首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have previously demonstrated that platelet-activating factor (PAF)-induced increases in microvessel permeability were associated with endothelial gap formation and that the magnitude of peak endothelial intracellular Ca(2+) concentration ([Ca(2+)](i)) and nitric oxide (NO) production at the single vessel level determines the degree of the permeability increase. This study aimed to examine whether the magnitudes of PAF-induced peak endothelial [Ca(2+)](i), NO production, and gap formation are correlated at the individual endothelial cell level in intact rat mesenteric venules. Endothelial gaps were quantified by the accumulation of fluorescent microspheres at endothelial clefts using confocal imaging. Endothelial [Ca(2+)](i) was measured on fura-2- or fluo-4-loaded vessels, and 4,5-diaminofluorescein (DAF-2) was used for NO measurements. The results showed that increases in endothelial [Ca(2+)](i), NO production, and gap formation occurred in all endothelial cells when vessels were exposed to PAF but manifested a spatial heterogeneity in magnitudes among cells in each vessel. PAF-induced peak endothelial [Ca(2+)](i) preceded the peak NO production by 0.6 min at the cellular level, and the magnitudes of NO production and gap formation linearly correlated with that of the peak endothelial [Ca(2+)](i) in each cell, suggesting that the initial levels of endothelial [Ca(2+)](i) determine downstream NO production and gap formation. These results provide direct evidence from intact venules that inflammatory mediator-induced increases in microvessel permeability are associated with the generalized formation of endothelial gaps around all endothelial cells. The spatial differences in the molecular signaling that were initiated by the heterogeneous endothelial Ca(2+) response contribute to the heterogeneity in permeability increases along the microvessel wall during inflammation.  相似文献   

2.
Extracellular Ca(2+) concentration ([Ca(2+)](o)) regulates the functions of many cell types through a G protein-coupled [Ca(2+)](o)-sensing receptor (CaR). Whether the receptor is functionally expressed in vascular endothelial cells is largely unknown. In cultured human aortic endothelial cells (HAEC), RT-PCR yielded the expected 555-bp product corresponding to the CaR, and CaR protein was demonstrated by fluorescence immunostaining and Western blot. RT-PCR also demonstrated the expression in HAEC of alternatively spliced variants of the CaR lacking exon 5. Although stimulation of fura 2-loaded HAEC by several CaR agonists (high [Ca(2+)](o), neomycin, and gadolinium) failed to increase intracellular Ca(2+) concentration ([Ca(2+)](i)), the CaR agonist spermine stimulated an increase in [Ca(2+)](i) that was diminished in buffer without Ca(2+) and was abolished after depletion of an intracellular Ca(2+) pool with thapsigargin or after blocking IP(3)- and ryanodine receptor-mediated Ca(2+) release with xestospongin C and with high concentration ryanodine, respectively. Spermine stimulated an increase in DAF-FM fluorescence in HAEC, consistent with NO production. Both the increase in [Ca(2+)](i) and in NO production were reduced or absent in HAEC transfected with siRNA specifically targeted to the CaR. HAEC express a functional CaR that responds to the endogenous polyamine spermine with an increase in [Ca(2+)](i), primarily due to release of IP(3)- and ryanodine-sensitive intracellular Ca(2+) stores, leading to the production of NO. Expression of alternatively spliced variants of the CaR may result in the absence of a functional response to other known CaR agonists in HAEC.  相似文献   

