首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
We have measured the kinetics of electron transfer (ET) from the primary quinone (Q(A)) to the special pair (P) of the reaction center (RC) complex from Rhodobacter sphaeroides as a function of temperature (5-300 K), illumination protocol (cooled in the dark and under illumination from 110, 160, 180, and 280 K), and warming rate (1.3 and 13 mK/s). The nonexponential kinetics are interpreted with a quantum-mechanical ET model (Fermi's golden rule and the spin-boson model), in which heterogeneity of the protein ensemble, relaxations, and fluctuations are cast into a single coordinate that relaxes monotonically and is sensitive to all types of relaxations caused by ET. Our analysis shows that the structural changes that occur in response to ET decrease the free energy gap between donor and acceptor states by 120 meV and decrease the electronic coupling between donor and acceptor states from 2.7 x 10(-4) cm(-1) to 1.8 x 10(-4) cm(-1). At cryogenic temperatures, conformational changes can be slowed or completely arrested, allowing us to monitor relaxations on the annealing time scale (approximately 10(3)-10(4) s) as well as the time scale of ET (approximately 100 ms). The relaxations occur within four broad tiers of conformational substates with average apparent Arrhenius activation enthalpies of 17, 50, 78, and 110 kJ/mol and preexponential factors of 10(13), 10(15), 10(21), and 10(25) s(-1), respectively. The parameterization provides a prediction of the time course of relaxations at all temperatures. At 300 K, relaxations are expected to occur from 1 ps to 1 ms, whereas at lower temperatures, even broader distributions of relaxation times are expected. The weak dependence of the ET rate on both temperature and protein conformation, together with the possibility of modeling heterogeneity and dynamics with a single conformational coordinate, make RC a useful model system for probing the dynamics of conformational changes in proteins.  相似文献   

3.
Abstract

Trehalose and glycerol are low molecular mass sugars/polyols that have found widespread use in the protection of native protein states, in both short- and long-term storage of biological materials, and as a means of understanding protein dynamics. These myriad uses are often attributed to their ability to form an amorphous glassy matrix. In glycerol, the glass is formed only at cryogenic temperatures, while in trehalose, the glass is formed at room temperature, but only upon dehydration of the sample. While much work has been carried out to elucidate a mechanistic view of how each of these matrices interact with proteins to provide stability, rarely have the effects of these two independent systems been directly compared to each other. This review aims to compile decades of research on how different glassy matrices affect two types of photosynthetic proteins: (i) the Type II bacterial reaction center from Rhodobacter sphaeroides and (ii) the Type I Photosystem I reaction center from cyanobacteria. By comparing aggregate data on electron transfer, protein structure, and protein dynamics, it appears that the effects of these two distinct matrices are remarkably similar. Both seem to cause a “tightening” of the solvation shell when in a glassy state, resulting in severely restricted conformational mobility of the protein and associated water molecules. Thus, trehalose appears to be able to mimic, at room temperature, nearly all of the effects on protein dynamics observed in low temperature glycerol glasses.  相似文献   

4.
The electrostatic interactions governing binding and electron transfer from cytochrome c(2) (cyt c(2)) to the reaction center (RC) from the photosynthetic bacteria Rhodobacter sphaeroides were studied by using site-directed mutagenesis to change the charges of residues on the RC surface. Charge-reversing mutations (acid --> Lys) decreased the binding affinity for cyt c(2). Dissociation constants, K(D) (0.3--250 microM), were largest for mutations of Asp M184 and nearby acid residues, identifying the main region for electrostatic interaction with cyt c(2). The second-order rate constants, k(2) (1--17 x 10(8) M(-1) s(-1)), increased with increasing binding affinity (log k(2) vs log 1/K(D) had a slope of approximately 0.4), indicating a transition state structurally related to the final complex. In contrast, first-order electron transfer rates, k(e), for the bound cyt did not change significantly (<3-fold), indicating that electron tunneling pathways were unchanged by mutation. Charge-neutralizing mutations (acid --> amide) showed changes in binding free energies of approximately 1/2 the free energy changes due to the corresponding charge-reversing mutations, suggesting that the charges in the docked complex remain well solvated. Charge-enhancing mutations (amide --> acid) produced free energy changes of the same magnitude (but opposite sign) as changes due to the charge-neutralizing mutations in the same region, indicating a diffuse electrostatic potential due to cyt c(2). A two-domain model is proposed, consisting of an electrostatic docking domain with charged surfaces separated by a water layer and a hydrophobic tunneling domain with atomic contacts that provide an efficient pathway for electron transfer.  相似文献   

