首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The leader RNA sequence of human immunodeficiency virus type 1 (HIV-1) consists of a complex series of stem loop structures that are critical for viral replication. Three-dimensional structural analysis by NMR of one of these structures, the SL1 stem loop of the packaging signal region, revealed a highly conserved purine rich loop with a structure nearly identical to the Rev-binding loop of the Rev response element. Using band-shift assays, surface plasmon resonance, and further NMR analysis, we demonstrate that this loop binds Rev. HIV-1 appears to have a second Rev-binding site close to the major splice donor site that may have an additional role in the viral life cycle.  相似文献   

2.
RNA aptamers (binding sequences) that can interact tightly and specifically with the human immunodeficiency virus type 1 Rev protein have previously been selected from random sequence pools. Although the selected sequences compete with the wild-type Rev-binding element (RBE) in vitro, it was not known whether they would be able to functionally replace the RBE in vivo. Two aptamers that were different from the wild-type RBE in terms of both primary sequence and secondary structure were inserted into the full-length Rev-responsive element (RRE) in place of the RBE. The hybrid RREs were assayed for their ability to mediate Rev function in vivo using a reporter system. The aptamers were found to be functionally equivalent to the wild-type element when the assay system was saturated with Rev and better than the wild-type element when Rev was limiting. These results demonstrate that the affinity of the primary Rev-binding element rather than its particular sequence may be most responsible for conferring Rev responsiveness on viral mRNAs. Moreover, the fact that increased binding ability can lead to increased Rev responsiveness suggests that cellular factors do not directly influence the Rev:RBE interaction. Finally, since sequences distinct from the RBE are found to be Rev responsive, it may be possible for the RBE to readily mutate in response to drugs or gene therapy reagents that target the Rev:RBE interaction.  相似文献   

3.
The binding of human immunodeficiency virus Rev protein via its arginine‐rich motif (ARM) to an internal loop in the Rev‐response element region IIB (RRE IIB) is necessary for viral replication. Many variant RNAs and ARMs that bind Rev and RRE IIB have been found. Despite the essential role of Rev asparagine 40 in recognition, the Rev ARM double‐mutant R35G‐N40V functions well in a Rev–RRE IIB reporter assay, indicating R35G‐N40V uses a distinct recognition strategy. To examine how RRE IIB may evolve specificity to wild‐type Rev ARM and R35G‐N40V, 10 RRE IIB libraries, each completely randomized in overlapping regions, were screened with wild‐type Rev ARM and R35G‐N40V using a reporter system based on bacteriophage λ N antitermination. Consistent with previous studies, a core element of RRE IIB did not vary, and substitutions occurred at conserved residues only in the presence of other substitutions. Notably, the groove‐widening, non‐canonical base‐pair G48:G71 was mutable to U48:G71 without strong loss of binding to wild‐type Rev ARM, suggesting U48:G71 performs the same role by adopting the nearly isosteric, reverse wobble base pair. Originating from RRE IIB, as few as one or two substitutions are sufficient to confer specificity to wild‐type Rev or Rev R35G‐N40. The diversity of RRE IIB mutants that maintain binding to wild‐type Rev ARM and R35G‐N40V supports neutral theories of evolution and illustrates paths by which viral RNA–protein interactions can evolve new specificities. Rev–RRE offers an excellent model with which to study the fine structure of how specificity evolves. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
Expression of the structural proteins of human immunodeficiency virus type 1 (HIV-1) requires the direct interaction of multiple copies of the viral protein Rev with its target RNA, the Rev response element (RRE). RRE is a complex 351-nt RNA that is highly structured and located within the viral env gene. During initial Rev-RRE recognition, Rev binds with high affinity to a bubble structure located within the RRE RNA stem-loop II. We have used a site-specific photocrosslinking method based on 6-thioguanosine (6-thioG) photochemistry to probe the conformation of the high-affinity binding site of RRE RNA and its interactions with Rev protein under physiological conditions. A minimal duplex RNA containing the bubble region of RRE and 12 flanking base pairs was synthesized chemically. Two different RRE constructs with a single photoactive nucleoside (6-thio-dG or 6-thioG) at position 47 or 48 were synthesized. Upon UV irradiation, 6-thioG at both positions formed interstrand covalent crosslinks in RRE RNA. Mapping of crosslink sites by RNA sequencing revealed that 6-thioG at position 47 or 48 crosslinked to A73. In the presence of Rev, both RNA-RNA and RNA-protein crosslinks were observed, however, the RNA-RNA crosslink site was unchanged. Our results provide direct evidence that, during RNA-protein recognition, Rev is in close proximity to O6 of G47 and G48 in the major groove of RRE RNA. Our results also show that the bubble region of RRE RNA has a biologically relevant structure where G47 and G48 are in close proximity to A73 and this RNA structure is not changed significantly upon Rev binding. We propose that Rev protein recognizes and binds to specific structural elements of RRE RNA containing non-Watson-Crick base pairs and such structures could be a determinant for recognition by other RNA-binding proteins. Our site-specific crosslinking methods provide a general approach to capture dynamic states of biologically relevant RNA structures that are otherwise missed by NMR and X-ray crystallographic studies.  相似文献   

