首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cytokines represent a multi-diverse family of polypeptide regulators; they are relatively low molecular weight (< 30 kDa), pharmacologically active proteins that are secreted by one cell for the purpose of altering either its own functions (autocrine effect) or those of adjacent cells (paracrine effect). Cytokines are small, nonenzymatic glycoproteins whose actions are both diverse and overlapping (specificity/redundancy) and may affect diverse and overlapping target cell populations. In many instances, individual cytokines have multiple biological activities. Different cytokines can also have the same activity, which provides for functional redundancy (network) within the inflammatory and immune systems. As biological cofactors that are released by specific cells, cytokines have specific effects on cell-cell interaction, communication, and behavior of other cells. As a result, it is infrequent that loss or neutralization of one cytokine will markedly interfere with either of these systems. The biological effect of one cytokine is often modified or augmented by another. Because an interdigitating, redundant network of cytokines is involved in the production of most biological effects, both under physiologic and pathologic conditions, it usually requires more than a single defect in the network to alter drastically the outcome of the process. This fact, therefore, may have crucial significance in the development of therapeutic strategies for biopharmacologic intervention in cytokine-mediated inflammatory processes and infections.  相似文献   

2.
Cytokines regulate many cellular responses such as proliferation, differentiation and survival and play regulatory roles in numerous organ systems. The cytokines of the IL-6 family use the membrane glycoprotein gp130 as a signal transducer and signal through the JAK/STAT pathway. As they share a common signal transducer they show some functional redundancy but also exhibit specific biological activities. Considering that gp130 is ubiquitously expressed, the time and place at which gp130 functions in vivo appears to be determined by spatially and chronologically regulated expression of specific cytokine-binding receptor chains or cytokines themselves. The study of transgenic and knock-out mice for different members of the gp130 signaling cascade has revealed they are critical in embryo development and play a role in physiological responses as diverse as hematopoiesis, the inflammatory response, nervous system development and survival and myocardial and pituitary proliferation. gp130 cytokines have also been implicated in cellular transformation and the pathophysiology of many tumors. Recently, two new families of proteins that function as negative regulators of cytokine signaling, SOCS and PIAS, have been extensively studied and could be new targets for the treatment of pathologies originated by gp130 signaling disregulation. The ubiquitin-proteosome pathway and the new ubiquitin-like protein SUMO-1 seem to play an important role in SOCS and PIAS mediated inhibition but the mechanisms still remain to be elucidated.  相似文献   

3.
Cytokines are peptides that are produced by virtually every nucleated cell type in the body, possess overlapping biological activities, exert different effects at different concentrations, can either synergize or antagonize the effects of other cytokines, are regulated in a complex manner, and function via cytokine cascades. Hyperoxia-induced acute lung injury (HALI) is characterized by an influx of inflammatory cells, increased pulmonary permeability, and endothelial and epithelial cell injury/death. Some of these effects are orchestrated by cytokines. There are significant differences in the response of the developing versus the adult lung to hyperoxia. We review here cytokines (and select growth factors) that are involved in tolerance toward HALI in animal models. Increased cytokine expression and release have a cascade effect in HALI. IL-1 precedes the increase in IL-6 and CINC-1/IL-8 and this seems to predate the influx of inflammatory cells. Inflammatory cells in the alveolar space amplify the lung damage. Other cytokines that are primarily involved in this inflammatory response include IFN-gamma, MCP-1, and MIP-2. Certain cytokines (and growth factors) seem to ameliorate HALI by affecting cell death pathways. These include GM-CSF, KGF, IL-11, IL-13, and VEGF. There are significant differences in the type and temporal sequence of cytokine expression and release in the adult and newborn lung in response to hyperoxia. The newborn lung is greatly resistant to hyperoxia compared to the adult. The delayed increase in lung IL-1 and IL-6 in the newborn could induce protective factors that would help in the resolution of hyperoxia-induced injury. Designing a therapeutic approach to counteract oxygen toxicity in the adult and immature lung first needs understanding of the unique responses in each scenario.  相似文献   

4.
Cytokine-Induced Inflammation in the Central Nervous System Revisited   总被引:6,自引:0,他引:6  
Cytokines play an essential role as mediators of the immune response. They usually function as part of a network of interactive signals that either activate, enhance, or inhibit the ensuing reaction. An important contribution of this cytokine cascade is the induction of an inflammatory response that recruits and activates subsets of leukocytes that function as effector cells in the response to the sensitizing antigen. Proinflammatory cytokines activate endothelial cells (EC) to express adhesion molecules and induce the release of members of the chemokine family, thus focusing and directing the inflammatory response to sites of antigen recognition. However, the vasculature of the central nervous system (CNS) is highly specialized and restricts the access of components of the immune system to the CNS compartment. In this review, we address the question as to whether endothelial cells in the CNS respond differently to specific cytokines known to induce either a proinflammatory effect or a regulatory effect in systemic vascular beds.  相似文献   