5.
6.
Accessory chlorophylls (B(A/B)) in bacterial photosynthetic reaction center play a key role in charge-separation. Although light-exposed and dark-adapted bRC crystal structures are virtually identical, the calculated B(A) redox potentials for one-electron reduction differ. This can be traced back to different orientations of the B(A) ester-group. This tuning ability of chlorophyll redox potentials modulates the electron transfer from SP* to B(A).  相似文献   

7.
Amplitude characteristics and kinetics of laser-induced oxidation of high-potential cytochrome CH by a photosynthetic reaction center (RC) were investigated in Ectothiorhodospira shaposhnikovii chromatophore preparations of various humidity. It is shown that the diminuition of the amount of oxidized cytochrome and the decrease of the rate of the reaction on lowering the preparation humidity can be explained in terms of the concept of conformation-controlled electron transfer within the CH-RC complex. A model is suggested which predicts that the reversible transition of the complex from one conformational state which allows electron transfer ("contact" state) to the other in which the transfer is impossible ("non-contact" state) is the result of drying (or low temperature) induced changes in the electron tunnelling path in the region of "contact" of the cytochrome CH and RC protein globules.  相似文献   

8.
The temperature dependences of fluorescence and phosphorescence spectra maxima of chromophor labels--endogenic (tryptophan) and exogenic (eosinisothiocyanate)--were measured for the preparations of photosynthetic membranes and reaction centers from Rhodospirillum rubrum. It was found that the dipole mobility of protein-lipid matrix in the vicinity of the chromophores intensified markedly with a temperature rise from 150 to 300K resulting in the corresponding relaxation time tau r decrease from 10(0) to 10(-8) s. The efficiency of direct transfer of the photomobilized electron in the system of quinone acceptors (A1- leads to A2) of reaction centers (characteristic half-times of the process being 10(-3) divided by 10(-4) s) was shown also to increase sharply at temperatures higher than 200K parallel to the enhancement of molecular motions with tau r approximately 10(-8) s. Meanwhile, changes observed in the rate of recombination of primary photoproducts, i.e. an oxidized bacteriochlorophyll dimer, P+ and a reduced acceptor, A1- (characteristic half-time of 10(-1) divided by 10(-2) s) and the activization of low-frequency motions with tau r approximately 10(-3) s in the external layers and tau r less than 1 s in the internal parts of the reaction centers protein develop over the same range of low temperatures (150-220 K). The nature of interactions which determine the dependence of the photosynthetic electron transport on the molecular mobility of the membrane proteins is discussed.  相似文献   

9.
Gong XM  Paddock ML  Okamura MY 《Biochemistry》2003,42(49):14492-14500
The structure of the complex between cytochrome c(2) (cyt) and the photosynthetic reaction center (RC) from Rhodobacter sphaeroides shows contacts between hydrophobic residues Tyr L162, Leu M191, and Val M192 on the RC and the surface of the cyt [Axelrod et al. (2002) J. Mol. Biol. 319, 501-515]. The role of these hydrophobic residues in binding and electron transfer was investigated by replacing them with Ala and other residues. Mutations of the hydrophobic residues generally resulted in relatively small changes in the second-order electron-transfer rate k(2) (Br?nsted coefficient, alpha( )()= 0.15 +/- 0.05) indicating that the transition state for association occurs before short-range hydrophobic contacts are established. Larger changes in k(2), found in some cases, were attributed to a change in the second-order mechanism from a diffusion controlled regime to a rapidly reversible binding regime. The association constant, K(A), of the cyt and the rate of electron transfer from the bound cyt, k(e), were both decreased by mutation. Replacement of Tyr L162, Leu M191, or Val M192 by Ala decreased K(A) and k(e) by factors of 130, 10, 0.6, and 120, 9, 0.6, respectively. The largest changes were obtained by mutation of Tyr L162, showing that this residue plays a key role in both binding and electron transfer. The binding affinity, K(A), and electron-transfer rate, k(e) were strongly correlated, showing that changes of hydrophobic residues affect both binding and electron transfer. This correlation suggests that changes in distance across hydrophobic interprotein contacts have similar effects on both electron tunneling and binding interactions.  相似文献   