5.
A small RNA derived from the decoding region of Escherichia coli 16S rRNA can bind to antibiotics of aminoglycosides (neomycin and paromomycin) that act on the small ribosomal subunit [Purohit,P. and Stern,S. (1994) Nature, 370, 659-662]. In the present study, the P-site subdomain was removed from this decoding region RNA to construct a 27mer RNA (designated as ASR-27), which includes the A-site-related region (positions 1402-1412 and 1488-1497) of 16S rRNA. Footprint experiments with dimethyl sulfate as a chemical probe indicated that the ASR-27 RNA can interact with the neomycin family in the same manner as the decoding region RNA. A mutagenesis analysis of the ASR-27 RNA revealed that paromomycin binding of ASR-27 involves the C1407.G1494 and C1409-G1491 base pairs, and the internal loop comprising A1408 and the nucleotides in positions 1492-1493, located between the two C.G base pairs. In addition, a G or U in position 1495, and base pairing between positions 1405 and 1496 are also involved. These structural features were found in a viral RNA element, the Rev-binding site of human immunodeficiency virus type-1, which may explain why neomycin can bind to this viral RNA.  相似文献   

6.
Expression of human immunodeficiency virus type 1 structural proteins requires both the viral Rev trans-activator and its cis-acting RNA target sequence, the Rev response element (RRE). The RRE has been mapped to a conserved region of the HIV-1 env gene and is predicted to form a complex, highly stable RNA stem-loop structure. Site-directed mutagenesis was used to define a small subdomain of the RRE, termed stem-loop II, that is essential for biological activity. Gel retardation assays demonstrated that the Rev trans-activator is a sequence-specific RNA binding protein. The RRE stem-loop II subdomain was found to be both necessary and sufficient for the binding of Rev by the RRE. We propose that the HIV-1 Rev trans-activator belongs to a new class of sequence-specific RNA binding proteins characterized by the presence of an arginine-rich binding motif.  相似文献   

