressed in the corneal epithelium, appears to be critical for the wound healing process in the cornea. The mechanisms by which it contributes to cell migration in response to injury may reside in the cytoprotective properties of CO and biliverdin. J. Cell. Physiol. 226: 1732–1740, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

5.
Delayed healing of corneal epithelial wounds is a serious complication in diabetes. Advanced glycation end products (AGEs) are intimately associated with the diabetic complications and are deleterious to the wound healing process. However, the effect of AGEs on corneal epithelial wound healing has not yet been evaluated. In the present study, we investigated the effect of AGE-modified bovine serum albumin (BSA) on corneal epithelial wound healing and its underlying mechanisms. Our data showed that AGE-BSA significantly increased the generation of intracellular ROS in telomerase-immortalized human corneal epithelial cells. However, the generation of intracellular ROS was completely inhibited by antioxidant N-acetylcysteine (NAC), anti-receptor of AGEs (RAGE) antibodies, or the inhibitor of NADPH oxidase. Moreover, AGE-BSA increased NADPH oxidase activity and protein expression of NADPH oxidase subunits, p22phox and Nox4, but anti-RAGE antibodies eliminated these effects. Furthermore, prevention of intracellular ROS generation using NAC or anti-RAGE antibodies rescued AGE-BSA-delayed epithelial wound healing in porcine corneal organ culture. In conclusion, our results demonstrated that AGE-BSA impaired corneal epithelial wound healing ex vivo. AGE-BSA increased intracellular ROS generation through NADPH oxidase activation, which accounted for the delayed corneal epithelial wound healing. These results may provide better insights for understanding the mechanism of delayed healing of corneal epithelial wounds in diabetes.  相似文献   

6.
It has classically been accepted that the healing of narrow wounds in epithelia occurs by the formation of a contractile actin cable, while wide wounds are resurfaced by lamellipodia-dependent migration of border cells into the denuded area. To further investigate the general validity of this idea, we performed systematic experiments of the roles of wound geometry, wound size, and extracellular matrix (ECM) in wound healing in monolayers of bovine corneal endothelial cells, a system shown here to predominantly display any of the two healing mechanisms according to the experimental conditions. We found that, in this system, it is the absence or presence of the ECM on the wound surface that determines the specific healing mode. Our observations demonstrate that, independent of their size and geometry, wounds created maintaining the ECM heal by migration of cells into the wound area, while ECM removal from the wound surface determines the predominant formation of an actin cable. While the latter mechanism is slower, the actin cable permits the maintainance of the epithelial phenotype to a larger extent during the healing process, as also confirmed by our finding of a more conserved localization of cadherin and vinculin. We also introduce a model that simulates experimental findings about the dynamics of healing mechanisms, both for the maintenance or removal of the ECM on the wound surface. The findings of this study may contribute to the understanding of physiological and pathological aspects of epithelial wound healing and to the design of therapeutic strategies.  相似文献   

7.
The epithelial sodium channel (ENaC) constitutes the rate-limiting step for sodium absorption across airway epithelia, which in turn regulates airway surface liquid (ASL) volume and the efficiency of mucociliary clearance. This role in ASL volume regulation suggests that ENaC activity is influenced by local factors rather than systemic signals indicative of total body volume homeostasis. Based on reports that ENaC may be regulated by extracellular serine protease activity in Xenopus and mouse renal epithelia, we sought to identify proteases that serve similar functions in human airway epithelia. Homology screening of a human airway epithelial cDNA library identified two trypsin-like serine proteases (prostasin and TMPRSS2) that, as revealed by in situ hybridization, are expressed in airway epithelia. Functional studies in the Xenopus oocyte expression system demonstrated that prostasin increased ENaC currents 60--80%, whereas TMPRSS2 markedly decreased ENaC currents and protein levels. Studies of primary nasal epithelial cultures in Ussing chambers revealed that inhibition of endogenous serine protease activity with aprotinin markedly decreased ENaC-mediated currents and sensitized the epithelia to subsequent channel activation by exogenous trypsin. These data, therefore, suggest that protease-mediated regulation of sodium absorption is a function of human airway epithelia, and prostasin is a likely candidate for this activity.  相似文献   