3.
We have demonstrated that inhibition of NO synthase (NOS) in endothelial cells by either the NOS inhibitor N(omega)-monomethyl-l-arginine (l-NMMA) or the internalization of caveolin-1 scaffolding domain attenuated platelet-activating factor (PAF)-induced increases in microvessel permeability (Am J Physiol Heart Circ Physiol 286: H195-H201, 2004) indicating the involvement of an NO-dependent signaling pathway. To investigate whether an increase in endothelial cytoplasmic Ca(2+) concentration ([Ca(2+)](i)) is the initiating event and Ca(2+)-dependent NO production is crucial for permeability increases, PAF (10 nM)-induced changes in endothelial [Ca(2+)](i) and NO production were measured in individually perfused rat mesenteric venular microvessels via fluorescence microscopy. When venular microvessels were exposed to PAF, endothelial [Ca(2+)](i) increased from 69 +/- 8 nM to a peak value of 374 +/- 26 nM within 3 min and then declined to a sustained level at 190 +/- 12 nM after 15 min. Inhibition of NOS did not modify PAF-induced increases in endothelial [Ca(2+)](i). PAF-induced NO production was visualized and quantified at cellular levels in individually perfused microvessels using 4,5-diaminofluorescein diacetate and fluorescence imaging. Increased fluorescence intensity (FI), which is an indication of increased NO production, occurred in 75 +/- 7% of endothelial cells in each vessel. The mean maximum FI increase was 140 +/- 7% of baseline value. This increased FI was abolished by pretreatment of the vessel with l-NMMA and attenuated in the absence of extracellular Ca(2+). These results provide direct evidence from intact microvessels that increased endothelial [Ca(2+)](i) is the initial signal that activates endothelial NOS, and the subsequent increased NO production contributes to PAF-induced increases in microvessel permeability.  相似文献   

4.
Inhaled particulates and microbes are continually cleared by a complex array of lung innate immune determinants, including alveolar macrophages (AMs). AMs are unique cells with an enhanced capacity for phagocytosis that is due, in part, to increased activity of the macrophage mannose receptor (MR), a pattern recognition receptor for various microorganisms. The local factors that "shape" AM function are not well understood. Surfactant protein A (SP-A), a major component of lung surfactant, participates in the innate immune response and can enhance phagocytosis. Here we show that SP-A selectively enhances MR expression on human monocyte-derived macrophages, a process involving both the attached sugars and collagen-like domain of SP-A. The newly expressed MR is functional. Monocyte-derived macrophages on an SP-A substrate demonstrated enhanced pinocytosis of mannose BSA and phagocytosis of Mycobacterium tuberculosis lipoarabinomannan-coated microspheres. The newly expressed MR likely came from intracellular pools because: 1) up-regulation of the MR by SP-A occurred by 1 h, 2) new protein synthesis was not necessary for MR up-regulation, and 3) pinocytosis of mannose BSA via MR recycling was increased. AMs from SP-A(-/-) mice have reduced MR expression relative to SP-A(+/+). SP-A up-regulation of MR activity provides a mechanism for enhanced phagocytosis of microbes by AMs, thereby enhancing lung host defense against extracellular pathogens or, paradoxically, enhancing the potential for intracellular pathogens to enter their intracellular niche. SP-A contributes to the alternative activation state of the AM in the lung.  相似文献   

5.
Pregnancy and the follicular phase of the ovarian cycle show elevation of uterine blood flow and associated increases in uterine artery endothelium (UAE) endothelial nitric oxide (NO) synthase (eNOS) expression. Nonetheless, a role for increased NO production during pregnancy and the follicular phase has only been inferred by indirect measures. The recent development of a uterine artery endothelial cell model further suggests that pregnancy is associated with reprogramming of cell signaling, such that eNOS may become more Ca(2+) sensitive and be subject to regulation by Ca(2+)-independent kinases. This study describes for the first time the direct and simultaneous monitoring of NO production and intracellular free Ca(2+) concentration ([Ca(2+)](i)) in freshly isolated UAE from pregnant, follicular, and luteal sheep. The pharmacological agonists ionomycin (calcium ionophore) and thapsigargin (TG; endoplasmic reticulum Ca(2+) pump inhibitor) were used to maximally elevate [Ca(2+)](i) and fully activate eNOS as a measure of eNOS expression. NO production stimulated by ionomycin (5 microM) and TG (10 microM) were 1.95- and 2.05-fold, respectively, in pregnant-UAE and 1.34- and 1.37-fold in follicular-UAE compared with luteal-UAE. In contrast, the physiological agonist ATP (100 microM) stimulated a 3.43-fold increase in NO in pregnant-UAE and a 1.90-fold increase in follicular-UAE compared with luteal-UAE, suggesting that pregnancy and follicular phase enhance eNOS activation beyond changes in expression in vivo. 2-aminoethoxydiphenyl borate (APB; an inositol 1,4,5-trisphosphate receptor blocker) totally prevented the ATP-induced [Ca(2+)](i) response but only partially inhibited NO production. Thus pregnancy-enhanced eNOS activation in UAE is mediated through [Ca(2+)](i)-insensitive pathways as well as through a greater eNOS sensitivity to [Ca(2+)](i).  相似文献   

