首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Ribonucleoprotein fragments of the 30 S ribosome of E. coli have been prepared by limited ribonuclease digestion and mild heating of the ribosome in a constant ionic environment. One such fragment has been described previously. A second electrophoretically homogeneous fragment has now been isolated and its RNA and protein moieties have been characterized. It contains the 5' half of the 16 S RNA, encompassing domains I and II except for the extreme 5' terminus and several small gaps. Seven proteins are present: S4, S5, S6, S8, S12, S15 and S20. The RNA binding sites of five of these proteins are known, and all are RNA sequences that are present in the fragment. Published neutron scattering and immuno-electron microscopic data indicate that six of the proteins are clustered together in a cross sectional slice through the center of the subunit. After deproteinization, the RNA moiety gives two bands in gel electrophoresis, one containing domains I and II and the other, essentially only domain II. The former, although larger, migrates faster in gel electrophoresis, indicating that RNA domains I and II interact with each other in such a way as to become more compact than domain II by itself.  相似文献   

3.
4.
The Drosophila sex determination gene Sex-lethal (Sxl) controls its own expression, and the expression of downstream target genes such as transformer , by regulating pre-mRNA splicing and mRNA translation. Sxl codes an RNA-binding protein that consists of an N-terminus of approximately 100 amino acids, two 90 amino acid RRM domains, R1 and R2, and an 80 amino acid C-terminus. In the studies reported here we have examined the functional properties of the different Sxl protein domains in RNA binding and in protein:protein interactions. The two RRM domains are responsible for RNA binding. Specificity in the recognition of target RNAs requires both RRM domains, and proteins which consist of the single domains or duplicated domains have anomalous RNA recognition properties. Moreover, the length of the linker between domains can affect RNA recognition properties. Our results indicate that the two RRM domains mediate Sxl:Sxl protein interactions, and that these interactions probably occur both in cis and trans. We speculate that cis interactions between R1 and R2 play a role in RNA recognition by the Sxl protein, while trans interactions stabilize complex formation on target RNAs that contain two or more closely spaced binding sites. Finally, we show that the interaction of Sxl with the snRNP protein Snf is mediated by the R1 RRM domain.  相似文献   

5.
In higher eukaryotes, increasing evidence suggests, gene expression is to a large degree controlled by RNA. Regulatory RNAs have been implicated in the management of neuronal function and plasticity in mammalian brains. However, much of the molecular-mechanistic framework that enables neuronal regulatory RNAs to control gene expression remains poorly understood. Here, we establish molecular mechanisms that underlie the regulatory capacity of neuronal BC RNAs in the translational control of gene expression. We report that regulatory BC RNAs employ a two-pronged approach in translational control. One of two distinct repression mechanisms is mediated by C-loop motifs in BC RNA 3' stem-loop domains. These C-loops bind to eIF4B and prevent the factor's interaction with 18S rRNA of the small ribosomal subunit. In the second mechanism, the central A-rich domains of BC RNAs target eIF4A, specifically inhibiting its RNA helicase activity. Thus, BC RNAs repress translation initiation in a bimodal mechanistic approach. As BC RNA functionality has evolved independently in rodent and primate lineages, our data suggest that BC RNA translational control was necessitated and implemented during mammalian phylogenetic development of complex neural systems.  相似文献   

6.
Proteins of the ELAV/Hu family share the presence of three RNA binding domains. In Xenopus, three nervous system-specific elav/Hu related genes, elrB, elrC and elrD, have been identified so far. The temporally regulated expression patterns of elrB, elrC and elrD suggest their involvement at different steps of neural differentiation. In the present study we misexpressed elrB by RNA injection in early Xenopus embryos and analyzed morphologically and molecularly its effects on neural development. We showed that heterochronous expression of elrB in presumptive neurectoderm down-regulates the expression of neural markers, such as N-tubulin, as well as that of other Xenopus elav-like genes, elrC and elrD, whereas ectopic expression of elrB in presumptive mesoderm has no effect on MyoD. Misexpression of elrB also induces severe defects in neural tube development, associated with massive cell loss resulting from early cell cycle arrest and programmed cell death. Our results are discussed in the context of early neural differentiation.  相似文献   

