共查询到20条相似文献,搜索用时 14 毫秒
1.
Reversible jump Markov chain Monte Carlo computation and Bayesian model determination 总被引:102,自引:0,他引:102
Markov chain Monte Carlo methods for Bayesian computation haveuntil recently been restricted to problems where the joint distributionof all variables has a density with respect to some fixed standardunderlying measure. They have therefore not been available forapplication to Bayesian model determination, where the dimensionalityof the parameter vector is typically not fixed. This paper proposesa new framework for the construction of reversible Markov chainsamplers that jump between parameter subspaces of differingdimensionality, which is flexible and entirely constructive.It should therefore have wide applicability in model determinationproblems. The methodology is illustrated with applications tomultiple change-point analysis in one and two dimensions, andto a Bayesian comparison of binomial experiments. 相似文献
2.
Parallel Metropolis coupled Markov chain Monte Carlo for Bayesian phylogenetic inference 总被引:10,自引:0,他引:10
Altekar G Dwarkadas S Huelsenbeck JP Ronquist F 《Bioinformatics (Oxford, England)》2004,20(3):407-415
MOTIVATION: Bayesian estimation of phylogeny is based on the posterior probability distribution of trees. Currently, the only numerical method that can effectively approximate posterior probabilities of trees is Markov chain Monte Carlo (MCMC). Standard implementations of MCMC can be prone to entrapment in local optima. Metropolis coupled MCMC [(MC)(3)], a variant of MCMC, allows multiple peaks in the landscape of trees to be more readily explored, but at the cost of increased execution time. RESULTS: This paper presents a parallel algorithm for (MC)(3). The proposed parallel algorithm retains the ability to explore multiple peaks in the posterior distribution of trees while maintaining a fast execution time. The algorithm has been implemented using two popular parallel programming models: message passing and shared memory. Performance results indicate nearly linear speed improvement in both programming models for small and large data sets. 相似文献
3.
A common problem in molecular phylogenetics is choosing a model of DNA substitution that does a good job of explaining the DNA sequence alignment without introducing superfluous parameters. A number of methods have been used to choose among a small set of candidate substitution models, such as the likelihood ratio test, the Akaike Information Criterion (AIC), the Bayesian Information Criterion (BIC), and Bayes factors. Current implementations of any of these criteria suffer from the limitation that only a small set of models are examined, or that the test does not allow easy comparison of non-nested models. In this article, we expand the pool of candidate substitution models to include all possible time-reversible models. This set includes seven models that have already been described. We show how Bayes factors can be calculated for these models using reversible jump Markov chain Monte Carlo, and apply the method to 16 DNA sequence alignments. For each data set, we compare the model with the best Bayes factor to the best models chosen using AIC and BIC. We find that the best model under any of these criteria is not necessarily the most complicated one; models with an intermediate number of substitution types typically do best. Moreover, almost all of the models that are chosen as best do not constrain a transition rate to be the same as a transversion rate, suggesting that it is the transition/transversion rate bias that plays the largest role in determining which models are selected. Importantly, the reversible jump Markov chain Monte Carlo algorithm described here allows estimation of phylogeny (and other phylogenetic model parameters) to be performed while accounting for uncertainty in the model of DNA substitution. 相似文献
4.
5.
This article presents a statistical method for detecting recombination in DNA sequence alignments, which is based on combining two probabilistic graphical models: (1) a taxon graph (phylogenetic tree) representing the relationship between the taxa, and (2) a site graph (hidden Markov model) representing interactions between different sites in the DNA sequence alignments. We adopt a Bayesian approach and sample the parameters of the model from the posterior distribution with Markov chain Monte Carlo, using a Metropolis-Hastings and Gibbs-within-Gibbs scheme. The proposed method is tested on various synthetic and real-world DNA sequence alignments, and we compare its performance with the established detection methods RECPARS, PLATO, and TOPAL, as well as with two alternative parameter estimation schemes. 相似文献
6.
