首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Variation in aluminum resistance among arbuscular mycorrhizal fungi   总被引:3,自引:0,他引:3  
Kelly CN  Morton JB  Cumming JR 《Mycorrhiza》2005,15(3):193-201
Arbuscular mycorrhizal (AM) fungi mediate interactions between plants and soils, and are important where nutrient or metal concentrations limit plant growth. Variation in fungal response to edaphic conditions may influence the effectiveness of the plant-mycorrhizal association in some soil environments. Andropogon virginicus (broomsedge) colonizes disturbed sites in the eastern United States, including acidic mine soils where aluminum (Al) is phytotoxic, and Al resistance in broomsedge has been associated with colonization by the AM fungus Glomus clarum. In the present study, inter- and intra-specific variation to confer Al resistance to broomsedge was assessed among selected species of AM fungi. Broomsedge seeds were grown in sand culture inoculated with one of five isolates of three species of fungi (G. clarum, Acaulospora morrowiae, and Scutellospora heterogama). Plants were exposed to 0 or 400 µM Al in nutrient solution and harvested after 4 or 9 weeks of growth. Mean infection percentage, plant biomass, and plant tissue Al and phosphorus (P) concentrations were measured. G. clarum conferred the greatest Al resistance to broomsedge, with the lowest variability among isolates for colonization and growth inhibition by Al [tolerance indices (TI) between 22.4 and 92.7%]. Broomsedge plants colonized by A. morrowiae were consistently the most sensitive to Al, with little variation among isolates (TI between 1.6 and 12.1%). Al resistance by S. heterogama isolates was intermediate and wide-ranging (TI between 3.9 and 40.0%). Across all AM fungal isolates, resistance was associated with high rates of colonization and low tissue Al concentrations of broomsedge plants. The functional diversity in Al resistance displayed by these AM fungi reflect variation in acclimation mechanisms operating in the mycorrhizal symbiosis under environmental stress.  相似文献   

2.
Broomsedge (Andropogon virginicus L.) is a dominant grass revegetating many abandoned coal-mined lands in West Virginia, USA. Residual soils on such sites are often characterized by low pH, low nutrients, and high aluminium. Experiments were conducted to assess the resistance of broomsedge to limited phosphorus (Pi) availability and to investigate the role that arbuscular mycorrhizal (AM) fungi play in aiding plant growth under low Pi conditions. Pregerminated mycorrhizal and non-mycorrhizal seedlings were grown in a sand-culture system with nutrient solutions containing Pi concentrations ranging from 10 to 100 microM for 8 weeks. Non-mycorrhizal plants exhibited severe inhibition of growth under Pi limitation (<60 microM). Colonization by AM fungi (combined Glomus clarum Nicolson & Schenck and Gigaspora gigantea (Nicol. & Gerd.) Gerd. & Trappe) greatly enhanced host plant growth at low Pi concentrations, but did not benefit growth when Pi was readily available (100 microM). In comparison to non-mycorrhizal plants, mycorrhizal plants had higher phosphorus use efficiency at low Pi concentrations and maintained nearly constant tissue nutrient concentrations across the gradient of Pi concentrations investigated. Manganese (Mn) and sodium (Na) accumulated in shoots of non-mycorrhizal plants under Pi limitation. Mycorrhizal plants exhibited lower instantaneous Pi uptake rates and significantly lower C(min) values compared to non-mycorrhizal plants. These patterns suggest that the symbiotic association between broomsedge roots and AM fungi effectively maintains nutrient homeostasis through changes in physiological properties, including nutrient uptake, allocation and use. The mycorrhizal association is thus a major adaptation that allows broomsedge to become established on infertile mined lands.  相似文献   

