首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Myocilin (MYOC) is a 504 aa secreted glycoprotein induced by stress factors in the trabecular meshwork tissue of the eye, where it was discovered. Mutations in MYOC are linked to glaucoma. The glaucoma phenotype of each of the different MYOC mutation varies, but all of them cause elevated intraocular pressure (IOP). In cells, forty percent of wild-type MYOC is cleaved by calpain II, a cysteine protease. This proteolytic process is inhibited by MYOC mutants. In this study, we investigated the molecular mechanisms by which MYOC mutants cause glaucoma. We constructed adenoviral vectors with variants Q368X, R342K, D380N, K423E, and overexpressed them in human trabecular meshwork cells. We analyzed expression profiles with Affymetrix U133Plus2 GeneChips using wild-type and null viruses as controls. Analysis of trabecular meshwork relevant mechanisms showed that the unfolded protein response (UPR) was the most affected. Search for individual candidate genes revealed that genes that have been historically connected to trabecular meshwork physiology and pathology were altered by the MYOC mutants. Some of those had known MYOC associations (MMP1, PDIA4, CALR, SFPR1) while others did not (EDN1, MGP, IGF1, TAC1). Some, were top-changed in only one mutant (LOXL1, CYP1B1, FBN1), others followed a mutant group pattern. Some of the genes were new (RAB39B, STC1, CXCL12, CSTA). In particular, one selected gene, the cysteine protease inhibitor cystatin A (CSTA), was commonly induced by all mutants and not by the wild-type. Subsequent functional analysis of the selected gene showed that CSTA was able to reduce wild-type MYOC cleavage in primary trabecular meshwork cells while an inactive mutated CSTA was not. These findings provide a new molecular understanding of the mechanisms of MYOC-causative glaucoma and reveal CSTA, a serum biomarker for cancer, as a potential biomarker and drug for the treatment of MYOC-induced glaucoma.  相似文献   

2.
Summary The trabecular meshwork is a specialized tissue in the anterior chamber of the eye that regulates the aqueous humor outflow and controls the intraocular pressure. Cells in the trabecular meshwork are believed to be essential for maintenance of the outflow system, and their malfunctioning may lead to elevation of intraocular pressure and development of glaucoma. These cells are avid phagocytes. Using an in vitro tissue culture system, we have previously shown that bovine trabecular meshwork cells exhibited a short-term loss of cell-matrix adhesiveness after exposure to latex microspheres. The current study showed that 4 h after phagocytosis, the cytoskeletal structure in trabecular meshwork cells was disrupted, the formation of focal contact formation was limited, and the cellular migratory activity was increased. These in vitro responses paralleled those that occur in vivo. By 24 h, all the changes demonstrated returned to normal. Our data suggest that the short-term loss in cell-matrix cohesiveness observed after phagocytic challenge may be related to the reorganization of cytoskeletal structures and the decline of focal contact formation. The altered cell migration may also be interlinked.  相似文献   

3.
Glaucoma, one of the leading causes of blindness, is an eye disease caused by irregularities in the ocular aqueous outflow system causing an elevated intraocular pressure. High resolution imaging of the aqueous outflow system comprising trabecular meshwork is immensely valuable to vision analysts and clinicians in comprehending the disease state for the efficacious analysis and treatment of glaucoma. Currently available ocular imaging devices are unable to deliver high resolution images for the visualization of the trabecular meshwork. A method to obtain high resolution (sub‐micrometer) images of the trabecular meshwork using Bessel‐Gauss beam scanned light sheet fluorescence microscopy is presented and the optical sectioning capability of this technique to obtain three‐dimensional volumetric images of the trabecular meshwork of an intact eye without any physical dissection is demonstrated. Figure: Three‐dimensional visualization of trabecular meshwork of porcine eye.   相似文献   

4.
Overexpression of myocilin in cultured human trabecular meshwork cells   总被引:3,自引:0,他引:3  
The trabecular meshwork, a specialized eye tissue, is a major site for regulation of the aqueous humor outflow. Malfunctioning of the trabecular meshwork is believed to be responsible for development of glaucoma, a blinding disease. Myocilin is a gene linked to the most common form of glaucoma. Its expression is known to be upregulated by glucocorticoids in trabecular meshwork cells and the altered myocilin level may be the culprit for glaucomatous conditions such as corticosteroid-induced glaucoma. In this study, we examined the influence of myocilin overexpression on the adhesion, spreading, migration, phagocytosis, and apoptosis of human trabecular meshwork cells in culture. When the myocilin expression was increased by 3- to 4-fold, the transfectants showed a dramatic loss of actin stress fibers and focal adhesions. Cell adhesion to fibronectin and spreading were also compromised. Myocilin thus appeared to have a de-adhesive activity, similar to that reported extensively with matricellular proteins. The transfected cells in addition displayed an increased sensitivity to apoptosis. These results demonstrate that overexpression of myocilin renders trabecular meshwork cells in a de-adhesive and vulnerable state. This vulnerability may be the basis for pathologic consequences in subtypes of glaucoma.  相似文献   

