首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
High-mobility group box 1 (HMGB1), a cytokine-like proinflammatory protein, is secreted by activated macrophages and released by necrotic cells. We hypothesized that immunostimulated enterocytes might be another source for this mediator. Accordingly, Caco-2 cells or primary mouse intestinal epithelial cells (IECs) were incubated with "cytomix" (a mixture of TNF, IL-1, and IFN-) for various periods. HMGB1 in cell culture supernatants was detected by Western blot analysis and visualized in Caco-2 cells with the use of fluorescence confocal and immunotransmission electron microscopy. Caco-2 cells growing on filters in diffusion chambers were stimulated with cytomix for 48 h in the absence or presence of anti-HMGB1 antibody, and permeability to fluorescein isothiocyanate-dextran (average molecular mass, 4 kDa; FD4) was assessed. Cytomix-stimulated Caco-2 cells secreted HMGB1 into the apical but not the basolateral compartments of diffusion chambers. Although undetectable at 6 and 12 h after the start of incubation with cytomix, HMGB1 was present in supernatants after 24 h of incubation. HMGB1 secretion by Caco-2 monolayers also was induced when the cells were exposed to FSL-1, a Toll-like receptor (Tlr)-2 agonist, or flagellin, a Tlr5 agonist, but not lipopolysaccharide, a Tlr4 agonist. Cytomix also induced HMGB1 secretion by primary IECs. Cytoplasmic HMGB1 is localized within vesicles in Caco-2 cells and is secreted, at least in part, associated with exosomes. Incubating Caco-2 cells with cytomix increased FD4 permeation, but this effect was significantly decreased in the presence of anti-HMGB1 antibody. Collectively, these data support the view that HMGB1 is secreted by immunostimulated enterocytes. This process may exacerbate inflammation-induced epithelial hyperpermeability via an autocrine feedback loop. exosome; toll-like receptor; flagellin  相似文献   

2.
3.
In this communication, we describe a novel and facile method for the immobilization of NAD(+)/NADH on an electrode surface using a hydrophobic ionic liquid, 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([C4mim][Tf(2)N]). By taking advantage of the insolubility of NAD(+)/NADH in hydrophobic ionic liquids, it is expected that NAD(+)/NADH can be retained on the electrode's surface. Alcohol dehydrogenase (ADH) and NAD(+)/NADH were immobilized with a gelatin hydrogel on an electrode that was modified with an electropolymerized ruthenium complex containing 5-amino-1,10-phenanthroline (pAPRu) as a mediator for NADH oxidation. The (ADH, NAD(+))/pAPRu-immobilized electrode exhibited the electrocatalytic oxidation of ethanol in [C4mim][Tf(2)N]. The obtained catalytic current in [C4mim][Tf(2)N] was comparable to that in buffer solution containing NAD(+). It was confirmed by UV-vis spectroscopy that NAD(+) did not dissolve in the [C4mim][Tf(2)N] and was retained on the electrode's surface. Furthermore, we succeeded in constructing an ethanol/O(2) biofuel cell comprised of an (ADH, NAD(+))/pAPRu anode and a bilirubin oxidase cathode using [C4mim][Tf(2)N] as an electrolyte.  相似文献   