Markov chain Monte Carlo (MCMC) is a methodology that is gaining widespread use in the phylogenetics community and is central to phylogenetic software packages such as MrBayes. An important issue for users of MCMC methods is how to select appropriate values for adjustable parameters such as the length of the Markov chain or chains, the sampling density, the proposal mechanism, and, if Metropolis-coupled MCMC is being used, the number of heated chains and their temperatures. Although some parameter settings have been examined in detail in the literature, others are frequently chosen with more regard to computational time or personal experience with other data sets. Such choices may lead to inadequate sampling of tree space or an inefficient use of computational resources. We performed a detailed study of convergence and mixing for 70 randomly selected, putatively orthologous protein sets with different sizes and taxonomic compositions. Replicated runs from multiple random starting points permit a more rigorous assessment of convergence, and we developed two novel statistics, delta and epsilon, for this purpose. Although likelihood values invariably stabilized quickly, adequate sampling of the posterior distribution of tree topologies took considerably longer. Our results suggest that multimodality is common for data sets with 30 or more taxa and that this results in slow convergence and mixing. However, we also found that the pragmatic approach of combining data from several short, replicated runs into a "metachain" to estimate bipartition posterior probabilities provided good approximations, and that such estimates were no worse in approximating a reference posterior distribution than those obtained using a single long run of the same length as the metachain. Precision appears to be best when heated Markov chains have low temperatures, whereas chains with high temperatures appear to sample trees with high posterior probabilities only rarely. 相似文献
7.
Markov chain Monte Carlo methods for switching diffusion models 总被引:1,自引:0,他引:1
8.
9.
A tutorial introduction to Bayesian inference for stochastic epidemic models using Markov chain Monte Carlo methods 总被引:1,自引:0,他引:1
Philip D. ONeill 《Mathematical biosciences》2002,180(1-2)
Recent Bayesian methods for the analysis of infectious disease outbreak data using stochastic epidemic models are reviewed. These methods rely on Markov chain Monte Carlo methods. Both temporal and non-temporal data are considered. The methods are illustrated with a number of examples featuring different models and datasets. 相似文献
10.
Statistical methods have been developed for finding local patterns, also called motifs, in multiple protein sequences. The aligned segments may imply functional or structural core regions. However, the existing methods often have difficulties in aligning multiple proteins when sequence residue identities are low (e.g., less than 25%). In this article, we develop a Bayesian model and Markov chain Monte Carlo (MCMC) methods for identifying subtle motifs in protein sequences. Specifically, a motif is defined not only in terms of specific sites characterized by amino acid frequency vectors, but also as a combination of secondary characteristics such as hydrophobicity, polarity, etc. Markov chain Monte Carlo methods are proposed to search for a motif pattern with high posterior probability under the new model. A special MCMC algorithm is developed, involving transitions between state spaces of different dimensions. The proposed methods were supported by a simulated study. It was then tested by two real datasets, including a group of helix-turn-helix proteins, and one set from the CATH Protein Structure Classification Database. Statistical comparisons showed that the new approach worked better than a typical Gibbs sampling approach which is based only on an amino acid model. 相似文献
11.
12.
Hobert James P.; Jones Galin L.; Presnell Brett; Rosenthal Jeffrey S. 《Biometrika》2002,89(4):731-743
13.
14.
Xiao-Lin Wu Chuanyu Sun Timothy M Beissinger Guilherme JM Rosa Kent A Weigel Natalia de Leon Gatti Daniel Gianola 《遗传、选种与进化》2012,44(1):29
Background
Most Bayesian models for the analysis of complex traits are not analytically tractable and inferences are based on computationally intensive techniques. This is true of Bayesian models for genome-enabled selection, which uses whole-genome molecular data to predict the genetic merit of candidate animals for breeding purposes. In this regard, parallel computing can overcome the bottlenecks that can arise from series computing. Hence, a major goal of the present study is to bridge the gap to high-performance Bayesian computation in the context of animal breeding and genetics.Results
Parallel Monte Carlo Markov chain algorithms and strategies are described in the context of animal breeding and genetics. Parallel Monte Carlo algorithms are introduced as a starting point including their applications to computing single-parameter and certain multiple-parameter models. Then, two basic approaches for parallel Markov chain Monte Carlo are described: one aims at parallelization within a single chain; the other is based on running multiple chains, yet some variants are discussed as well. Features and strategies of the parallel Markov chain Monte Carlo are illustrated using real data, including a large beef cattle dataset with 50K SNP genotypes.Conclusions
Parallel Markov chain Monte Carlo algorithms are useful for computing complex Bayesian models, which does not only lead to a dramatic speedup in computing but can also be used to optimize model parameters in complex Bayesian models. Hence, we anticipate that use of parallel Markov chain Monte Carlo will have a profound impact on revolutionizing the computational tools for genomic selection programs. 相似文献15.