5.
Cytokines control the immune system by regulating the proliferation, differentiation and function of immune cells. They activate their target cells through binding to specific receptors, which either are transmembrane proteins or attached to the cell-surface via a GPI-anchor. Different tissues and individual cell types have unique expression profiles of cytokine receptors, and consequently this expression pattern dictates to which cytokines a given cell can respond. Furthermore, soluble variants of several cytokine receptors exist, which are generated by different molecular mechanisms, namely differential mRNA splicing, proteolytic cleavage of the membrane-tethered precursors, and release on extracellular vesicles. These soluble receptors shape the function of cytokines in different ways: they can serve as antagonistic decoy receptors which compete with their membrane-bound counterparts for the ligand, or they can form functional receptor/cytokine complexes which act as agonists and can even activate cells that would usually not respond to the ligand alone. In this review, we focus on the IL-2 and IL-6 families of cytokines and the so-called Th2 cytokines. We summarize for each cytokine which soluble receptors exist, were they originate from, how they are generated, and what their biological functions are. Furthermore, we give an outlook on how these soluble receptors can be exploited for therapeutic purposes.  相似文献   

6.
Cytokines are important regulators of cell fates with high clinical and commercial relevance. However, despite decades of intense academic and industrial research, it proved surprisingly difficult to describe the biological functions of cytokines in a precise and comprehensive manner. The exact analysis of cytokine biology is complicated by the fact that individual cytokines control many different cell fates and activate a multitude of intracellular signaling pathways. Moreover, although activating different molecular programs, different cytokines can be redundant in their biological effects. In addition, cytokines with different biological effects can activate overlapping signaling pathways. This prospect article will outline the necessity of continuous single cell biochemistry to unravel the biological functions of molecular cytokine signaling. It focuses on potentials and limitations of recent technical developments in fluorescent time‐lapse imaging and single cell tracking allowing constant long‐term observation of molecules and behavior of single cells. J. Cell. Biochem. 108: 343–352, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

7.
Cytokines, which are small peptides that act as hormones of the immune system, affect cells throughout the body in a variety of different ways. These cellular signaling molecules often have synergistic or opposing effects on various cell types and often different cytokines have overlapping activities. There is great advantage, therefore, to be able to assess a pattern of cytokine responses in certain inflammatory, autoimmune, transplant or immunodeficiency states. This is one of the major advantages of the new particle-based flow cytometric assays, which have become available. We have employed such assays to analyze up to 10 different cytokines in cultured supernatants of stimulated mononuclear cells and in as little as 75 microL of serum from patients with a variety of different disorders. In developing these assays and validating them for use in our esoteric reference laboratory (ARUP Laboratories), we have found that a variety of heterophile antibodies can lead to both false positive and false negative results. This review will describe the development of our multi-analyte cytokine assays and document the interference derived from heterophile antibodies. Lastly, we will point out various procedures that we have utilized to include internal controls directly in the assays, which allow one to routinely detect these interfering antibodies, as well as methods we have developed to circumvent the interference posed by these antibodies.  相似文献   

8.
The many specific, yet overlapping and redundant activities of individual cytokines have been the basis for current concepts of therapeutical intervention. Cytokines are powerful two-edged weapons that can trigger a cascade of reactions and may show activities that often go beyond the single highly specific property that it is hoped they possess. Nevertheless, it can be stated that our new, though burgeoning, understanding of the biological mechanisms governing cytokine actions is an important contribution to medical knowledge. The crucial role of the anti-inflammatory cytokine, interleukin (IL)-10, in regulating potential molecular pathway mediating injury and cell death has attracted paramount attention in recent years. In this respect, the mitogen-activated protein kinase (MAPK) components have emerged as potential signalling cascades that regulate a plethora of cell functions, including inflammation and cell death. The biochemistry and molecular biology of cytokine actions, particularly IL-10, explain some well known and sometimes also some of the more obscure clinical aspects of the evolution of diseases.  相似文献   