4.
We recently reported that a considerable amount of the sodium-D-glucose cotransporter SGLT1 present in Caco-2 cells, a model for human enterocytes, is located in intracellular compartments attached to microtubules (Kipp H, Khoursandi S, Scharlau D, and Kinne RKH. Am J Physiol Cell Physiol 285: C737–C749, 2003). A similar distribution pattern was also observed in enterocytes in thin sections from human jejunum, highlighting the validity of the Caco-2 cell model. Fluorescent surface labeling of live Caco-2 cells revealed that the intracellular compartments containing SGLT1 were accessible by endocytosis. To elucidate the role of endosomal SGLT1 in the regulation of sodium-dependent D-glucose uptake into enterocytes, we compared SGLT1-mediated D-glucose uptake into Caco-2 cells with the subcellular distribution of SGLT1 after challenging the cells with different stimuli. Incubation (90 min) of Caco-2 cells with mastoparan (50 µM), a drug that enhances apical endocytosis, shifted a large amount of SGLT1 from the apical membrane to intracellular sites and significantly reduced sodium-dependent -[14C]methyl-D-glucose uptake (–60%). We also investigated the effect of altered extracellular D-glucose levels. Cells preincubated (1 h) with D-glucose-free medium exhibited significantly higher sodium-dependent -[14C]methyl-D-glucose uptake (+45%) than did cells preincubated with high D-glucose medium (100 mM, 1 h). Interestingly, regulation of SGLT1-mediated D-glucose uptake into Caco-2 cells by extracellular D-glucose levels occurred without redistribution of cellular SGLT1. These data suggest that, pharmacologically, D-glucose uptake can be regulated by a shift of SGLT1 between the plasma membrane and the endosomal pool; however, regulation by the physiological substrate D-glucose can be explained only by an alternative mechanism. endosomes; enterocytes  相似文献   

5.
Peroxynitrite (ONOO(-)) is a compound formed by reaction of superoxide (O(2) (-)) with nitric oxide (NO) and is expected to possess characteristics of both O(2) (-) reactivity and NO mobility in order to function as a signal molecule. Although there are several reports that describe the role of ONOO(-) in defense responses in plants, it has been very difficult to detect ONOO(-) in bioimaging due to its short half-life or paucity of methods for ONOO(-)-specific detection among reactive oxygen species or free radicals. Aminophenyl fluorescein (APF), a recently developed novel fluorophore for direct detection of ONOO(-) in bioimaging, was used for intracellular ONOO(-) detection. ONOO(-) generation in tobacco BY-2 cells treated with INF1, the major elicitin secreted by the late blight pathogen Phytophthora infestans, occurred within 1 h and reached a maximum level at 6-12 h after INF1 treatment. Urate, a ONOO(-) scavenger, abolished INF1-induced ONOO(-) generation. It is well known that ONOO(-) reacts with tyrosine residues in proteins to form nitrotyrosine in a nitration reaction as an ONOO(-)-specific reaction. Western blot analysis using anti-nitrotyrosine antibodies recognized nitrotyrosine-containing proteins in 20 and 50 kDa bands in BY-2 protein extract containing SIN-1 [3-(4-morpholinyl) sydnonimine hydrochloride; an ONOO(-) donor]. These bands were also recognized in INF1-treated BY-2 cells and were found to be slightly suppressed by urate. Our study is the first to report ONOO(-) detection and tyrosine nitration in defense responses in plants.  相似文献   

6.
The interaction of the antibacterial phosphonodipeptide alafosfalin with mammalian H(+)/peptide cotransporters was studied in Caco-2 cells, expressing the low-affinity intestinal type peptide transporter 1 (PEPT1), and SKPT cells, expressing the high-affinity renal type peptide transporter 2 (PEPT2). Alafosfalin strongly inhibited the uptake of [(14)C]glycylsarcosine with K(i) values of 0.19 +/- 0.01 mm and 0.07 +/- 0.01 mm for PEPT1 and PEPT2, respectively. Saturation kinetic studies revealed that in both cell types alafosfalin affected only the affinity constant (K(t)) but not the maximal velocity (V(max)) of glycylsarcosine (Gly-Sar) uptake. The inhibition constants and the competitive nature of inhibition were confirmed in Dixon-type experiments. Caco-2 cells and SKPT cells were also cultured on permeable filters: apical uptake and transepithelial apical to basolateral flux of [(14)C]Gly-Sar across Caco-2 cell monolayers were reduced by alafosfalin (3 mm) by 73%. In SKPT cells, uptake of [(14)C]Gly-Sar but not flux was inhibited by 61%. We found no evidence for an inhibition of the basolateral to apical uptake or flux of [(14)C]Gly-Sar by alafosfalin. Alafosfalin (3 mm) did not affect the apical to basolateral [(14)C]mannitol flux. Determined in an Ussing-type experiment with Caco-2 cells cultured in Snapwells trade mark, alafosfalin increased the short-circuit current through Caco-2 cell monolayers. We conclude that alafosfalin interacts with both H(+)/peptide symporters and that alafosfalin is actively transported across the intestinal epithelium in a H(+)-symport, explaining its oral availability. The results also demonstrate that dipeptides where the C-terminal carboxyl group is substituted by a phosphonic function represent high-affinity substrates for mammalian H(+)/peptide cotransporters.  相似文献   