Pagel M Meade A 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2008,363(1512):3955-3964
The rate at which a given site in a gene sequence alignment evolves over time may vary. This phenomenon--known as heterotachy--can bias or distort phylogenetic trees inferred from models of sequence evolution that assume rates of evolution are constant. Here, we describe a phylogenetic mixture model designed to accommodate heterotachy. The method sums the likelihood of the data at each site over more than one set of branch lengths on the same tree topology. A branch-length set that is best for one site may differ from the branch-length set that is best for some other site, thereby allowing different sites to have different rates of change throughout the tree. Because rate variation may not be present in all branches, we use a reversible-jump Markov chain Monte Carlo algorithm to identify those branches in which reliable amounts of heterotachy occur. We implement the method in combination with our 'pattern-heterogeneity' mixture model, applying it to simulated data and five published datasets. We find that complex evolutionary signals of heterotachy are routinely present over and above variation in the rate or pattern of evolution across sites, that the reversible-jump method requires far fewer parameters than conventional mixture models to describe it, and serves to identify the regions of the tree in which heterotachy is most pronounced. The reversible-jump procedure also removes the need for a posteriori tests of 'significance' such as the Akaike or Bayesian information criterion tests, or Bayes factors. Heterotachy has important consequences for the correct reconstruction of phylogenies as well as for tests of hypotheses that rely on accurate branch-length information. These include molecular clocks, analyses of tempo and mode of evolution, comparative studies and ancestral state reconstruction. The model is available from the authors' website, and can be used for the analysis of both nucleotide and morphological data. 相似文献
16.
17.
A Markov chain Monte Carlo method for estimating the relative effects of migration and isolation on genetic diversity in a pair of populations from DNA sequence data is developed and tested using simulations. The two populations are assumed to be descended from a panmictic ancestral population at some time in the past and may (or may not) after that be connected by migration. The use of a Markov chain Monte Carlo method allows the joint estimation of multiple demographic parameters in either a Bayesian or a likelihood framework. The parameters estimated include the migration rate for each population, the time since the two populations diverged from a common ancestral population, and the relative size of each of the two current populations and of the common ancestral population. The results show that even a single nonrecombining genetic locus can provide substantial power to test the hypothesis of no ongoing migration and/or to test models of symmetric migration between the two populations. The use of the method is illustrated in an application to mitochondrial DNA sequence data from a fish species: the threespine stickleback (Gasterosteus aculeatus). 相似文献
18.
Markov chain Monte Carlo procedures allow the reconstruction of full-sibships using data from genetic marker loci only. In this study, these techniques are extended to allow the reconstruction of nested full- within half-sib families, and to present an efficient method for calculating the likelihood of the observed marker data in a nested family. Simulation is used to examine the properties of the reconstructed sibships, and of estimates of heritability and common environmental variance of quantitative traits obtained from those populations. Accuracy of reconstruction increases with increasing marker information and with increasing size of the nested full-sibships, but decreases with increasing population size. Estimates of variance component are biased, with the direction and magnitude of bias being dependent upon the underlying errors made during pedigree reconstruction. 相似文献
19.
Retrospective Markov chain Monte Carlo methods for Dirichlet process hierarchical models 总被引:1,自引:0,他引:1
Inference for Dirichlet process hierarchical models is typicallyperformed using Markov chain Monte Carlo methods, which canbe roughly categorized into marginal and conditional methods.The former integrate out analytically the infinite-dimensionalcomponent of the hierarchical model and sample from the marginaldistribution of the remaining variables using the Gibbs sampler.Conditional methods impute the Dirichlet process and updateit as a component of the Gibbs sampler. Since this requiresimputation of an infinite-dimensional process, implementationof the conditional method has relied on finite approximations.In this paper, we show how to avoid such approximations by designingtwo novel Markov chain Monte Carlo algorithms which sample fromthe exact posterior distribution of quantities of interest.The approximations are avoided by the new technique of retrospectivesampling. We also show how the algorithms can obtain samplesfrom functionals of the Dirichlet process. The marginal andthe conditional methods are compared and a careful simulationstudy is included, which involves a non-conjugate model, differentdatasets and prior specifications. 相似文献
20.
In many cell types, the inositol trisphosphate receptor (IPR) is one of the important components that control intracellular calcium dynamics, and an understanding of this receptor (which is also a calcium channel) is necessary for an understanding of calcium oscillations and waves. Recent advances in experimental techniques now allow for the measurement of single-channel activity of the IPR in conditions similar to its native environment, and these data can be used to determine the rate constants in Markov models of the IPR. We illustrate a parameter estimation method based on Markov chain Monte Carlo, which can be used to fit directly to single-channel data, and determining, as an intrinsic part of the fit, the times at which the IPR is opening and closing. We show, using simulated data, the most complex Markov model that can be unambiguously determined from steady-state data and show that non-steady-state data is required to determine more complex models. 相似文献