7.
A cis-acting RNA regulatory element, the Rev-responsive element (RRE), has essential roles in replication of lentiviruses, including human immunodeficiency virus (HIV-1) and equine infection anemia virus (EIAV). The RRE binds the viral trans-acting regulatory protein, Rev, to mediate nucleocytoplasmic transport of incompletely spliced mRNAs encoding viral structural genes and genomic RNA. Because of its potential as a clinical target, RRE-Rev interactions have been well studied in HIV-1; however, detailed molecular structures of Rev-RRE complexes in other lentiviruses are still lacking. In this study, we investigate the secondary structure of the EIAV RRE and interrogate regulatory protein-RNA interactions in EIAV Rev-RRE complexes. Computational prediction and detailed chemical probing and footprinting experiments were used to determine the RNA secondary structure of EIAV RRE-1, a 555 nt region that provides RRE function in vivo. Chemical probing experiments confirmed the presence of several predicted loop and stem-loop structures, which are conserved among 140 EIAV sequence variants. Footprinting experiments revealed that Rev binding induces significant structural rearrangement in two conserved domains characterized by stable stem-loop structures. Rev binding region-1 (RBR-1) corresponds to a genetically-defined Rev binding region that overlaps exon 1 of the EIAV rev gene and contains an exonic splicing enhancer (ESE). RBR-2, characterized for the first time in this study, is required for high affinity binding of EIAV Rev to the RRE. RBR-2 contains an RNA structural motif that is also found within the high affinity Rev binding site in HIV-1 (stem-loop IIB), and within or near mapped RRE regions of four additional lentiviruses. The powerful integration of computational and experimental approaches in this study has generated a validated RNA secondary structure for the EIAV RRE and provided provocative evidence that high affinity Rev binding sites of HIV-1 and EIAV share a conserved RNA structural motif. The presence of this motif in phylogenetically divergent lentiviruses suggests that it may play a role in highly conserved interactions that could be targeted in novel anti-lentiviral therapies.  相似文献   

8.
We demonstrate that both the in vitro RNA binding and in vivo trans activation functions of human immunodeficiency virus type 1 Rev regulatory protein Rev require the presence of a 9-nucleotide 5'-CACUAUGGG-3' RNA motif on its cognate target, the Rev-responsive element RNA. For optimal Rev recognition, this sequence must be presented as a stem-bulge-stem structure and must contain at least two G's, one of which must be unpaired, and include some or all of the CACUAU sequence upstream of the three G's. Distal mutations which result in the base pairing of the G's eliminate the Rev response. The first G is crucial, but changes at the other G's are tolerated if at least one G is unpaired. The secondary structure or the three-dimensional orientation of the B1 and B2 stem-loops of the Rev-responsive element are not relevant as long as the 5'-CACUAUGGG-3' sequence is preserved, with at least one bulged G residue.  相似文献   

9.
The human immunodeficiency virus type 1 (HIV-1) Rev protein facilitates the nuclear export of viral mRNA containing the Rev response element (RRE). Although several host proteins co-operating with Rev in viral RNA export have been reported, little is known about the innate host defense factors that Rev overcomes to mediate the nuclear export of unspliced viral mRNAs. We report here that an anti-apoptotic protein, HS1-associated protein X-1 (Hax-1), a target of HIV-1 Vpr, interacts with Rev and inhibits its activity in RRE-mediated gene expression. Co-expression of Sam68 emancipates Rev activity from Hax-1-mediated inhibition. Hax-1 does not bind to RRE RNA by itself, but inhibits Rev from binding to RRE RNA in vitro. The impact of Hax-1 on Rev/RRE interactions in vitro correlates well with the reduced level of RRE-containing mRNA in vivo. Immunofluorescence studies further reveal that Hax-1 and Rev are cytoplasmic and nuclear proteins, respectively, when expressed independently. However, in Hax-1 co-expressing cells, Rev is translocated from the nucleus to the cytoplasm, where it is co-localized with Hax-1 in the cytoplasm. We propose that over-expression of Hax-1, possibly through binding to Rev, may interfere with the stability/export of RRE-containing mRNA and target the RNA for degradation.  相似文献   