10.
Miyashita O  Onuchic JN  Okamura MY 《Biochemistry》2003,42(40):11651-11660
Electrostatic interactions are important for protein-protein association. In this study, we examined the electrostatic interactions between two proteins, cytochrome c(2) (cyt c(2)) and the reaction center (RC) from the photosynthetic bacterium Rhodobacter sphaeroides, that function in intermolecular electron transfer in photosynthesis. Electrostatic contributions to the binding energy for the cyt c(2)-RC complex were calculated using continuum electrostatic methods based on the recent cocrystal structure [Axelrod, H. L., et al. (2002) J. Mol. Biol. 319, 501-515]. Calculated changes in binding energy due to mutations of charged interface residues agreed with experimental results for a protein dielectric constant epsilon(in) of 10. However, the electrostatic contribution to the binding energy for the complex was close to zero due to unfavorable desolvation energies that compensate for the favorable Coulomb attraction. The electrostatic energy calculated as a function of displacement of the cyt c(2) from the bound position showed a shallow minimum at a position near but displaced from the cocrystal configuration. These results show that although electrostatic steering is present, other short-range interactions must be present to contribute to the binding energy and to determine the structure of the complex. Calculations made to model the experimental data on association rates indicate a solvent-separated transition state for binding in which the cyt c(2) is displaced approximately 8 A above its position in the bound complex. These results are consistent with a two-step model for protein association: electrostatic docking of the cyt c(2) followed by desolvation to form short-range van der Waals contacts for rapid electron transfer.  相似文献   

11.
Larson JW  Wraight CA 《Biochemistry》2000,39(48):14822-14830
Redox titration of horse heart cytochrome c (cyt c), in the presence of varying concentrations of detergent-solubilized photosynthetic reaction center (RC) from Rhodobacter sphaeroides, revealed an RC concentration-dependent decrease in the measured cyt c midpoint potential that is indicative of a 3.6 +/- 0.2-fold stronger binding affinity of oxidized cytochrome to a single binding site. This effect was correlated with preferential binding in the functional complex by redox titration of the fraction of RCs exhibiting microsecond, first-order, special pair reduction by cytochrome. A binding affinity ratio of 3.1 +/- 0.4 was determined by this second technique, confirming the result. Redox titration of flash-induced intracomplex electron transfer also showed the association in the electron transfer-active complex to be strong, with a dissociation constant of 0.17 +/- 0.03 microM. The tight binding is associated with a slow off-rate which, in the case of the oxidized form, can influence the kinetics of P(+) reduction. The pitfalls of the common use of xenon flashlamps to photoexcite fast electron-transfer reactions are discussed with relation to the first electron transfer from primary to secondary RC quinone acceptors. The results shed some light on the diversity of kinetic behavior reported for the cytochrome to RC electron-transfer reaction.  相似文献   

12.
1. The kinetics of the interaction of cytochrome c2 and photosynthetic reaction centers purified from Rhodobacter capsulatus were studied in proteoliposomes reconstituted with a mixture of phospholipids simulating the native membrane (i.e. containing 25% L-alpha-phosphatidylglycerol). 2. At low ionic strength, the kinetics of cytochrome-c2 oxidation induced by a single turnover flash was very different, depending on the concentration of cytochrome c2: at concentrations lower than 1 microM, the process was strictly bimolecular (second-order rate constant, k = 1.7 x 10(9) M-1 s-1), while at higher concentrations a fast oxidation process (half-time lower than 20 microseconds) became increasingly dominant and encompassed the total process at a cytochrome c2 concentration around 10 microM. From the concentration dependence of the amplitude of this fast phase an association constant for a reaction-center--cytochrome-c2 complex of about 10(5) M-1 was evaluated. From the fraction of photo-oxidized reaction centers promptly re-reduced in the presence of saturating concentrations of externally added cytochrome c2, it was found that in approximately 60% of the centers the cytochrome-c2 site was exposed to the external compartment. 3. Both the second-order oxidation reaction and the formation of the reaction-center--cytochrome-c2 complex were very sensitive to ionic strength. In the presence of 180 mM KCl, the value of the second-order rate constant was decreased to 7.0 x 10(7) M-1 s-1 and no fast oxidation of cytochrome c2 could be observed at 10 microM cytochrome c2. 4. The kinetics of exchange of oxidized cytochrome c2 bound to the reaction center with the reduced form of the same carrier, following a single turnover flash, was studied in double-flash experiments, varying the dark time between photoactivations over the range 30 microseconds to 5ms. The experimental results were analyzed according to aminimal kinetic model relating the amounts of oxidized cytochrome c2 and reaction centers observable after the second flash to the dark time between flashes. This model included the rate constants for the electron transfer between the primary and secondary ubiquinone acceptors of the complex (k1) and for the exchange of cytochrome c2 (k2). Fitting to the experimental results indicated a value of k1 equal to 2.4 x 10(3) s-1 and a lower limit for k2 of approximately 2 x 10(4) s-1 (corresponding to a second-order rate constant of approximately 3 x 10(9) M-1 s-1).  相似文献   