8.
The epithelial sodium channel (ENaC) is the rate-limiting step for sodium reabsorption across tight epithelia. Cyclic-AMP (cAMP) stimulation promotes ENaC trafficking to the apical surface to increase channel number and transcellular Na+ transport. Removal of corticosteroid supplementation in a cultured cortical collecting duct cell line reduced ENaC expression. Concurrently, the number of vesicles trafficked in response to cAMP stimulation, as measured by a change in membrane capacitance, also decreased. Stimulation with aldosterone restored both the basal and cAMP-stimulated ENaC activity and increased the number of exocytosed vesicles. Knocking down ENaC directly decreased both the cAMP-stimulated short-circuit current and capacitance response in the presence of aldosterone. However, constitutive apical recycling of the Immunoglobulin A receptor was unaffected by alterations in ENaC expression or trafficking. Fischer Rat Thyroid cells, transfected with α,β,γ-mENaC had a significantly greater membrane capacitance response to cAMP stimulation compared to non-ENaC controls. Finally, immunofluorescent labeling and quantitation revealed a smaller number of vesicles in cells where ENaC expression was reduced. These findings indicate that ENaC is not a passive passenger in regulated epithelial vesicle trafficking, but plays a role in establishing and maintaining the pool of vesicles that respond to cAMP stimulation.  相似文献   

9.
The epithelial sodium channel (ENaC) is ubiquitinated by the E3 ligase Nedd4-2 at the apical membranes of polarized cortical collecting duct (CCD) epithelial cells. This leads to ENaC endocytosis and possible degradation. Because ENaC is known to recycle at the apical membranes of CCD cells, deubiquitinating enzymes (DUBs) are likely involved in regulating ENaC surface density by facilitating ENaC recycling as opposed to degradation. Using a chemical probe approach to tag active DUBs, we identified ubiquitin C-terminal hydrolase (UCH) isoform L3 as the predominant DUB in endosomal compartments of CCD cells. Blocking UCH-L3 activity or reducing its expression by selective knockdown increased ENaC ubiquitination and resulted in its removal from the apical membranes of CCD cells. Functionally this caused a rapid reduction in transepithelial Na(+) currents across the CCD epithelia. Surface biotinylation demonstrated the loss of ENaC from the apical surface when UCH-L3 was inhibited. Whole cell or apical surface immunoprecipitation demonstrated increased ENaC ubiquitination with UCH-L3 inhibition. This constitutes a novel function for UCH in epithelia and in the regulation of ion channels and demonstrates the dynamic regulation of apically located ENaC by recycling, which is facilitated by this DUB.  相似文献   

10.
The neural guidance protein semaphorin 3A (Sema3A) is expressed in corneal epithelial cells of the adult rat. We have now further investigated the localization of Sema3A in the normal rat corneal epithelium as well as changes in its expression pattern during wound healing after central corneal epithelial debridement. The expression pattern of Sema3A was compared with that of the tight-junction protein zonula occludens-1 (ZO-1), the gap-junction protein connexin43 (Cx43), or the cell proliferation marker Ki67. Immunofluorescence analysis revealed that Sema3A was present predominantly in the membrane of basal and wing cells of the intact corneal epithelium. The expression of Sema3A at the basal side of basal cells was increased in the peripheral epithelium compared with that in the central region. Sema3A was detected in all layers at the leading edge of the migrating corneal epithelium at 6 h after central epithelial debridement. The expression of Sema3A was markedly up-regulated in the basal and lateral membranes of columnar basal cells apparent in the thickened, newly healed epithelium at 1 day after debridement, but it had largely returned to the normal pattern at 3 days after debridement. The expression of ZO-1 was restricted to superficial epithelial cells and remained mostly unchanged during the wound healing process. The expression of Cx43 in basal cells was down-regulated at the leading edge of the migrating epithelium but was stable in the remaining portion of the epithelium. Ki67 was not detected in basal cells of the central epithelium at 1 day after epithelial debridement, when Sema3A was prominently expressed. Immunoblot analysis showed that the abundance of Sema3A in the central cornea was increased 1 day after epithelial debridement, whereas that of ZO-1 or Cx43 remained largely unchanged. This increase in Sema3A expression was accompanied by up-regulation of the Sema3A coreceptor neuropilin-1. Our observations have thus shown that the expression of Sema3A is increased markedly in basal cells of the newly healed corneal epithelium, and that this up-regulation of Sema3A is not associated with cell proliferation. They further suggest that Sema3A might play a role in the regulation of corneal epithelial wound healing.  相似文献   