10.
Polyvalent Rev decoys act as artificial Rev-responsive elements   总被引:2,自引:0,他引:2       下载免费PDF全文
Interactions between Rev and the Rev-responsive element (RRE) control the order, rate, and extent of gene expression in human immunodeficiency virus type 1. Rev decoys may therefore prove to be useful RNA therapeutics for the treatment of AIDS. To improve upon the current generation of Rev decoys that bind single Rev molecules, it would be useful to generate polyvalent Rev decoys that could bind multiple Rev molecules. J. Kjems and P. A. Sharp (J. Virol. 67:4769-4776, 1993) originally constructed functional polyvalent Rev decoys, but the structural context of these polyvalent decoys remains unclear, and it has been argued that the individual decoys were either structurally discrete (Kjems and Sharp, J. Virol. 67:4769-4776, 1993) or were part of an extended helix (R. W. Zemmel et al., Mol. Biol. 258:763-777, 1996). To resolve the differences between these models, we have designed and synthesized concatemers of Rev-binding elements (RBEs) that fold to form multiple, discrete, high-affinity Rev-binding sites. We find that the concatenated RBEs can facilitate the cytoplasmic transport of viral mRNAs and therefore likely bind multiple Rev molecules. These artificial RREs may simultaneously sequester Rev and hinder access to the cellular transport machinery.  相似文献   

11.
Small nucleolar RNAs (snoRNAs) were utilized to express Rev-binding sequences inside the nucleolus and to test whether they are substrates for Rev binding and transport. We show that U16 snoRNA containing the minimal binding site for Rev stably accumulates inside the nucleolus maintaining the interaction with the basic C/D snoRNA-specific factors. Upon Rev expression, the chimeric RNA is exported to the cytoplasm, where it remains bound to Rev in a particle devoid of snoRNP-specific factors. These data indicate that Rev can elicit the functions of RNA binding and transport inside the nucleolus.  相似文献   

12.
13.
M H Malim  B R Cullen 《Cell》1991,65(2):241-248
Expression of the structural proteins of HIV-1 requires the direct interaction of the viral Rev trans-activator with its cis-acting RNA target sequence, the Rev response element or RRE. Here, we demonstrate that this specific RNA-binding event is, as expected, mediated by the conserved arginine-rich motif of Rev. However, we also show that amino acid residues located proximal to this basic domain that are critical for in vivo Rev function are dispensable for sequence-specific binding to the RRE. Instead, these sequences are required for the multimerization of Rev on the viral RRE target sequence. The observation that Rev function requires the sequential binding of multiple Rev molecules to the RRE provides a biochemical explanation for the observed threshold effect for Rev function in vivo and suggests a molecular model for the high incidence of latent infection by HIV-1.  相似文献   

14.
Summary Due to its essential role in the virus life cycle, the viral regulatory protein Rev constitutes an attractive target for the development of new antiviral molecules. In this work, a series of Backbone Cyclic Peptide (BCP) analogs that bear a conformationally constrained arginine rich motif (ARM) of Rev were tested for in vitro inhibition of HIV-1 replication. We observed a potent suppression of HIV-1 replication in chronically infected T lymphocytic cells treated with Rev-BCPs. We further investigated possible mechanisms of HIV-1 inhibition and showed that Rev-BCPs interfere slightly with the nuclear import process and are very efficient in blocking a mechanism that controls Pr55gag and gp160env synthesis. Interestingly, these protein precursors are known to be encoded by mRNAs that require Rev-binding for nuclear export. In situ hybridization using a Cy-3 conjugated HIV-1 gag oligonucleotide probe indicated that Rev-BCPs prevent the intracellular accumulation of unspliced viral RNA. As a model, the most promising analog, Rev-BCP 14, was studied by molecular modeling and dynamics in order to identify its binding site on the Rev Response Element (RRE). The annealing simulation suggests that upon binding on the RRE, Rev-BCP 14 widens the distorted major groove of the viral RNA. Numerous contacts between peptide and RNA were found within the complex and some were identified as key components for the interactions. Altogether, our data indicate that the use of conformationally constrained Rev-BCPs represents a promising strategy for the development of new peptide-based therapeutic agents against HIV-1.  相似文献   