6.
Pulmonary surfactant proteins A (SP-A) and D (SP-D), members of the collectin family, play important roles in the innate immune system of the lung. Here, we show that SP-A but not SP-D augmented phagocytosis of Streptococcus pneumoniae by alveolar macrophages, independent of its binding to the bacteria. Analysis of the SP-A/SP-D chimeras, in which progressively longer carboxyl-terminal regions of SP-A were replaced with the corresponding SP-D regions, has revealed that the SP-D region Gly(346)-Phe(355) can be substituted for the SP-A region Leu(219)-Phe(228) without altering the SP-A activity of enhancing the phagocytosis and that the SP-A region Cys(204)-Cys(218) is required for the SP-A-mediated phagocytosis. Acetylated low density lipoprotein significantly reduced the SP-A-stimulated uptake of the bacteria. SP-A failed to enhance the phagocytosis of S. pneumoniae by alveolar macrophages derived from scavenger receptor A (SR-A)-deficient mice, demonstrating that SP-A augments SRA-mediated phagocytosis. Preincubation of macrophages with SP-A at 37 degrees C but not at 4 degrees C stimulated the phagocytosis. The SP-A-mediated enhanced phagocytosis was not inhibited by the presence of cycloheximide. SP-A increased cell surface localization of SR-A that was inhibitable by apigenin, a casein kinase 2 (CK2) inhibitor. SP-A-treated macrophages exhibited significantly greater binding of acetylated low density lipoprotein than nontreated cells. The SP-A-stimulated phagocytosis was also abolished by apigenin. In addition, SP-A stimulated CK2 activity. These results demonstrate that SP-A enhances the phagocytosis of S. pneumoniae by alveolar macrophages through a CK2-dependent increase of cell surface SR-A localization. This study reveals a novel mechanism of bacterial clearance by alveolar macrophages.  相似文献   

7.
The adipocyte-derived hormone leptin plays an important role in regulation of energy homeostasis and the innate immune response against bacterial infections. Leptin's actions are mediated by signaling events initiated by phosphorylation of tyrosine residues on the long form of the leptin receptor. We recently reported that disruption of leptin receptor-mediated STAT3 activation augmented host defense against pneumococcal pneumonia. In this report, we assessed leptin receptor-mediated ERK activation, a pathway that was ablated in the l/l mouse through a mutation of the tyrosine 985 residue in the leptin receptor, to determine its role in host defense against bacterial pneumonia in vivo and in alveolar macrophage (AM) antibacterial functions in vitro. l/l mice exhibited increased mortality and impaired pulmonary bacterial clearance after intratracheal challenge with Klebsiella pneumoniae. The synthesis of cysteinyl-leukotrienes was reduced and that of PGE(2) enhanced in AMs in vitro and the lungs of l/l mice after infection with K. pneumoniae in vivo. We also observed reduced phagocytosis and killing of K. pneumoniae in AMs from l/l mice that was associated with reduced reactive oxygen intermediate production in vitro. cAMP, known to suppress phagocytosis, bactericidal capacity, and reactive oxygen intermediate production, was also increased 2-fold in AMs from l/l mice. Pharmacologic blockade of PGE(2) synthesis reduced cAMP levels and overcame the defective phagocytosis and killing of bacteria in AMs from l/l mice in vitro. These results demonstrate that leptin receptor-mediated ERK activation plays an essential role in host defense against bacterial pneumonia and in leukocyte antibacterial effector functions.  相似文献   