7.
RNA double cleavage by a hairpin-derived twin ribozyme   总被引:4,自引:4,他引:0  
The hairpin ribozyme is a small catalytic RNA that catalyses reversible sequence-specific RNA hydrolysis in trans. It consists of two domains, which interact with each other by docking in an antiparallel fashion. There is a region between the two domains acting as a flexible hinge for interdomain interactions to occur. Hairpin ribozymes with reverse-joined domains have been constructed by dissecting the domains at the hinge and rejoining them in reverse order. We have used both the conventional and reverse-joined hairpin ribozymes for the design of a hairpin-derived twin ribozyme. We show that this twin ribozyme cleaves a suitable RNA substrate at two specific sites while maintaining the target specificity of the individual monoribozymes. For characterisation of the studied ribozymes we have evaluated a quantitative assay of sequence-specific ribozyme activity using fluorescently labelled RNA substrates in conjunction with an automated DNA sequencer. This assay was found to be applicable with hairpin and hairpin-derived ribozymes. The results demonstrate the potential of hairpin ribozymes for multi-target strategies of RNA cleavage and suggest the possibility for employing hairpin-derived twin ribozymes as powerful tools for RNA manipulation in vitro and in vivo.  相似文献   

8.
Chromatin is a dynamic structure composed of DNA, RNA, and proteins, regulating storage and expression of the genetic material in the nucleus. Heterochromatin plays a crucial role in driving the three-dimensional arrangement of the interphase genome, and in preserving genome stability by maintaining a subset of the genome in a silent state. Spatial genome organization contributes to normal patterns of gene function and expression, and is therefore of broad interest. Mammalian heterochromatin, the focus of this review, mainly localizes at the nuclear periphery, forming Lamina-associated domains (LADs), and at the nucleolar periphery, forming Nucleolus-associated domains (NADs). Together, these regions comprise approximately one-half of mammalian genomes, and most but not all loci within these domains are stochastically placed at either of these two locations after exit from mitosis at each cell cycle. Excitement about the role of these heterochromatic domains in early development has recently been heightened by the discovery that LADs appear at some loci in the preimplantation mouse embryo prior to other chromosomal features like compartmental identity and topologically-associated domains (TADs). While LADs have been extensively studied and mapped during cellular differentiation and early embryonic development, NADs have been less thoroughly studied. Here, we summarize pioneering studies of NADs and LADs, more recent advances in our understanding of cis/trans-acting factors that mediate these localizations, and discuss the functional significance of these associations.  相似文献   

9.
《Genomics》2019,111(5):1018-1025
Small RNAs (sRNAs) are short, non-coding, 17–24 nucleotides long RNA molecules that play vital roles in regulating gene expression in every known organism investigated to date including cotton (Gossypium ssp.). These tiny RNA molecules target diverse categories of genes from different bioliogical and metabolic processes and have been reported in the three domains of life. Small RNAs, including miRNAs, are involved in ovule and fiber development, biotic and abiotic stresses, fertility, and other biochemical processes in cotton species. Also, sRNAs are the critical components in RNA interference pathway. In this article, we have reviewed the research efforts related to the isolation and characterization of miRNAs using molecular and genomic approaches. The progress made in understanding the functional roles of miRNAs in regulation, alteration, and inactivation of fundamental plant processes and traits of importance in cotton are presented here.  相似文献   