13.
14.
Based on new Rhodopseudomonas (Rp.) viridis reaction center (RC) coordinates with a reliable structure of the secondary acceptor quinone (QB) site, a continuum dielectric model and finite difference technique have been used to identify clusters of electrostatically interacting ionizable residues. Twenty-three residues within a distance of 25 A from QB (QB cluster) have been shown to be strongly electrostatically coupled to QB, either directly or indirectly. An analogous cluster of 24 residues is found to interact with QA (QA cluster). Both clusters extend to the cytoplasmic surface in at least two directions. However, the QB cluster differs from the QA cluster in that it has a surplus of acidic residues, more strong electrostatic interactions, is less solvated, and experiences a strong positive electrostatic field arising from the polypeptide backbone. Consequently, upon reduction of QA or QB, it is the QB cluster, and not the QA cluster, which is responsible for substoichiometric proton uptake at neutral pH. The bulk of the changes in the QB cluster are calculated to be due to the protonation of a tightly coupled cluster of the three Glu residues (L212, H177, and M234) within the QB cluster. If the lifetime of the doubly reduced state QB2- is long enough, Asp M43 and Ser L223 are predicted to also become protonated. The calculated complex titration behavior of the strongly interacting residues of the QB cluster and the resulting electrostatic response to electron transfer may be a common feature in proton-transferring membrane protein complexes.  相似文献   

15.
Intra- and intermolecular electron transfer processes in redox proteins   总被引:2,自引:0,他引:2  
Initial velocity and product inhibition experiments were performed to characterize the kinetic mechanism of branched chain ketoacid dehydrogenase (the branched chain complex) activity. The results were directly compared to predicted patterns for a three-site ping-pong mechanism. Product inhibition experiments confirmed that NADH is competitive versus NAD+ and isovaleryl CoA is competitive versus CoA. Furthermore, both NADH and isovaleryl CoA were uncompetitive versus ketoisovaleric acid. These results are consistent with a ping-pong mechanism and are similar to pyruvate dehydrogenase and alpha-ketoglutarate dehydrogenase. However, inhibition patterns for isovaleryl CoA versus NAD+ and NADH versus CoA are not consistent with a ping-pong mechanism. These patterns may result from a steric interaction between the flavoprotein and transacetylase subunits of the complex. To determine the kinetic mechanism of the substrates and feedback inhibitors (NADH and isovaleryl CoA) of the branched chain complex, it was necessary to define the interaction of the inhibitors at nonsaturating fixed substrate (CoA and NAD+) concentrations. While the competitive inhibition patterns were maintained, slope replots for NADH versus NAD+ at nonsaturating CoA concentrations were parabolic. This unexpected finding resembles a linear mixed type of inhibition where the inhibition is a combination of pure competitive and noncompetitive inhibition.  相似文献   

16.
1. The cyclic photosynthetic chain of Rhodobacter capsulatus has been reconstituted incorporating into phospholipid liposomes containing ubiquinone-10 two multiprotein complexes: the reaction center and the ubiquinol-cytochrome-c2 reductase (or bc1 complex). 2. In the presence of cytochrome c2 added externally, at concentrations in the range 10-10(4) nM, a flash-induced cyclic electron transfer can be observed. In the presence of antimycin, an inhibitor of the quinone-reducing site of the bc1 complex, the reduction of cytochrome b561 is a consequence of the donation of electrons to the photo-oxidized reaction center. At low ionic strength (10 mM KCl) and at concentrations of cytochrome c2 lower than 1 microM, the rate of this reaction is limited by the concentration of cytochrome c2. At higher concentrations the reduction rate of cytochrome b561 is controlled by the concentration of quinol in the membrane, and, therefore, is increased when the ubiquinone pool is progressively reduced. At saturating concentrations of cytochrome c2 and optimal redox poise, the half-time for cytochrome b561 reduction is about 3 ms. 3. At high ionic stength (200 mM KCl), tenfold higher concentrations of cytochrome c2 are required for promoting equivalent rates of cytochrome-b561 reduction. If the absolute values of these rates are compared with those of the cytochrome-c2-reaction-center electron transfer, it can be concluded that the reaction of oxidized cytochrome c2 with the bc1 complex is rate-limiting and involves electrstatic interactions. 4. A significant rate of intercomplex electron transfer can be observed also in the absence of cytochrome c2; in this case the electron donor to the recation center is the cytochrome c1 of the oxidoreductase complex. The oxidation of cytochrome c1 triggers a normal electron transfer within the bc1 complex. The intercomplex reaction follows second-order kinetics and is slowed at high ionic strength, suggesting a collisional interaction facilitated by electrostatic attraction. From the second-order rate constant of this process, a minimal bidimensional diffusion coefficient for the complexes in the membrane equal to 3 X 10(-11) cm2 s-1 can be evaluated.  相似文献   