11.
The functional expression of the epithelial sodium channel (ENaC) appears elevated in cystic fibrosis (CF) airway epithelia, but the mechanism by which this occurs is not clear. We tested the hypothesis that the cystic fibrosis transmembrane conductance regulator (CFTR) alters the trafficking of endogenously expressed human ENaC in the CFBE41o? model of CF bronchial epithelia. Functional expression of ENaC, as defined by amiloride-inhibited short-circuit current (I(sc)) in Ussing chambers, was absent under control conditions but present in CFBE41o? parental and ΔF508-CFTR-overexpressing cells after treatment with 1 μM dexamethasone (Dex) for 24 h. The effect of Dex was mimicked by incubation with the glucocorticoid hydrocortisone but not with the mineralocorticoid aldosterone. Application of trypsin to the apical surface to activate uncleaved, "near-silent" ENaC caused an additional increase in amiloride-sensitive I(sc) in the Dex-treated cells and was without effect in the control cells, suggesting that Dex increased ENaC cell surface expression. In contrast, Dex treatment did not stimulate amiloride-sensitive I(sc) in CFBE41o? cells that stably express wild-type (wt) CFTR. CFBE41o? wt cells also had reduced expression of α- and γ-ENaC compared with parental and ΔF508-CFTR-overexpressing cells. Furthermore, application of trypsin to the apical surface of Dex-treated CFBE41o? wt cells did not stimulate amiloride-sensitive I(sc), suggesting that ENaC remained absent from the surface of these cells even after Dex treatment. We also tested the effect of trafficking-corrected ΔF508-CFTR on ENaC functional expression. Incubation with 1 mM 4-phenylbutyrate synergistically increased Dex-induced ENaC functional expression in ΔF508-CFTR-overexpressing cells. These data support the hypothesis that wt CFTR can regulate the whole cell, functional, and surface expression of endogenous ENaC in airway epithelial cells and that absence of this regulation may foster ENaC hyperactivity in CF airway epithelia.  相似文献   

12.
Aldosterone is a key regulator of the epithelial sodium channel (ENaC) and stimulates protein methylation on the β-subunit of the ENaC. We found that aldosterone (100 nM) promotes cellular migration in a wound-healing model in trophoblastic BeWo cells. Here, we tested if the positive influence of aldosterone on wound healing is related to methylation reactions. Cell migration and proliferation were measured in BeWo cells at 6 h, when mitosis is still scarce. Cell migration covered 12.4, 25.3, 19.6 and 45.1 % of the wound when cultivated under control, aldosterone (12 h), 8Br-cAMP and aldosterone plus 8Br-cAMP, respectively. Amiloride blocked the effects of aldosterone alone or in the presence of 8Br-cAMP on wound healing. Wound healing decreased in aldosterone (plus 8Br-cAMP) coexposed with the methylation inhibitor 3-deaza-adenosine (3-DZA, 12.9 % reinvasion of the wound). There was an increase in wound healing in aldosterone-, 8Br-cAMP- and 3-DZA-treated cells in the presence of AdoMet, a methyl donor, compared to cells in the absence of AdoMet (27.3 and 12.9 % reinvasion of the wound, respectively). Cell proliferation assessed with the reagent MTT was not changed in any of these treatments, suggesting that cellular migration is the main factor for reinvasion of wound healing. Electrophysiological studies showed an increase in ENaC current in the presence of aldosterone. This effect was higher with 8Br-cAMP, and there was a decrease when 3-DZA was present. AdoMet treatment partially reversed this phenomenon. We suggest that aldosterone positively influences wound healing in BeWo cells, at least in part through methylation of the ENaC.  相似文献   