8.
We assessed whether reactive oxygen-nitrogen intermediates generated by alveolar macrophages (AMs) oxidized and nitrated human surfactant protein (SP) A. SP-A was exposed to lipopolysaccharide (100 ng/ml)-activated AMs in 15 mM HEPES (pH 7.4) for 30 min in the presence and absence of 1.2 mM CO(2). In the presence of CO(2), lipopolysaccharide-stimulated AMs had significantly higher nitric oxide synthase (NOS) activity (as quantified by the conversion of L-[U-(14)C]arginine to L-[U-(14)C]citrulline) and secreted threefold higher levels of nitrate plus nitrite in the medium [28 +/- 3 vs. 6 +/- 1 (SE) nmol. 6.5 h(-1). 10(6) AMs(-1)]. Western blotting studies of immunoprecipitated SP-A indicated that CO(2) enhanced SP-A nitration by AMs and decreased carbonyl formation. CO(2) (0-1.2 mM) also augmented peroxynitrite (0.5 mM)-induced SP-A nitration in a dose-dependent fashion. Peroxynitrite decreased the ability of SP-A to aggregate lipids, and this inhibition was augmented by 1.2 mM CO(2). Mass spectrometry analysis of chymotryptic fragments of peroxynitrite-exposed SP-A showed nitration of two tyrosines (Tyr(164) and Tyr(166)) in the absence of CO(2) and three tyrosines (Tyr(164), Tyr(166), and Tyr(161)) in the presence of 1.2 mM CO(2). These findings indicate that physiological levels of peroxynitrite, produced by activated AMs, nitrate SP-A and that CO(2) increased nitration, at least partially, by enhancing enzymatic nitric oxide production.  相似文献   

9.
Nitric oxide (NO) mediates pathogenic changes in the brain subsequent to energy deprivation; yet the NO mechanism involved in the early events remains unclear. We examined the acute effects of severe hypoxia and oxygen-glucose deprivation (OGD) on the endogenous NO production and the NO-mediated pathways involved in the intracellular calcium ([Ca(2+)](i)) response in the rat hippocampal neurons. The levels of NO and [Ca(2+)](i) in the CA1 region of the slices rapidly elevated in hypoxia and were more prominent in OGD, measured by the electrochemical method and spectrofluorometry, respectively. The NO and [Ca(2+)](i) responses were enhanced by L-arginine and were reduced by NO synthase inhibitors, suggesting that the endogenous NO increases the [Ca(2+)](i) response to energy deprivation. Nickel and nifedipine significantly decreased the NO and [Ca(2+)](i) responses to hypoxia and OGD, indicating an involvement of L-type Ca(2+) channels in the NO-mediated mechanisms. In addition, the [Ca(2+)](i) responses were attenuated by ODQ or KT5823, inhibitors of the cGMP-PKG pathway, and by acivicin, an inhibitor of gamma-glutamyl transpeptidase for S-nitrosylation, and by the thiol-alkylating agent N-ethylmaleimide (NEM). Moreover, L-type Ca(2+) currents in cultured hippocampal neurons with whole-cell recording were significantly increased by L-arginine and were decreased by L-NAME. Pretreatment with NO synthase inhibitors or NEM but not ODQ abolished the effect of L-arginine on the Ca(2+) currents. Also, vitamin C, which decomposes nitrosothiol but not disulfide by reduction, reversed the change in the Ca(2+) current with L-arginine. Taken together, the results suggest that an elevated endogenous NO production enhances the influx of Ca(2+) via the hippocampal L-type Ca(2+) channel by S-nitrosylation during an initial phase of energy deprivation.  相似文献   