10.
Brome mosaic virus (BMV) belongs to a "superfamily" of plant and animal positive-strand RNA viruses that share, among other features, three large domains of conserved sequence in nonstructural proteins involved in RNA replication. Two of these domains reside in the 109-kDa BMV 1a protein. To examine the role of 1a, we used biologically active cDNA clones of BMV RNA1 to construct a series of linker insertion mutants bearing two-codon insertions dispersed throughout the 1a gene. The majority of these mutations blocked BMV RNA replication in protoplasts, indicating that both intervirally conserved domains function in RNA replication. Coinoculation tests with a large number of mutant combinations failed to reveal detectable complementation between mutations in the N- and C-terminal conserved domains, implying that these two domains either function in some directly interdependent fashion or must be present in the same protein. Four widely spaced mutations with temperature-sensitive (ts) defects in RNA replication were identified, including a strongly ts insertion near the nucleotide-binding consensus of the helicaselike C-terminal domain. Temperature shift experiments with this mutant show that 1a protein is required for continued accumulation of all classes of viral RNA (positive strand, negative strand, and subgenomic) and is required for at least the first 10 h of infection. ts mutations were also identified in the 3' noncoding region of RNA1, 5' to conserved sequences previously implicated in cis for replication. Under nonpermissive conditions, the cis-acting partial inhibition of RNA1 accumulation caused by these noncoding mutations was also associated with reduced levels of the other BMV genomic RNAs. Comparison with previous BMV mutant results suggests that RNA replication is more sensitive to reductions in expression of 1a than of 2a, the other BMV-encoded protein involved in replication.  相似文献   

11.
Michel SL  Guerrerio AL  Berg JM 《Biochemistry》2003,42(16):4626-4630
Regulation of gene expression takes place at several different levels and involves specific domains involved in specific protein-nucleic acid interactions. The protein Nup475 (also known as Tristetraprolin and TS11) binds to AU-rich sequence elements in certain mRNA molecules and favors the degradation of these mRNAs. The nucleic acid binding domain of Nup475 consists of two CCCH zinc-binding domains. A 36-amino acid peptide corresponding to the first of these CCCH domains has been synthesized and characterized. This peptide binds metal ions such as zinc(II) and cobalt(II) with affinities comparable to those of other authenticated zinc-binding domains. The zinc(II) complex of this peptide binds the RNA oligonucleotide UUUAUUU labeled with fluorescein on the 3'-end with an affinity of approximately 5 microM and discriminates against other sequences lacking the central A or the flanking U residues. These results demonstrate for the first time that a single CCCH domain is capable of binding single-stranded RNA with considerable affinity and selectivity. The combination of this well-behaved domain and the fluorescence-based binding assay sets the stage for more detailed structure-activity studies.  相似文献   

12.
V Biou  F Shu    V Ramakrishnan 《The EMBO journal》1995,14(16):4056-4064
The structures of the two domains of translational initiation factor IF3 from Bacillus stearothermophilus have been solved by X-ray crystallography using single wavelength anomalous scattering and multiwavelength anomalous diffraction. Each of the two domains has an alpha/beta topology, with an exposed beta-sheet that is reminiscent of several ribosomal and other RNA binding proteins. An alpha-helix that protrudes out from the body of the N-terminal domain towards the C-terminal domain suggests that IF3 consists of two RNA binding domains connected by an alpha-helix and that it may bridge two regions of the ribosome. This represents the first high resolution structural information on a translational initiation factor.  相似文献   

13.
14.
Differential cell adhesive properties are known to regulate important developmental events like cell sorting and cell migration. Cadherins and protocadherins are known to mediate these cellular properties. Though a large number of such molecules have been predicted, their characterization in terms of interactive properties and cellular roles is far from being comprehensive. To narrow down the tissue context and collect correlative evidence for tissue specific roles of these molecules, we have carried out whole-mount in situ hybridization based RNA expression study for seven cadherins and four protocadherins. In developing chicken embryos (HH stages 18, 22, 26 and 28) cadherins and protocadherins are expressed in tissue restricted manner. This expression study elucidates precise expression domains of cell adhesion molecules in the context of developing embryos. These expression domains provide spatio-temporal context in which the function of these genes can be further explored.  相似文献   