7.
Tumor necrosis factor-alpha (TNF-alpha) induces reactive oxygen species (ROS) that serve as second messengers for intracellular signaling. Currently, precise roles of individual ROS in the actions of TNF-alpha remain to be elucidated. In this report, we investigated the roles of superoxide anion (O-(2)), hydrogen peroxide (H(2)O(2)), and peroxynitrite (ONOO(-)) in TNF-alpha-triggered apoptosis of mesangial cells. Mesangial cells stimulated by TNF-alpha produced O-(2) and underwent apoptosis. The apoptosis was inhibited by transfection with manganese superoxide dismutase or treatment with a pharmacological scavenger of O-(2), Tiron. In contrast, although exogenous H(2)O(2) induced apoptosis, TNF-alpha-triggered apoptosis was not affected either by transfection with catalase cDNA or by treatment with catalase protein or glutathione ethyl ester. Similarly, although ONOO(-) precursor SIN-1 induced apoptosis, treatment with a scavenger of ONOO(-), uric acid, or an inhibitor of nitric oxide synthesis, N(G)-nitro-L-argininemethyl ester hydrochloride, did not affect the TNF-alpha-triggered apoptosis. Like TNF-alpha-induced apoptosis, treatment with a O-(2)-releasing agent, pyrogallol, induced typical apoptosis even in the concurrent presence of scavengers for H(2)O(2) and ONOO(-). These results suggested that, in mesangial cells, TNF-alpha induces apoptosis through selective ROS. O-(2), but not H(2)O(2) or ONOO(-), was identified as the crucial mediator for the TNF-alpha-initiated, apoptotic pathway.  相似文献   

8.
Cytokines secreted by human enterocytes play a critical role in mucosal and systemic immunity. Intestinal microorganisms can influence this secretion. In the present study, 30 strains of lactic acid bacteria were characterized for their adhesion to Caco-2 cells and their potential to stimulate proinflammatory cytokine secretion by this cell line. The bacteria adhered in a strain-dependent manner to Caco-2 cells. Contact with lactobacilli did not result in the production of IL-6 or IL-8. A slight IL-6 and IL-8 production by a Caco-2 cell was detected after exposure to 8 of the tested Bifidobacterium strains. No correlation was found between adhesion and cytokine induction among the bacteria tested. This indicates that lactic acid bacteria, even those with strong adhesive properties, are not very likely to trigger an inflammatory response in human enterocytes.  相似文献   

9.
To determine the roles of nitric oxide (NO) and its metabolite, peroxynitrite (ONOO(-)), on osteoblastic activation, we investigated the effects of a NO donor [ethanamine, 2, 2'-(hydroxynitrosohydrazono)bis- (dNO)], an O(-2) donor (pyrogallol), and an ONOO(-) scavenger (urate) on alkaline phosphatase (ALPase) activity and osteocalcin gene expression, which are indexes of osteoblastic differentiation. dNO elevated ALPase activity in the osteogenic MC3T3-E1 cell line. The combination of dNO and pyrogallol reduced both ALPase activity and osteocalcin gene expression. Because both indexes were recovered by urate, ONOO(-), unlike NO itself, inhibited the osteoblastic differentiation. Furthermore, treatment with a combination of the proinflammatory cytokines tumor necrosis factor-alpha (TNF-alpha) and interleukin-1beta (IL-1beta) was found to yield ONOO(-) as well as NO and O(-2). The reductions in ALPase activity and osteocalcin gene expression were also restored by urate. We conclude that ONOO(-) produced by TNF-alpha and IL-1beta, but not NO per se, would overcome the stimulatory effect of NO on osteoblastic activity and inhibit osteoblastic differentiation.  相似文献   