10.
The nitric oxide (NO) synthase inhibitor N(omega)-nitro-L-arginine (L-NNA) inhibits heat stress (HS)-induced NO production and the inducible 70-kDa heat shock protein (HSP-70i) in many rodent organs. We used human intestinal epithelial T84 cells to characterize the inhibitory effect of L-NNA on HS-induced HSP-70i expression. Intracellular Ca(2+) concentration ([Ca(2+)](i)) was measured using fura-2, and protein kinase C (PKC), and PKA activities were determined. HS increased HSP-70i mRNA and protein in T84 cells exposed to 45 degrees C for 10 min and allowed to recover for 6 h. L-NNA treatment for 1 h before HS inhibited the induction of HSP-70i mRNA and protein, with an IC(50) of 0.0471 +/- 0.0007 microM. Because the HS-induced increase in HSP-70i mRNA and protein is Ca(2+) dependent, we measured [Ca(2+)](i) after treating cells with L-NNA. L-NNA at 100 microM significantly decreased resting [Ca(2+)](i). Likewise, treatment with 1 microM GF-109203X or H-89 (inhibitors of PKC and PKA, respectively) for 30 min also significantly decreased [Ca(2+)](i) and inhibited HS-induced increase in HSP-70i. GF-109203X- or H-89-treated cells failed to respond to L-NNA by further decreasing [Ca(2+)](i) and HSP-70i. L-NNA effectively blocked heat shock factor-1 (HSF1) translocation from the cytosol to the nucleus, a process requiring PKC phosphorylation. These results suggest that L-NNA inhibits HSP-70i by reducing [Ca(2+)](i) and decreasing PKC and PKA activity, thereby blocking HSF1 translocation from the cytosol to the nucleus.  相似文献   

11.
Mice lacking surfactant protein (SP)-A (SP-A-/-) or SP-D (SP-D-/-) and wild-type mice were infected with group B streptococcus or Haemophilus influenzae by intratracheal instillation. Although decreased killing of group B streptococcus and H. influenzae was observed in SP-A-/- mice but not in SP-D-/- mice, deficiency of either SP-A or SP-D was associated with increased inflammation and inflammatory cell recruitment in the lung after infection. Deficient uptake of bacteria by alveolar macrophages was observed in both SP-A- and SP-D-deficient mice. Isolated alveolar macrophages from SP-A-/- mice generated significantly less, whereas those from SP-D-/- mice generated significantly greater superoxide and hydrogen peroxide compared with wild-type alveolar macrophages. In SP-D-/- mice, bacterial killing was associated with increased lung inflammation, increased oxidant production, and decreased macrophage phagocytosis. In contrast, in the absence of SP-A, bacterial killing was decreased and associated with increased lung inflammation, decreased oxidant production, and decreased macrophage phagocytosis. Increased oxidant production likely contributes to effective bacterial killing in the lungs of SP-D-/- mice. The collectins, SP-A and SP-D, play distinct roles during bacterial infection of the lung.  相似文献   

12.
The phagocytosis of apoptotic inflammatory cells by alveolar macrophages (AMs) is a key component of inflammation resolution within the air space. Surfactant protein A (SP-A) has been shown to stimulate the phagocytosis of apoptotic neutrophils (PMNs) by normal AMs. We hypothesized that SP-A promotes the resolution of alveolar inflammation by enhancing apoptotic PMN phagocytosis and anti-inflammatory cytokine release by inflammatory AMs. Using an LPS lung inflammation model, we determined that SP-A stimulates the phagocytosis of apoptotic PMNs threefold by normal AMs and AMs isolated after LPS injury. Furthermore, SP-A enhances transforming growth factor-beta1 (TGF-beta1) release from both AM populations. Inflammatory AMs release twofold more TGF-beta1 in culture than do normal AMs. SP-A and apoptotic PMNs together stimulate TGF-beta1 release equivalently from normal and inflammatory cultured AMs (330% of unstimulated release by normal AMs). In summary, SP-A enhances apoptotic PMN uptake, stimulates AM TGF-beta1 release, and modulates the amount of TGF-beta1 released when AMs phagocytose apoptotic PMNs. These findings support the hypothesis that SP-A promotes the resolution of alveolar inflammation.  相似文献   