15.
The human immunodeficiency virus type 1 (HIV) Rev protein is thought to be involved in the export of unspliced or singly spliced viral mRNAs from the nucleus to the cytoplasm. This function is mediated by a sequence-specific interaction with a cis-acting RNA element, the Rev response element (RRE), present in these intron-containing RNAs. To identify possible host proteins involved in Rev function, we fractionated nuclear cell extracts with a Rev affinity column. A single, tightly associated Rev-binding protein was identified; this protein is the mammalian nucleolar protein B23. The interaction between HIV Rev and B23 is very specific, as it was observed in complex cell extracts. The complex is also very stable toward dissociation by high salt concentrations. Despite the stability of the Rev-B23 protein complex, the addition of RRE, but not control RNA, led to the displacement of B23 and the formation of a specific Rev-RRE complex. The mammalian nucleolar protein B23 or its amphibian counterpart No38 is believed to function as a shuttle receptor for the nuclear import of ribosomal proteins. B23 may also serve as a shuttle for the import of HIV Rev from the cytoplasm into the nucleus or nucleolus to allow further rounds of export of RRE-containing viral RNAs.  相似文献   

16.
Replication of human immunodeficiency virus type 1 requires the functional expression of the virally encoded Rev protein. The binding of this nuclear trans activator to its viral target sequence, the Rev-response element, induces the cytoplasmic expression of unspliced viral mRNAs. Mutation of the activation domain of Rev generates inactive proteins with normal RNA binding capabilities that inhibit wild-type Rev function in a trans-dominant manner. Here, we report that the activation domain comprises a minimum of nine amino acids, four of which are critically spaced leucines. The preservation of this essential sequence in other primate and nonprimate lentivirus Rev proteins indicates that this leucine-rich motif has been highly conserved during evolution. This conclusion, taken together with the observed permissiveness of a variety of eukaryotic cell types for Rev function, suggests that the target for the activation domain of Rev is likely to be a highly conserved cellular protein(s) intrinsic to nuclear mRNA transport or splicing.  相似文献   

17.
18.
Specific binding of a basic peptide from HIV-1 Rev.   总被引:22,自引:2,他引:20       下载免费PDF全文
Human immunodeficiency virus type I (HIV-1) encodes a regulatory protein, Rev, which is required for cytoplasmic expression of incompletely spliced viral mRNA. Rev activity is mediated through specific binding to a cis-acting Rev responsive element (RRE) located within the env region of HIV-1. A monomer Rev binding site corresponding to 37 nucleotides of the RRE (IIB RNA) was studied by RNA footprinting, modification interference experiments and mutational analysis. Surprisingly, a 17 amino acid peptide, corresponding to the basic domain of Rev, binds specifically to this site at essentially identical nucleotides and probably induces additional base pairing. The Rev protein and related peptide interact primarily with two sets of nucleotides located at the junction of single and double stranded regions, and at an additional site located within a helix. This suggests that the domains of proteins responsible for specific RNA binding can be remarkably small and that the interaction between RNA and protein can probably induce structure in both constituents.  相似文献   

19.
20.
Oligomerization of the Rev protein of human immuno-deficiency virus type 1 on its cognate response element is essential for export of the late viral mRNAs from the nucleus. Two regions of the protein, flanking the RNA binding site, have been defined as oligomerization sites after mutants (M4 and M7) had been reported to bind specifically to the response element but not to oligomerize in vivo or in vitro. These mutants are often used as paradigms for studies of Rev multimerization. We have re-examined the in vitro binding of these mutants to model Rev response elements, using improved gel mobility assays. We find that both mutants will form oligomers on the Rev response element, but have somewhat lower affinities for RNA than the wild-type protein. M7 has lower specific affinity, but shows little deficiency in oligomerization once binding starts. In contrast, M4 is multimerization deficient, as previously reported. Therefore, whilethe sites are correctly defined, it is inappropriate to employ the original M7 deletion mutant to study Rev oligomerization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号