10.
Cholesterol uptake and the mechanisms that regulate cholesterol translocation from the intestinal lumen into enterocytes remain for the most part unclear. Since scavenger receptor class B type I (SR-BI) has been suggested to play a role in cholesterol absorption, we investigated cellular SR-BI modulation by various potential effectors administered in both apical and basolateral sides of Caco-2 cells. With differentiation, Caco-2 cells increased SR-BI protein expression. Western blot analysis showed the ability of cholesterol and oxysterols in both cell compartments to reduce SR-BI protein expression. Among the n-3, n-6, and n-9 fatty acid families, only eicosapentaenoic acid was able to lower SR-BI protein expression on both sides, whereas apical alpha-linolenic acid decreased SR-BI abundance and basolateral arachidonic acid (AA) raised it. Epidermal growth factor and growth hormone, either in the apical or basolateral medium, diminished SR-BI cellular content, while insulin displayed the same effect only on the basolateral side. In the presence of proinflammatory agents (LPS, TNF-alpha, IFN-gamma), Caco-2 cells exhibited differential behavior. SR-BI was downregulated by lipopolysaccharide on both sides. Finally, WY-14643 fibrate diminished SR-BI protein expression when it was added to the apical medium. Biotinylation studies in response to selected stimuli revealed that regulatory modifications in SR-BI protein expression occurred for the most part at the apical cell surface irrespective of the effector location. Our data indicate that various effectors supplied to the apical and basolateral compartments may impact on SR-BI at the apical membrane, thus suggesting potential regulation of intestinal cholesterol absorption and distribution in various intracellular pools.  相似文献   

11.
Annexin II tetramer (AII(t)) is a member of the Ca(2+)- and phospholipid-binding protein family and is implicated in membrane fusion during surfactant secretion. It had previously been shown that high concentrations of nitric oxide (NO) inhibit surfactant secretion from lung type II cells. NO reacts with superoxide (O(2)(-)) to form peroxynitrite (ONOO(-)), a tyrosine nitrating agent, which is found in lungs under certain pathological conditions. It is therefore hypothesized that nitration of AII(t) by ONOO(-) may be a mechanism for the NO inhibition of regulated exocytosis. We therefore performed in vitro studies to test effects of ONOO(-) on AII(t). Western blot analysis using anti-nitrotyrosine antibodies showed a dose-dependent nitration of tyrosine residues in AII(t) treated with ONOO(-). Nitration occurred on the core domain of the p36 subunit, as well as on the p11 subunit. ONOO(-) also caused the formation of dimers between p36 and p11 subunits which were stable in the presence of heating, SDS, and beta-mercaptoethanol. AII(t)-mediated liposome aggregation was inhibited by ONOO(-) with an IC(50) of approximately 30 microM. The inhibition was abolished by urate (a scavenger of ONOO(-) and *OH), but not by mannitol (a scavenger of *OH) or superoxide dismutase (a scavenger of O(2)(-)) and appeared to be specific to AII(t), since ONOO(-) only slightly influenced annexin I-mediated liposome aggregation. The conformational change of AII(t) induced by Ca(2+) had no effect on the inhibition. Furthermore, ONOO(-) only partially inhibited the binding of AII(t) to membranes. Nitration of AII(t) also occurred in intact A549 cells, a lung epithelial cell line, treated with ONOO(-). The results of this study suggest that AII(t)-mediated liposome aggregation was inhibited by nitration of the protein.  相似文献   