13.
Surfactant protein A (SP-A) enhances phagocytosis of Pseudomonas aeruginosa. SP-A1 and SP-A2 encode human (h) SP-A; SP-A2 products enhance phagocytosis more than SP-A1. Oxidation can affect SP-A function. We hypothesized that in vivo and in vitro ozone-induced oxidation of SP-A (as assessed by its carbonylation level) negatively affects its function in phagocytosis (as assessed by bacteria cell association). To test this, we used P. aeruginosa, rat alveolar macrophages (AMs), hSP-As with varying levels of in vivo (natural) oxidation, and ozone-exposed SP-A2 (1A, 1A0) and SP-A1 (6A2, 6A4) variants. SP-A oxidation levels (carbonylation) were measured; AMs were incubated with bacteria in the presence of SP-A, and the phagocytic index was calculated. We found: 1) the phagocytic activity of hSP-A is reduced with increasing levels of in vivo SP-A carbonylation; 2) in vitro ozone exposure of hSP-A decreases its function in a dose-dependent manner as well as its ability to enhance phagocytosis of either gram-negative or gram-positive bacteria; 3) the activity of both SP-A1 and SP-A2 decreases in response to in vitro ozone exposure of proteins with SP-A2 being affected more than SP-A1. We conclude that both in vivo and in vitro oxidative modifications of SP-A by carbonylation reduce its ability to enhance phagocytosis of bacteria and that the activity of SP-A2 is affected more by in vitro ozone-induced oxidation. We speculate that functional differences between SP-A1 and SP-A2 exist in vivo and that the redox status of the lung microenvironment differentially affects function of SP-A1 and SP-A2.  相似文献   

14.
Mitochondrial Ca2+ and the heart   总被引:2,自引:0,他引:2  
It is now well established that mitochondria accumulate Ca(2+) ions during cytosolic Ca(2+) ([Ca(2+)](i)) elevations in a variety of cell types including cardiomyocytes. Elevations in intramitochondrial Ca(2+) ([Ca(2+)](m)) activate several key enzymes in the mitochondrial matrix to enhance ATP production, alter the spatial and temporal profile of intracellular Ca(2+) signaling, and play an important role in the initiation of cell death pathways. Moreover, mitochondrial Ca(2+) uptake stimulates nitric oxide (NO) production by mitochondria, which modulates oxygen consumption, ATP production, reactive oxygen species (ROS) generation, and in turn provides negative feedback for the regulation of mitochondrial Ca(2+) accumulation. Controversy remains, however, whether in cardiac myocytes mitochondrial Ca(2+) transport mechanisms allow beat-to-beat transmission of fast cytosolic [Ca(2+)](i) oscillations into oscillatory changes in mitochondrial matrix [Ca(2+)](m). This review critically summarizes the recent experimental work in this field.  相似文献   

15.
Impaired host defense post-bone marrow transplant (BMT) is related to overproduction of prostaglandin E(2) (PGE(2)) by alveolar macrophages (AMs). We show AMs post-BMT overproduce granulocyte-macrophage colony-stimulating factor (GM-CSF), whereas GM-CSF in lung homogenates is impaired both at baseline and in response to infection post-BMT. Homeostatic regulation of GM-CSF may occur by hematopoietic/structural cell cross talk. To determine whether AM overproduction of GM-CSF influenced immunosuppression post-BMT, we compared mice that received BMT from wild-type donors (control BMT) or mice that received BMT from GM-CSF-/- donors (GM-CSF-/- BMT) with untransplanted mice. GM-CSF-/- BMT mice were less susceptible to pneumonia with Pseudomonas aeruginosa compared with control BMT mice and showed antibacterial responses equal to or better than untransplanted mice. GM-CSF-/- BMT AMs displayed normal phagocytosis and a trend toward enhanced bacterial killing. Surprisingly, AMs from GM-CSF-/- BMT mice overproduced PGE(2), but expression of the inhibitory EP(2) receptor was diminished. As a consequence of decreased EP(2) receptor expression, we found diminished accumulation of cAMP in response to PGE(2) stimulation in GM-CSF-/- BMT AMs compared with control BMT AMs. In addition, GM-CSF-/- BMT AMs retained cysteinyl leukotriene production and normal TNF-alpha response compared with AMs from control BMT mice. GM-CSF-/- BMT neutrophils also showed improved bacterial killing. Although genetic ablation of GM-CSF in hematopoietic cells post-BMT improved host defense, transplantation of wild-type bone marrow into GM-CSF-/- recipients demonstrated that parenchymal cell-derived GM-CSF is necessary for effective innate immune responses post-BMT. These results highlight the complex regulation of GM-CSF and innate immunity post-BMT.  相似文献   