9.
10.
Cytokines are central factors in the control of stem cell fate decisions and, as such, they are invaluable to those interested in the manipulation of stem and progenitor cells for clinical or research purposes. In their in vivo niches or in optimized cultures, stem cells are exposed to multiple cytokines, matrix proteins and other cell types that provide individual and combinatorial signals that influence their self‐renewal, proliferation and differentiation. Although the individual effects of cytokines are well‐characterized in terms of increases or decreases in stem cell expansion or in the production of specific cell lineages, their interactions are often overlooked. Factorial design experiments in association with multiple linear regression is a powerful multivariate approach to derive response‐surface models and to obtain a quantitative understanding of cytokine dose and interactions effects. On the other hand, cytokine interactions detected in stem cell processes can be difficult to interpret due to the fact that the cell populations examined are often heterogeneous, that cytokines can exhibit pleiotropy and redundancy and that they can also be endogenously produced. This perspective piece presents a list of possible biological mechanisms that can give rise to positive and negative two‐way factor interactions in the context of in vivo and in vitro stem cell‐based processes. These interpretations are based on insights provided by recent studies examining intra‐ and extra‐cellular signaling pathways in adult and embryonic stem cells. Cytokine interactions have been classified according to four main types of molecular and cellular mechanisms: (i) interactions due to co‐signaling; (ii) interactions due to sequential actions; (iii) interactions due to high‐dose saturation and inhibition; and (iv) interactions due to intercellular signaling networks. For each mechanism, possible patterns of regression coefficients corresponding to the cytokine main effects, quadratic effects and two‐way interactions effects are provided. Finally, directions for future mechanistic studies are presented. Biotechnol. Bioeng. 2010;106: 173–182. © 2010 Wiley Periodicals, Inc.  相似文献   

11.
Cytokines and growth factors play pivotal roles in cell growth, differentiation, and cell survival. Ligand binding to the receptors induces dimerization or oligomerization of the receptors, resulting in the activation of a variety of signal transduction pathways. The interplay among these multiple signals is critically involved in the biological activities of cytokines and growth factors. In this minireview, I discuss two models. One is the "receptor conversion model": The complex of cytokine and its soluble form of receptor acts like a cytokine with novel target specificity. The other is the "orchestrating model": Cytokines can simultaneously generate contradictory signals in the same target cells and the balance of each contradictory signal may determine the final output of cytokine signals to express unified biological activity. These mechanisms are part of the molecular basis underlying functional pleiotropy of cytokines and growth factors.  相似文献   

12.
Cytokines as suppressors of apoptosis   总被引:2,自引:0,他引:2  
Many cytokines have been isolated by their ability to induce growth and have been called growth factors. But these cytokines are also essential to induce cell viability, and cell viability and growth can be separately regulated. Using as examples myeloid hematopoietic cells, lymphocytes and neuronal cells, in vitro and in vivo studies have shown the role of cytokines in inducing viability of different cell types during development to mature cells. Some cytokines can act on more than one cell type. Cytokines induce viability of normal and cancer cells by suppressing the apoptotic machinery activated by wild-type p53, or by cytotoxic agents including irradiation and compounds used in cancer chemotherapy. Cytokines can be used to decrease apoptosis in normal cells and inhibition of cytokine activity may improve cancer therapy by enhancing apoptosis in cancer cells. The apoptosis suppressing function of cytokines is mediated by changing the balance in the activity of apoptosis inducing and suppressing genes. Apoptosis suppression is upstream of caspase activation in the apoptotic process. Cytokines can suppress multiple pathways leading to apoptosis, only some of which were suppressed by other agents such as some antioxidants, Ca2+-mobilizing compounds and protease inhibitors.  相似文献   

13.
The use of cytokines from the IL-2 family (also called the common γ chain cytokine family) such as interleukin (IL)-2, IL-7, IL-15, and IL-21 to activate the immune system of cancer patients is one of the most important areas of current cancer immunotherapy research. The infusion of IL-2 at low or high doses for multiple cycles in patients with metastatic melanoma and renal cell carcinoma was the first successful immunotherapy for cancer proving that the immune system could completely eradicate tumor cells under certain conditions. The initial clinical success observed in some IL-2-treated patients encouraged further efforts focused on developing and improving the application of other IL-2 family cytokines (IL-4, IL-7, IL-9, IL-15, and IL-21) that have unique biological effects playing important roles in the development, proliferation, and function of specific subsets of lymphocytes at different stages of differentiation with some overlapping effects with IL-2. IL-7, IL-15, and IL-21, as well as mutant forms or variants of IL-2, are now also being actively pursued in the clinic with some measured early successes. In this review, we summarize the current knowledge on the biology of the IL-2 cytokine family focusing on IL-2, IL-15 and IL-21. We discuss the similarities and differences between the signaling pathways mediated by these cytokines and their immunomodulatory effects on different subsets of immune cells. Current clinical application of IL-2, IL-15 and IL-21 either as single agents or in combination with other biological agents and the limitation and potential drawbacks of these cytokines for cancer immunotherapy are also described. Lastly, we discuss the future direction of research on these cytokines, such as the development of new cytokine mutants and variants for improving cytokine-based immunotherapy through differential binding to specific receptor subunits.  相似文献   