12.
K Takayama  M Nakano 《Biochemistry》1977,16(9):1921-1926
The oxidation of reduced nicotinamide adenine dinucleotide (NADH) by the horseradish peroxidase (HRP)-H2O2 system is greatly increased by the addition of thyroxine or related compounds. On the basis of a study of the rate of NADH oxidation in the presence of various concentrations of thyroxine, it is clear that thyroxine acts as a catalyst for NADH oxidation. Spectral changes of a HRP-H2O2 complex (compound I) indicate that thyroxine acts as an electron donor to both compounds I and II. The rate of electron donation from thyroxine is much faster than that from NADH. The HRP-H2O2 system requires 0.83 mol of O2 for the oxidation of 1 mol of NADH. Ferricytochrome c is reduced to ferrocytochrome c by the system, and causes an inhibition of O2 consumption which can be abolished by superoxide dismutase. JUDGING FROM THE INHIBITION OF O2 uptake by ferricytochrome c, about 54% of the total flux of electrons from NADH to oxygen appears to proceed by way of O2-. These results suggest that the initial step of thyroxine-mediated NADH oxidation by HRP and H2O2 is the formation of oxidized thyroxine, a phenoxy radical, which attacks NADH to produce NAD.  相似文献   

13.
We provide an integrative interpretation of neuroglial metabolic coupling including the presence of subcellular compartmentation of pyruvate and monocarboxylate recycling through the plasma membrane of both neurons and glial cells. The subcellular compartmentation of pyruvate allows neurons and astrocytes to select between glucose and lactate as alternative substrates, depending on their relative extracellular concentration and the operation of a redox switch. This mechanism is based on the inhibition of glycolysis at the level of glyceraldehyde 3-phosphate dehydrogenase by NAD(+) limitation, under sufficiently reduced cytosolic NAD(+)/NADH redox conditions. Lactate and pyruvate recycling through the plasma membrane allows the return to the extracellular medium of cytosolic monocarboxylates enabling their transcellular, reversible, exchange between neurons and astrocytes. Together, intracellular pyruvate compartmentation and monocarboxylate recycling result in an effective transcellular coupling between the cytosolic NAD(+)/NADH redox states of both neurons and glial cells. Following glutamatergic neurotransmission, increased glutamate uptake by the astrocytes is proposed to augment glycolysis and tricarboxylic acid cycle activity, balancing to a reduced cytosolic NAD(+)/NADH in the glia. Reducing equivalents are transferred then to the neuron resulting in a reduced neuronal NAD(+)/NADH redox state. This may eventually switch off neuronal glycolysis, favoring the oxidation of extracellular lactate in the lactate dehydrogenase (LDH) equilibrium and in the neuronal tricarboxylic acid cycles. Finally, pyruvate derived from neuronal lactate oxidation, may return to the extracellular space and to the astrocyte, restoring the basal redox state and beginning a new loop of the lactate/pyruvate transcellular coupling cycle. Transcellular redox coupling operates through the plasma membrane transporters of monocarboxylates, similarly to the intracellular redox shuttles coupling the cytosolic and mitochondrial redox states through the transporters of the inner mitochondrial membrane. Finally, transcellular redox coupling mechanisms may couple glycolytic and oxidative zones in other heterogeneous tissues including muscle and tumors.  相似文献   

14.
The aim of this work was to study the iron uptake of Caco-2 cells incubated with five different formulations of liposomes containing iron. The vesicles were also characterized before, during, and after in vitro digestion. Caco-2 cells were incubated with digested and nondigested liposomes, and soluble iron uptake was determined. Nondigested liposomes made with chitosan (CHI) or the cationic lipid, DC-Cholesterol (DC-CHOL), generated the highest iron uptake. However, these two formulations were highly unstable under in vitro digestion, resulting in nonmeasurable iron uptake. Digested conventional liposomes composed of soybean phosphatidylcholine (SPC), hydrogentated phosphatidylcholine (HSPC), or HSPC and cholesterol (CHOL) presented the highest iron-uptake values. These liposomal formulations protected iron from oxidation and improved iron uptake from intestinal cells, compared to an aqueous solution of ferrous sulphate.  相似文献   