5.
6.
7.
Deposition of extracellular matrix (ECM) in trabecular meshwork, such as fibronectin, collagen IV, elastin. leads to increased resistance of trabecular meshwork in primary open angle glaucoma (POAG). Connective tissue growth factor (CTGF) is known to regulate the ECM deposits. In this study, we detect the effect of adenovirus conducted CTGF (Adv-CTGF) transfection on either the expression of ECM components or aqueous humor outflow facility. Adv-CTGF was used to transfect rat trabecular meshwork cells in vivo and in vitro. Aqueous humor outflow facility was test by microbeads perfusion. Protein expression of CTGF, fibronectin, and collagen IV was determined using Western blot. In the Adv-CTGF group, the outflow facility displayed a significant decrease from baseline. It appears as though the transfection with Adv-CTGF significantly affects the aqueous humor outflow pattern. A negative correlation between IOP and PEFL indicated that a decrease in the area of bead deposition corresponded to an overall decrease of outflow, leading to an elevated IOP. Adv-CTGF can enhance the expression of CTGF, fibronectin and collagen IV. CTGF is the novel target for treatment of POAG. It is necessary to further study to test inhibition of CTGF expression for treatment of POAG.  相似文献   

8.
9.
The only effective intervention to slow onset and progression of glaucomatous blindness is to lower intraocular pressure (IOP). Among other modulators, adenosine receptors (ARs) exert complex regulation of IOP. Agonists of A(3)ARs in the ciliary epithelium activate Cl(-) channels, favoring increased formation of aqueous humor and elevated IOP. In contrast, stimulating A(1)ARs in the trabecular outflow pathway enhances release of matrix metalloproteinases (MMPs) from trabecular meshwork (TM) cells, reducing resistance to outflow of aqueous humor to lower IOP. These opposing actions are thought to be initiated by cellular release of ATP and its ectoenzymatic conversion to adenosine. This view is now supported by our identification of six ectoATPases in trabecular meshwork (TM) cells and by our observation that external ATP enhances TM-cell secretion of MMPs through ectoenzymatic formation of adenosine. ATP release is enhanced by cell swelling and stretch. Also, enhanced ATP release and downstream MMP secretion is one mediator of the action of actin depolymerization to reduce outflow resistance. Inflow and outflow cells share pannexin-1 and connexin hemichannel pathways for ATP release. However, vesicular release and P2X(7) release pathways were functionally limited to inflow and outflow cells, respectively, suggesting that blocking exocytosis might selectively inhibit inflow, lowering IOP.  相似文献   

10.
Primary open angle glaucoma (POAG) is a leading cause of blindness worldwide, with elevated intraocular pressure as an important risk factor. Increased resistance to outflow of aqueous humor through the trabecular meshwork causes elevated intraocular pressure, but the specific mechanisms are unknown. In this study, we used genome-wide SNP arrays to map the disease gene in a colony of Beagle dogs with inherited POAG to within a single 4 Mb locus on canine chromosome 20. The Beagle POAG locus is syntenic to a previously mapped human quantitative trait locus for intraocular pressure on human chromosome 19. Sequence capture and next-generation sequencing of the entire canine POAG locus revealed a total of 2,692 SNPs segregating with disease. Of the disease-segregating SNPs, 54 were within exons, 8 of which result in amino acid substitutions. The strongest candidate variant causes a glycine to arginine substitution in a highly conserved region of the metalloproteinase ADAMTS10. Western blotting revealed ADAMTS10 protein is preferentially expressed in the trabecular meshwork, supporting an effect of the variant specific to aqueous humor outflow. The Gly661Arg variant in ADAMTS10 found in the POAG Beagles suggests that altered processing of extracellular matrix and/or defects in microfibril structure or function may be involved in raising intraocular pressure, offering specific biochemical targets for future research and treatment strategies.  相似文献   