15.
We have identified a protein in Chlamydomonas reinhardtii cell extracts that specifically binds the single-stranded (ss) Chlamydomonas G-strand telomere sequence (TTTTAGGG)n. This protein, called G-strand binding protein (GBP), binds DNA with two or more ss TTTTAGGG repeats. A single polypeptide (M(r) 34 kDa) in Chlamydomonas extracts binds (TTTTAGGG)n, and a cDNA encoding this G-strand binding protein was identified by its expression of a G-strand binding activity. The cDNA (GBP1) sequence predicts a protein product (Gbp1p) that includes two domains with extensive homology to RNA recognition motifs (RRMs) and a region rich in glycine, alanine and arginine. Antibody raised against a peptide within Gbp1p reacted with both the 34 kDa polypeptide and bound G-strand DNA-protein complexes in gel retardation assays, indicating that GBP1 encodes GBP. Unlike vertebrate heteronuclear ribonucleoproteins, GBP does not bind the cognate telomere RNA sequence UUUUAGGG in gel retardation, North-Western or competition assays. Thus, GBP is a new type of candidate telomere binding protein that binds, in vitro, to ss G-strand telomere DNA, the primer for telomerase, and has domains that have homology to RNA binding domains in other proteins.  相似文献   

16.
Escherichia coli leucyl-tRNA synthetase (LeuRS) aminoacylates up to six different class II tRNA(leu) molecules. Each has a distinct anticodon and varied nucleotides in other regions of the tRNA. Attempts to construct a minihelix RNA that can be aminoacylated with leucine have been unsuccessful. Herein, we describe the smallest tRNA(leu) analog that has been aminoacylated to a significant extent to date. A series of tRNA(leu) analogs with various domains and combinations of domains deleted was constructed. The minimal RNA that was efficiently aminoacylated with LeuRS was one in which the anticodon stem-loop and variable arm stem-loop, but neither the D-arm nor T-arm, were deleted. Aminoacylation of this minimal RNA was abolished when the discriminator base A73 was replaced with C73 or when putative tertiary interactions between the D-loop and T-loop were disrupted, suggesting that these identity elements are still functioning in the minimized RNA. The various constructs that were significantly aminoacylated were also tested for amino acid editing by the synthetase. The anticodon and variable stem-loop domains were also dispensable for hydrolysis of the charged tRNA(leu) mimics. These results suggest that LeuRS may rely on identity elements in overlapping domains of the tRNA for both its aminoacylation and editing activities.  相似文献   

17.
在细菌DNA复制中,DnaG引物酶合成RNA引物,然后合成的引物通过DNA聚合酶进行延伸. DnaG引物酶由3个结构域组成,N端锌结合结构域(zinc-binding domain,ZBD)、RNA聚合酶结构域(RNA polymerase domain,RPD)和C端解旋酶结合结构域(helicase binding domain,HBD). 在合成引物的过程中,引物酶的3个结构域协同作用,缺一不可. 尽管引物酶3个结构域的结构均已有研究报道,但到目前为止,引物酶的全长结构尚不清楚. 我们在上海光源利用小角X射线散射技术研究了枯草芽孢杆菌全长引物酶的溶液结构,首次构建了全长引物酶结构模型. 我们发现,枯草芽孢杆菌引物酶在溶液中处于伸展状态,且ZBD和HBD结构域相对于RPD结构域呈现出连续的构象变化. 本文研究表明DnaG引物酶中的结构域重排可能有助于其在DNA复制中发挥功能.  相似文献   

18.
Precise regulation of gene expression is crucial for living cells to adapt for survival in diverse environmental conditions. Among the common cellular regulatory mechanisms, RNA-based regulators play a key role in all domains of life. Discovery of regulatory RNAs have made a paradigm shift in molecular biology as many regulatory functions of RNA have been identified beyond its canonical roles as messenger, ribosomal and transfer RNA. In the complex regulatory RNA network, riboswitches, small RNAs, and RNA thermometers can be identified as some of the key players. Herein, we review the discovery, mechanism, and potential therapeutic use of these classes of regulatory RNAs mainly found in bacteria. Being highly adaptive organisms that inhabit a broad range of ecological niches, bacteria have adopted tight and rapid-responding gene regulation mechanisms. This review aims to highlight how bacteria utilize versatile RNA structures and sequences to build a sophisticated gene regulation network.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号