15.
The effects of oxidative stress on DNA damage and associated reactions, increased polyadenosine diphosphate-ribose polymerase (PARP) activity and decreased nicotinamide adenine dinucleotide (NAD) and adenosine triphosphate (ATP) contents, have been tested in primary cultures of porcine aortic endothelial cells. The cells were treated with 50-500 microM H2O2 for 20 min or 100 microM paraquat for 3 days or were exposed to 95% O2 for 2 and 5 days. The administration of 250-500 microM H2O2 resulted in a marked increase in PARP activity and a profound depletion of ATP and NAD. Although hyperoxia had no effect on PARP activity and reduced only slightly the ATP and NAD stores, it markedly reduced the ability of endothelial cells to increase PARP activity upon exposure to DNase. Paraquat had a similar effect. Human dermal fibroblasts were also exposed to 50-500 microM H2O2 for 20 min or 95% O2 for 5 days. Their response to H2O2 differed from that of endothelial cells by their ability to maintain the ATP content at a normal level. Fibroblasts were also insensitive to the effect of hyperoxia. These results suggest that the oxidant-related DNA damage is a function of the type of oxidative stress used and may be cell-specific.  相似文献   

16.
17.
The aim of this study was to investigate expression and relative contribution of human thiamin transporter (hTHTR)-2 toward overall carrier-mediated thiamin uptake by human intestinal epithelial cells. Northern blot analysis showed that the message of the hTHTR-2 is expressed along the native human gastrointestinal tract with highest expression being in the proximal part of small intestine. hTHTR-2 protein was found, by Western blot analysis, to be expressed at the brush-border membrane (BBM), but not at the basolateral membrane, of native human enterocytes. This pattern of expression was confirmed in studies using a fusion protein of hTHTR-2 with the enhanced green fluorescent protein (hTHTR2-EGFP) expressed in living Caco-2 cells grown on filter. Pretreating Caco-2 cells (which also express the hTHTR-2 at RNA and protein levels) with hTHTR-2 gene-specific small interfering RNA (siRNA) led to a significant (P < 0.01) and specific inhibition (48%) in carrier-mediated thiamin uptake. Similarly, pretreating Caco-2 cells with siRNA that specifically target hTHTR-1 (which is expressed in Caco-2 cells) also significantly (P < 0.01) and specifically inhibited (by 56%) carrier-mediated thiamin uptake. When Caco-2 cells were pretreated with siRNAs against both hTHTR-2 and hTHTR-1 genes, an almost complete inhibition in carrier-mediated thiamin uptake was observed. These results show that the message of hTHTR-2 is expressed along the human gastrointestinal tract and that expression of its protein in intestinal epithelia is mainly localized to the apical BBM domain. In addition, results show that this transporter plays a significant role in carrier-mediated thiamin uptake in human intestine.  相似文献   

18.
NAD(P)H acts as a two-electron reductant in physiological, enzyme-controlled processes. Under nonenzymatic conditions, a couple of one-electron oxidants easily oxidize NADH to the NAD(.) radical. This radical reduces molecular oxygen to the superoxide radical (O-(2)) at a near to the diffusion-controlled rate, thereby subsequently forming hydrogen peroxide (H(2)O(2)). Because peroxynitrite can act as a one-electron oxidant, the reaction of NAD(P)H with both authentic peroxynitrite and the nitric oxide ((. )NO) and O-(2) releasing compound 3-morpholinosydnonimine N-ethylcarbamide (SIN-1) was studied. Authentic peroxynitrite oxidized NADH with an efficiency of approximately 25 and 8% in the absence and presence of bicarbonate/carbon dioxide (HCO(3)(-)/CO(2)), respectively. NADH reacted 5-100 times faster with peroxynitrite than do the known peroxynitrite scavengers glutathione, cysteine, and tryptophan. Furthermore, NADH was found to be highly effective in suppressing peroxynitrite-mediated nitration reactions even in the presence of HCO(3)(-)/CO(2). Reaction of NADH with authentic peroxynitrite resulted in the formation of NAD(+) and O-(2) and, thus, of H(2)O(2) with yields of about 3 and 10% relative to the added amounts of peroxynitrite and NADH, respectively. Peroxynitrite generated in situ from SIN-1 gave virtually the same results; however, two remarkable exceptions were recognized. First, the efficiency of NADH oxidation increased to 60-90% regardless of the presence of HCO(3)(-)/CO(2), along with an increase of H(2)O(2) formation to about 23 and 35% relative to the amounts of added SIN-1 and NADH. Second, and more interesting, the peroxynitrite scavenger glutathione (GSH) was needed in a 75-fold surplus to inhibit the SIN-1-dependent oxidation of NADH half-maximal in the presence of HCO(3)(-)/CO(2). Similar results were obtained with NADPH. Hence, peroxynitrite or radicals derived from it (such as, e.g. the bicarbonate radical or nitrogen dioxide) indeed oxidize NADH, leading to the formation of NAD(+) and, via O-(2), of H(2)O(2). When peroxynitrite is generated in situ in the presence of HCO(3)(-)/CO(2), i.e. under conditions mimicking the in vivo situation, NAD(P)H effectively competes with other known scavengers of peroxynitrite.  相似文献   