11.
Intraocular pressure (IOP) is regulated by the resistance to outflow of the eye's aqueous humor. Elevated resistance raises IOP and can cause glaucoma. Despite the importance of outflow resistance, its site and regulation are unclear. The small size, complex geometry, and relative inaccessibility of the outflow pathway have limited study to whole animal, whole eye, or anterior-segment preparations, or isolated cells. We now report measuring elemental contents of the heterogeneous cell types within the intact human trabecular outflow pathway using electron-probe X-ray microanalysis. Baseline contents of Na(+), K(+), Cl(-), and P and volume (monitored as Na+K contents) were comparable to those of epithelial cells previously studied. Elemental contents and volume were altered by ouabain to block Na(+)-K(+)-activated ATPase and by hypotonicity to trigger a regulatory volume decrease (RVD). Previous results with isolated trabecular meshwork (TM) cells had disagreed whether TM cells express an RVD. In the intact tissue, we found that all cells, including TM cells, displayed a regulatory solute release consistent with an RVD. Selective agonists of A(1) and A(2) adenosine receptors (ARs), which exert opposite effects on IOP, produced similar effects on juxtacanalicular (JCT) cells, previously inaccessible to functional study, but not on Schlemm's canal cells that adjoin the JCT. The results obtained with hypotonicity and AR agonists indicate the potential of this approach to dissect physiological mechanisms in an area that is extremely difficult to study functionally and demonstrate the utility of electron microprobe analysis in studying the cellular physiology of the human trabecular outflow pathway in situ.  相似文献   

12.
《Biotechnology advances》2014,32(5):971-983
According to the World Health Organization, glaucoma remains the second leading cause of blindness in the world. Glaucoma belongs to a group of optic neuropathies that is characterized by chronic degeneration of the optic nerve along with its supporting glia and vasculature. Despite significant advances in the field, there is no available cure for glaucoma. The trabecular meshwork has been implicated as the primary site for regulation of intraocular pressure, the only known modifiable factor in glaucoma development. In this review, we describe the current models for glaucoma studies, primary culture, anterior eye segments, and animal studies and their limitations. These models, especially anterior eye segments and animal tissues, often require careful interpretation given the inter-species variation and are cumbersome and expensive. The lack of an available in vitro 3D model to study trabecular meshwork cells and detailed mechanisms of their regulation of intraocular pressure has limited progress in the field of glaucoma research. In this paper, we review the current status of knowledge of the trabecular meshwork and how the current advances in tissue engineering techniques might be applied in an effort to engineer a synthetic trabecular meshwork as a 3D in vitro model to further advance glaucoma research. In addition, we describe strategies for selection and design of biomaterials for scaffold fabrication as well as extracellular matrix components to mimic and support the trabecular architecture. We also discuss possible uses for a bioengineered trabecular meshwork for both developing a fundamental understanding of trabecular meshwork biology as well as high-throughput screening of glaucoma drugs.  相似文献   

13.
14.

Background

Trabecular meshwork and Schlemm''s canal are the tissues appointed to modulate the aqueous humour outflow from the anterior chamber. The impairment of their functions drives to an intraocular pressure increase. The selective laser trabeculoplasty is a laser therapy of the trabecular meshwork able to decrease intraocular pressure. The exact response mechanism to this treatment has not been clearly delineated yet. The herein presented study is aimed at studying the gene expression changes induced in trabecular meshwork cells by selective laser trabeculoplasty (SLT) in order to better understand the mechanisms subtending its efficacy.

Methodology/Principal Findings

Primary human trabecular meshwork cells cultured in fibroblast medium underwent selective laser trabeculoplasty treatment. RNA was extracted from a pool of cells 30 minutes after treatment while the remaining cells were further cultured and RNA was extracted respectively 2 and 6 hours after treatment. Control cells stored in incubator in absence of SLT treatment were used as reference samples. Gene expression was evaluated by hybridization on miRNA-microarray and laser scanner analysis. Scanning electron microscopic examination was performed on 2 Trabecular meshwork samples after SLT at 4th and 6th hour from treatment. On the whole, selective laser trabeculoplasty modulates in trabecular meshwork the expression of genes involved in cell motility, intercellular connections, extracellular matrix production, protein repair, DNA repair, membrane repair, reactive oxygen species production, glutamate toxicity, antioxidant activities, and inflammation.

Conclusions/Significance

SLT did not induce any phenotypic alteration in TM samples. TM is a complex tissue possessing a great variety of function pivotal for the active regulation of aqueous humour outflow from the anterior chamber. SLT is able to modulate these functions at the postgenomic molecular level without inducing damage either at molecular or phenotypic levels.  相似文献   