14.
《Cytokine》2015,76(2):249-255
Cytokines play crucial roles in coordinating the activities of innate and adaptive immune systems. In response to pathogen recognition, innate immune cells secrete cytokines that inform the adaptive immune system about the nature of the pathogen and instruct naïve T cells to differentiate into the appropriate T cell subtypes required to clear the infection. These include Interleukins, Interferons and other immune-regulatory cytokines that exhibit remarkable functional redundancy and pleiotropic effects. The focus of this review, however, is on the enigmatic Interleukin 12 (IL-12) family of cytokines. This family of cytokines plays crucial roles in shaping immune responses during antigen presentation and influence cell-fate decisions of differentiating naïve T cells. They also play essential roles in regulating functions of a variety of effector cells, making IL-12 family cytokines important therapeutic targets or agents in a number of inflammatory diseases, such as the CNS autoimmune diseases, uveitis and multiple sclerosis.  相似文献   

15.
Leukocytes and other types of cells produce proteins or glycoproteins, termed cytokines, that serve as chemical communicators from one cell to another. Neuromediators are able to modulate functions of immune cells and other cells and the relationship between the central nervous system (CNS) and the endocrine system have been known for many years. Communication between nerves and immune and inflammatory cells plays a major role in the modulation of several dysfunctions including ion transport, mucosal permeability and cytokine production. Cytokines are involved in both injury and repair, and the conditions underlying these distinct outcomes are under intense investigation and debate. Evidence from medical studies implicates the immune system in a number of psychiatric disorders with known or suspected developmental origins, including schizophrenia, anxiety-depression, and cognitive dysfunction.  相似文献   

16.
Cell-cell communication is mediated by many soluble mediators, including over 40 cytokines. Cytokines, e.g. TNF, IL1β, IL5, IL6, IL12 and IL23, represent important therapeutic targets in immune-mediated inflammatory diseases (IMIDs), such as inflammatory bowel disease (IBD), psoriasis, asthma, rheumatoid and juvenile arthritis. The identification of cytokines that are causative drivers of, and not just associated with, inflammation is fundamental for selecting therapeutic targets that should be studied in clinical trials. As in vitro models of cytokine interactions provide a simplified framework to study complex in vivo interactions, and can easily be perturbed experimentally, they are key for identifying such targets. We present a method to extract a minimal, weighted cytokine interaction network, given in vitro data on the effects of the blockage of single cytokine receptors on the secretion rate of other cytokines. Existing biological network inference methods typically consider the correlation structure of the underlying dataset, but this can make them poorly suited for highly connected, non-linear cytokine interaction data. Our method uses ordinary differential equation systems to represent cytokine interactions, and efficiently computes the configuration with the lowest Akaike information criterion value for all possible network configurations. It enables us to study indirect cytokine interactions and quantify inhibition effects. The extracted network can also be used to predict the combined effects of inhibiting various cytokines simultaneously. The model equations can easily be adjusted to incorporate more complicated dynamics and accommodate temporal data. We validate our method using synthetic datasets and apply our method to an experimental dataset on the regulation of IL23, a cytokine with therapeutic relevance in psoriasis and IBD. We validate several model predictions against experimental data that were not used for model fitting. In summary, we present a novel method specifically designed to efficiently infer cytokine interaction networks from cytokine perturbation data in the context of IMIDs.  相似文献   

17.
18.
Cytokines have crucial functions in the development, differentiation and regulation of immune cells. As a result, dysregulation of cytokine production or action is thought to have a central role in the development of autoimmunity and autoimmune disease. Some cytokines, such as interleukin-2, tumour-necrosis factor and interferons--ostensibly, the 'bad guys' in terms of disease pathogenesis--are well known for the promotion of immune and inflammatory responses. However, these cytokines also have crucial immunosuppressive functions and so, paradoxically, can also be 'good guys'. The balance between the pro-inflammatory and immunosuppressive functions of these well-known cytokines and the implications for the pathogenesis of autoimmune disease is the focus of this review.  相似文献   

19.
Cytokines play an important role in the evolution of inflammatory processes. Therefore, they are also key components of the cancer evolution, a disease recognized to depend on chronic inflammation. On the whole, we define cytokinome as the totality of these proteins and their interactions in and around biological cells. Understanding the complex interaction network of cytokines in patients affected from cancers should be very useful both to follow the cancer evolution from its early steps and to define innovative therapeutic strategies by using systems biology approaches.  相似文献   

20.
Molecular basis of the cell specificity of cytokine action   总被引:12,自引:0,他引:12  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号