19.
Ferritin (Ft) is a large iron (Fe)-binding protein ( approximately 450 kDa) that is found in plant and animal cells and can sequester up to 4500 Fe atoms per Ft molecule. Our previous studies on intestinal Caco-2 cells have shown that dietary factors affect the uptake of Fe from Ft in a manner different from that of Fe from FeSO4, suggesting a different mechanism for cellular uptake. The objective of this study was to determine the mechanism for Ft-Fe uptake using Caco-2 cells. Binding of (59)Fe-labeled Ft at 4 degrees C showed saturable kinetics, and Scatchard analysis resulted in a K(d) of 1.6 muM, strongly indicating a receptor-mediated process. Competitive binding studies with excess unlabelled Ft significantly reduced binding, and uptake studies at 37 degrees C showed saturation after 4 h. Enhancing and blocking endocytosis using Mas-7 (a G-protein activator) and hypertonic medium (0.5 M sucrose), respectively, demonstrated that Ft-Fe uptake by Mas-7-treated cells was 140% of control cells, whereas sucrose treatment resulted in a statistically significant reduction in Ft-Fe uptake by 70% as compared to controls. Inhibition of macropinocytosis with 5-(N,N-dimethyl)-amiloride (Na+/H+ antiport blocker) resulted in a decrease (by approximately 20%) in Ft-Fe uptake at high concentrations of Ft, suggesting that enterocytes can use more than one Ft uptake mechanism in a concentration-dependent manner. These results suggest that Ft uptake by enterocytes is carried out via endocytosis when Ft levels are within a physiological range, whereas Ft at higher concentrations may be absorbed using the additional mechanism of macropinocytosis.  相似文献   

20.
Functionally intact mitochondria from rabbit reticulocytes are characterized by a low NAD+ level after the preparation (0.29 nmoles NAD+ + NADH/mg protein). They are apparently impermeable for NADH and exhibit a slow net uptake of NAD+. From the increase of O2-uptake in state 3 and the increase of NADH concentration in state 4 of respiration after the addition of NAD+ we concluded that 3--10 min are necessary for the saturation with NAD+ at 23 degrees C. 2mM NAD+ extramitochondrially are not sufficient to saturate the mitochondria with NADH and probably NAD+, too. Because of the net uptake of NAD+ we assume that reticulocyte mitochondria lose NAD+ during their preparation. If they are incubated with the physiological concentration of 300 micrometer NAD+, which was found in reticulocytes, a value of 1.9 nmoles NAD+ + NADH mg protein was calculated. At an extramitochondrial NAD+ concentration of 300 micrometer, reticulocyte mitochondria exhibit an almost maximal O2-uptake in the presence of oxaloacetate or alpha-ketoglutarate. It is concluded that the mitochondria in intact reticulocytes contain the "normal" complement of NAD+ + NADH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号