15.
Hyaluronan (HA) is a major component of the extracellular matrix (ECM) and is synthesized by three HA synthases (HAS). Similarities between the HAS2 knockout mouse and the hdf mutant mouse, which has a mutation in the versican gene, suggest that HA and versican expression may be linked. In this study, the relationship between HA synthesis and levels of versican, fibronectin and several other ECM components in trabecular meshwork cells from the anterior segment of the eye was investigated. HA synthesis was inhibited using 4-methylumbelliferone (4MU), or reduced by RNAi silencing of each individual HAS gene. Quantitative RT-PCR and immunoblotting demonstrated a reduction in mRNA and protein levels of versican and fibronectin. Hyaluronidase treatment also reduced versican and fibronectin levels. These effects could not be reversed by addition of excess glucose or glucosamine or exogenous HA to the culture medium. CD44, tenascin C and fibrillin-1 mRNA levels were reduced by 4MU treatment, but SPARC and CSPG6 mRNA levels were unaffected. Immunostaining of trabecular meshwork tissue after exposure to 4MU showed an altered localization pattern of HA-binding protein, versican and fibronectin. Reduction of versican by RNAi silencing did not affect HA concentration as assessed by ELISA. Together, these data imply that HA concentration affects synthesis of certain ECM components. Since precise regulation of the trabecular meshwork ECM composition and organization is required to maintain the aqueous humor outflow resistance and intraocular pressure homeostasis in the eye, coordinated coupling of HA levels and several of its ECM binding partners should facilitate this process.  相似文献   

16.
A mathematical model is presented for the flow of aqueous humor in Schlemm's canal in the eye. The model introduces a canal segment between two collector channels as a rectangular channel with porous upper wall. Two cases have been considered in the model: (I) the inner porous wall of the canal is rigid; (II) the inner wall is collapsible. Analytical solution of the governing equation in case I is straightforward, whereas the nonlinear equation in case II is solved by an iterative procedure. Aqueous fluid pressure and flow profiles in the proposed model are drawn, and the effects of important parameters on these profiles are brought out and discussed. It is concluded that for case I, resistance to aqueous flow is influenced by the filtration constant of the trabecular and endothelial meshwork and that narrowing of the canal reduces outflow. In case II, an increase in intraocular pressure (IOP) or compliance coefficient of the canal inner wall increases the collapse of the canal, which offers increased resistance to flow resulting in the decreased flow whereas increasing filtration constant facilitates aqueous outflow. These theoretical results suggest that increased IOP or decreased rigidity of the inner wall may contribute to the development of increased resistance as observed in some cases of glaucoma and that increasing values of filtration constant may contribute to the facility of outflow increase.  相似文献   

17.
18.
Transforming growth factor-β2 (TGF-β2) is found in increasing amounts in aqueous humor and reactive optic nerve astrocytes of patients with primary open-angle glaucoma (POAG), a major cause of blindness worldwide. The available data strongly indicate that TGF-β2 is a key player contributing to the structural changes in the extracellular matrix (ECM) of the trabecular meshwork and optic nerve head as characteristically seen in POAG. The changes involve an induction in the expression of various ECM molecules and are remarkably similar in trabecular meshwork cells and optic nerve head astrocytes. The ECM changes in the trabecular meshwork most probably play a role in the increase of aqueous humor outflow resistance causing higher intraocular pressure (IOP). In the optic nerve head, TGF-β2-induced changes might contribute to deformation of the optic nerve axons causing impairment of axonal transport and neurotrophic supply and leading to their continuous degeneration. The increase in IOP further adds mechanical stress and strain to optic nerve axons and accelerates degenerative changes. In addition, high IOP might induce the expression of activated TGF-β1 in trabecular meshwork cells and optic nerve head astrocytes; this again might significantly lead to the progress of axonal degeneration. The action of TGF-β2 in POAG is largely mediated through the connective tissue growth factor, whereas the activities of TGF-β1 and -β2 are modulated by the blocking effects of bone morphogenetic protein-4 (BMP-4) and BMP-7, by gremlin that inhibits BMP signaling and by several species of microRNAs.  相似文献   

19.
We report that protein adducts of iso[4]levuglandin E2 (iso[4]LGE2), a highly reactive product of free radical-induced lipid oxidation, accumulate in human glaucomatous trabecular meshwork (TM) but not in controls. Reactive oxygen species play a pathogenic role in primary open angle glaucoma by fostering changes that reduce permeability of the TM tissue and consequently impede aqueous humor outflow resulting in elevated intraocular pressure. IsoLGs covalently modify proteins and are especially effective in causing protein-protein cross-linking. We found elevated levels of calpain-1 in glaucomatous TM. However, calpain activity in glaucomatous TM is only about 50% of that in controls. This paradox is explicable by the fact that modification by isoLGs renders calpain-1 inactive. Thus, treatment of calpain-1 with iso[4]LGE2 in vitro results in covalent modification, inactivation, the formation of high molecular weight aggregates (as determined by Western and dynamic light scattering analyses), and resistance to proteasomal digestion. Iso[4]LGE2-modified calpain-1 undergoes ubiquitination, and its loading impairs the cellular proteasome activity, consistent with competitive inhibition and formation of suicidal high molecular weight aggregates. These data suggest that interference with proteasomal activity, owing to protein modification by isoLGs, could contribute to glaucoma pathophysiology by decreasing the ability of the TM to modulate outflow resistance.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号