16.
The role of 3,5,3'-triiodo-l-thyronine (T3) and its metabolite 3,5-diiodo-l-thyronine (T2) in modulating the intracellular Ca(2+) concentration ([Ca(2+)](i)) and endogenous nitric oxide (NO) synthesis was evaluated in pituitary GH(3) cells in the absence or presence of extracellular Ca(2+). When applied in Ca(2+)-free solution, T2 and T3 increased [Ca(2+)](i), in a dose-dependent way, and NO levels. Inhibition of neuronal NO synthase by N(G)-nitro-l-arginine methyl ester and l-n(5)-(1-iminoethyl)ornithine hydrochloride significantly reduced the [Ca(2+)](i) increase induced by T2 and T3. However, while depletion of inositol trisphosphate-dependent Ca(2+) stores did not interfere with the T2- and T3-induced [Ca(2+)](i) increases, the inhibition of phosphatidylinositol 3-kinase by LY-294002 and the dominant negative form of Akt mutated at the ATP binding site prevented these effects. Furthermore, the mitochondrial protonophore carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone prevented the increases in both [Ca(2+)](i) and NO elicited by T2 or T3. Interestingly, rotenone blocked the early [Ca(2+)](i) increases elicited by T2 and T3, while antimycin prevented only that elicited by T3. Inhibition of mitochondrial Na(+)/Ca(2+) exchanger by CGP37157 significantly reduced the [Ca(2+)](i) increases induced by T2 and T3. In the presence of extracellular calcium (1.2 mM), under carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone, T2 and T3 increased both [Ca(2+)](i) and intracellular Na(+) concentration; nimodipine reduced the [Ca(2+)](i) increases elicited by T2 and T3, but inhibition of NO synthase and blockade of the Na(+)/H(+) pump by 5-(N-ethyl-N-isopropyl)amiloride prevented only that elicited by T3; and CB-DMB, bisindolylmaleimide, and LY-294002 (inhibitors of the Na(+)/Ca(2+) exchanger, PKC, and phosphatidylinositol 3-kinase, respectively) failed to modify the T2- and T3-induced effects. Collectively, the present results suggest that T2 and T3 exert short-term nongenomic effects on intracellular calcium and NO by modulating plasma membrane and mitochondrial pathways that differ between these iodothyronines.  相似文献   

17.
The effect of nitric oxide (NO) on calcium current (I(Ca)) and intracellular calcium concentration ([Ca(2+)](i)) in primarily cultured dorsal root ganglion (DRG) neurons was investigated from neonatal rats. I(Ca) and [Ca(2+)](i) were simultaneously recorded using perforated-patch technique in combination with fluorescence measurement from single DRG neurons. NO donors, sodium nitroprusside (SNP) and S-nitro-N-acetylpenicillamine (SNAP), inhibited I(Ca) in small-diameter neurons without significant change in voltage-dependence of activation and activation time constants. SNP and SNAP also reduced the transient [Ca(2+)](i) peak accompanied by I(Ca). Inhibition by NO was reproducible, but gradually desensitized. In some DRG neurons, SNP and SNAP increased basal [Ca(2+)](i) in concentration of 10 microM with little effect on NO-induced inhibition of I(Ca). 8-Br-cGMP, a permeable cGMP analog, mimicked the effects of SNP and SNAP. These results suggest that, in DRG neurons, NO has inhibitory effect on I(Ca), which is independent of NO-induced increase of basal [Ca(2+)](i), through cGMP-dependent pathway.  相似文献   