17.
In the photosynthetic bacterium Rhodobacter sphaeroides, a water soluble cytochrome c2 (cyt c2) is the electron donor to the reaction center (RC), the membrane-bound pigment-protein complex that is the site of the primary light-induced electron transfer. To determine the interactions important for docking and electron transfer within the transiently bound complex of the two proteins, RC and cyt c2 were co-crystallized in two monoclinic crystal forms. Cyt c2 reduces the photo-oxidized RC donor (D+), a bacteriochlorophyll dimer, in the co-crystals in approximately 0.9 micros, which is the same time as measured in solution. This provides strong evidence that the structure of the complex in the region of electron transfer is the same in the crystal and in solution. X-ray diffraction data were collected from co-crystals to a maximum resolution of 2.40 A and refined to an R-factor of 22% (R(free)=26%). The structure shows the cyt c2 to be positioned at the center of the periplasmic surface of the RC, with the heme edge located above the bacteriochlorophyll dimer. The distance between the closest atoms of the two cofactors is 8.4 A. The side-chain of Tyr L162 makes van der Waals contacts with both cofactors along the shortest intermolecular electron transfer pathway. The binding interface can be divided into two domains: (i) A short-range interaction domain that includes Tyr L162, and groups exhibiting non-polar interactions, hydrogen bonding, and a cation-pi interaction. This domain contributes to the strength and specificity of cyt c2 binding. (ii) A long-range, electrostatic interaction domain that contains solvated complementary charges on the RC and cyt c2. This domain, in addition to contributing to the binding, may help steer the unbound proteins toward the right conformation.  相似文献   

18.
19.
A new type of monolayer of photosynthetic reaction centers (RC) with the primary donor facing the carbon electrode has been constructed using a new bifunctional linker and genetically engineered protein. Comparison of protein in two different orientations with linkers binding to the opposite sides of the protein demonstrates the possibility of utilizing the constructed surfaces as photoelectronic devices. The results show improvement of the electron transfer efficiency when RC is bound with the primary donor (P) facing the electrode (P-side). In either protein orientation, electron transfer within the protein is unidirectional and when applying a voltage RC operates as a photorectifier. Electron transfer between the protein and carbon electrodes in the constructed devices is most likely occurring by tunneling.  相似文献   

20.
J E Long  B Durham  M Okamura  F Millett 《Biochemistry》1989,28(17):6970-6974
The role of specific lysine residues in facilitating electron transfer from Rhodobacter sphaeroides cytochrome c2 to the Rb. sphaeroides reaction center was studied by using six cytochrome c2 derivatives each labeled at a single lysine residue with a carboxydinitrophenyl group. The reaction of native cytochrome c2 at low ionic strength has a fast phase with a half-time of 0.6 microseconds that has been assigned to the reaction of bound cytochrome c2 [Overfield, R.E., Wraight, C.A., & DeVault, D. (1979) FEBS Lett. 105, 137]. Modification of lysine-55 did not affect the half-time of this phase but decreased the apparent binding constant by a factor of 2. The derivatives modified at lysines-10, -88, -95, -97, -99, -105, and -106 surrounding the heme crevice did not show any detectable fast phase but only slow second-order phases due to the reaction of solution cytochrome c2. These lysines thus appear to be involved in binding cytochrome c2 to the reaction center in an optimal orientation for electron transfer. The involvement of lysines-95 and -97 is especially significant, since they are located in an extra loop comprising residues 89-98 that is not present in eukaryotic cytochrome c. The reactions of horse cytochrome c derivatives modified at single lysine amino groups with trifluoroacetyl or [(trifluoromethyl)phenyl]carbamoyl were also studied. The derivatives modified at lysines-22, -55, -88, and -99 far removed from the heme crevice had nearly the same half-times for the fast phase as native cytochrome c, 6 microseconds.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号