13.
Wang SB  Hu KM  Seamon KJ  Mani V  Chen Y  Gronert K 《FASEB journal》2012,26(4):1506-1516
Estrogen receptors (ERs) are expressed in leukocytes and in every ocular tissue. However, sex-specific differences and the role of estradiol in ocular inflammatory-reparative responses are not well understood. We found that female mice exhibited delayed corneal epithelial wound closure and attenuated polymorphonuclear (PMN) leukocyte responses, a phenotype recapitulated by estradiol treatment both in vivo (topically in male mice) and in vitro (corneal epithelial cell wound healing). The cornea expresses 15-lipoxygenase (15-LOX) and receptors for lipoxin A(4) (LXA(4)), which have been implicated in an intrinsic lipid circuit that regulates corneal inflammation and wound healing. Delayed epithelial wound healing correlated with lower expression of 15-LOX in the regenerated epithelium of female mice. Estradiol in vitro and in vivo down-regulated epithelial 15-LOX expression and LXA(4) formation, while estradiol abrogation of epithelial wound healing was completely reversed by treatment with LXA(4). More important, ERβ and ERα selectively regulated epithelial wound healing, PMN cell recruitment, and activity of the intrinsic 15-LOX/LXA(4) circuit. Our results demonstrate for the first time a sex-specific difference in the corneal reparative response, which is mediated by ERβ and ERα selective regulation of the epithelial and PMN 15-LOX/LXA(4) circuit. These findings may provide novel insights into the etiology of sex-specific ocular inflammatory diseases.  相似文献   

14.
15.
Recent molecular cloning of the epithelial sodium channel (ENaC) provides the opportunity to identify ENaC-associated proteins that function in regulating its cell surface expression and activity. We have examined whether ENaC is associated with Apx (apical protein Xenopus) and the spectrin-based membrane cytoskeleton in Xenopus A6 renal epithelial cells. We have also addressed whether Apx is required for the expression of amiloride-sensitive Na(+) currents by cloned ENaC. Sucrose density gradient centrifugation of A6 cell detergent extracts showed co-sedimentation of xENaC, alpha-spectrin, and Apx. Immunoblot analysis of proteins co-immunoprecipitating under high stringency conditions from peak Xenopus ENaC/Apx-containing gradient fractions indicate that ENaC, Apx, and alpha-spectrin are associated in a macromolecular complex. To examine whether Apx is required for the functional expression of ENaC, alphabetagamma mENaC cRNAs were coinjected into Xenopus oocytes with Apx sense or antisense oligodeoxynucleotides. The two-electrode voltage clamp technique showed there was a marked reduction in amiloride-sensitive current in oocytes coinjected with antisense oligonucleotides when to compared with oocytes coinjected with sense oligonucleotides. These studies indicate that ENaC is associated in a macromolecular complex with Apx and alpha-spectrin in A6 cells and suggest that Apx is required for the functional expression of ENaC in Xenopus epithelia.  相似文献   

16.
17.
18.
19.
Role of lumican in the corneal epithelium during wound healing   总被引:7,自引:0,他引:7  
Lumican regulates collagenous matrix assembly as a keratan sulfate proteoglycan in the cornea and is also present in the connective tissues of other organs and embryonic corneal stroma as a glycoprotein. In normal unwounded cornea, lumican is expressed by stromal keratocytes. Our data show that injured mouse corneal epithelium ectopically and transiently expresses lumican during the early phase of wound healing, suggesting a potential lumican functionality unrelated to regulation of collagen fibrillogenesis, e. g. modulation of epithelial cell adhesion or migration. An anti-lumican antibody was found to retard corneal epithelial wound healing in cultured mouse eyes. Healing of a corneal epithelial injury in Lum(-/-) mice was significantly delayed compared with Lum(+/-) mice. These observations indicate that lumican expressed in injured epithelium may modulate cell behavior such as adhesion or migration, thus contributing to corneal epithelial wound healing.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号