18.
Surfactant protein (SP) A and SP-D are members of the collectin superfamily. They are widely distributed within the lung, are capable of antigen recognition, and can discern self versus nonself. SPs recognize bacteria, fungi, and viruses by binding mannose and N-acetylglucosamine residues on microbial cell walls. SP-A has been shown to stimulate the respiratory burst as well as nitric oxide synthase expression by alveolar macrophages. Although nitric oxide (NO.) is a well-recognized microbicidal product of macrophages, the mechanism(s) by which NO. contributes to host defense remains undefined. The purpose of this symposium was to present current research pertaining to the specific role of SPs and reactive oxygen-nitrogen species in innate immunity. The symposium focused on the mechanisms of NO*-mediated toxicity for bacterial, human, and animal models of SP-A- and NO.-mediated pathogen killing, microbial defense mechanisms against reactive oxygen-nitrogen species, specific examples and signaling pathways involved in the SP-A-mediated killing of pulmonary pathogens, the structure and binding of SP-A and SP-D to bacterial targets, and the immunoregulatory functions of SP-A.  相似文献   

19.
We developed an in situ assay system to simultaneously monitor intracellular Ca(2+) concentration ([Ca(2+)](i), fura 2 as indicator) and nitric oxide (NO) levels [4,5-diaminofluorescein as probe] in the intact endothelium of small bovine coronary arteries by using a fluorescent microscopic imaging technique with high-speed wavelength switching. Bradykinin (BK; 1 microM) stimulated a rapid increase in [Ca(2+)](i) followed by an increase in NO production in the endothelial cells. The protein tyrosine phosphatase inhibitor phenylarsine oxide (PAO; 10 microM) induced a gradual, small increase in [Ca(2+)](i) and a slow increase in intracellular NO levels. Removal of extracellular Ca(2+) and depletion of Ca(2+) stores completely blocked BK-induced increase in NO production but had no effect on PAO-induced NO production. However, a further reduction of [Ca(2+)](i) by application of BAPTA-AM or EGTA with ionomycin abolished the PAO-induced NO increase. These results indicate that a simultaneous monitoring of [Ca(2+)](i) and intracellular NO production in the intact endothelium is a powerful tool to study Ca(2+)-dependent regulation of endothelial nitric oxide synthase, which provides the first direct evidence for a permissive role of Ca(2+) in tyrosine phosphorylation-induced NO production.  相似文献   

20.
The present study was designed to evaluate the role of endothelial intracellular Ca(2+) concentration ([Ca(2+)](i)) in the difference between P2Y(1)- and P2Y(2)-mediated vasodilatations in cerebral arteries. Rat middle cerebral arteries were cannulated, pressurized, and luminally perfused. The endothelium was selectively loaded with fura 2, a fluorescent Ca(2+) indicator, for simultaneous measurement of endothelial [Ca(2+)](i) and diameter. Luminal administration of 2-methylthioadenosine 5'-triphosphate (2-MeS-ATP), an endothelial P2Y(1) agonist, resulted in purely nitric oxide (NO)-dependent dilation and [Ca(2+)](i) increases up to approximately 300 nM (resting [Ca(2+)](i) = 145 nM). UTP, an endothelial P2Y(2) agonist, resulted in dilations that were both endothelium-derived hyperpolarizing factor (EDHF)- and NO-dependent with [Ca(2+)](i) increases to >400 nM. In the presence of N(G)-nitro-L-arginine-indomethacin to inhibit NO synthase and cyclooxygenase, UTP resulted in an EDHF-dependent dilation alone. The [Ca(2+)](i) threshold for NO-dependent dilation was 220 vs. 340 nM for EDHF. In summary, the differences in the mechanism of vasodilatation resulting from stimulation of endothelial P2Y(1) and P2Y(2) purinoceptors result in part from differential [Ca(2+)](i) responses. Consistent with this finding, these studies also demonstrate a higher [Ca(2+)](i) threshold for EDHF-dependent responses compared with NO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号