3.
Grapevine N fertilization may affect and be affected by arbuscular mycorrhizal (AM) fungal colonization and change berry composition. We studied the effects of different N fertilizers on AM fungal grapevine root colonization and sporulation, and on grapevine growth, nutrition, and berry composition, by conducting a 3.5-year pot study supplying grapevine plants with either urea, calcium nitrate, ammonium sulfate, or ammonium nitrate. We measured the percentage of AM fungal root colonization, AM fungal sporulation, grapevine shoot dry weight and number of leaves, nutrient composition (macro- and micronutrients), and grapevine berry soluble solids (total sugars or °Brix) and total acidity. Urea suppressed AM fungal root colonization and sporulation. Mycorrhizal grapevine plants had higher shoot dry weight and number of leaves than non-mycorrhizal and with a higher growth response with calcium nitrate as the N source. For the macronutrients P and K, and for the micronutrient B, leaf concentration was higher in mycorrhizal plants. Non-mycorrhizal plants had higher concentration of microelements Zn, Mn, Fe, and Cu than mycorrhizal. There were no differences in soluble solids (°Brix) in grapevine berries among mycorrhizal and non-mycorrhizal plants. However, non-mycorrhizal grapevine berries had higher acid content with ammonium nitrate, although they did not have better N nutrition and vegetative growth.  相似文献   

4.
Summary The perennial bunchgrassEhrharta calycina was grown with and without V.A.M. fungal infection (Glomus fasciculatum) in a sandy loam exposed to a range of acidic and heavy metal depositions. Heavy metals (Cu, Ni, Pb, Zn, Fe, and Co) were applied in simulated rain (pH 3.0, 4.0, and 5.6) at deposition rates approximating those observed to result from smelter efluents. Metal concentrations in the roots and shoots of mycorrhizal plants were greater than those of non-mycorrhizal plants. Mycorrhizal enhancement of plant metal uptake increased with greater acidity and higher heavy metal content of treatment. The growth of mycorrhizal plants was reduced compared to non-mycorrhizal plants when metal depostion was combined with simulated acid rain. We propose that mycorrhizal enhancement of heavy metal uptake caused reduced growth in plants exposed to acidic and heavy metal depositions.  相似文献   

5.
We studied the response of mycorrhizal and non-mycorrhizal plants to variation in soil nutrient concentration. A model for the relative growth rate (RGR) of plant biomass was constructed with soil nutrients as an explanatory variable. A literature survey was carried out to find the relative magnitudes of parameter values for mycorrhizal and non-mycorrhizal plants. Mycorrhizal plants had higher RGR at low nutrient concentrations and non-mycorrhizal plants at high nutrient concentrations. The RGR of mycorrhizal and non-mycorrhizal plants at constant versus log-normally distributed soil nutrient concentration were compared to see the effect of mycorrhizal status on responses to variation. Variation in nutrient concentration generally reduced RGR, especially in mycorrhizal plants. The RGR of a non-mycorrhizal plant may increase with variation where a growth function threshold exists, i.e. a soil nutrient concentration that must be exceeded to allow growth. Mycorrhizal plants appeared more sensitive to variation in nutrient concentration than non-mycorrhizal plants due to the higher affinity of mycorrhizal roots at low nutrient levels. However, this prediction may be reversed if mycorrhizal symbiosis considerably stabilises flow of nutrients to plant physiological processes, such that mycorrhizal plants experience less variation in soil nutrient concentration than non-mycorrhizal plants. Our results also attain broader significance by suggesting a general trade-off between competitive ability in a constant versus variable resource availability.  相似文献   

6.
Revegetation following dam removal projects may depend on recovery of arbuscular mycorrhizal (AM) and ectomycorrhizal (EM) fungal communities, which perform valuable ecosystem functions. This study assessed the availability and function of AM and EM fungi for plants colonizing dewatered reservoirs following a dam removal project on the Elwha River, Olympic Peninsula, Washington, United States. Availability was assessed via AM fungal spore density in soils and EM root tip colonization of Salix sitchensis (Sitka willow) in an observational field study. The effect of mycorrhizal fungi from 4 sources (reservoir soils, commercial inoculum, and 2 mature plant community soils) on growth and nutrient status of S. sitchensis was quantified in a greenhouse study. AM fungal spores and EM root tips were present in all field samples. In the greenhouse, plants receiving reservoir soil inoculum had only incipient mantle formation, while plants receiving inoculum from mature plant communities had fully formed EM root tips. EM formation corresponded with alleviation of phosphorus stress in plants (lower shoot nitrogen:phosphorus). Thus, revegetating plants have access to AM and EM fungi following dam removal, and EM formation may be especially important for plant P uptake in reservoir soils. However, availability of mycorrhizal fungi declines with distance from established plant communities. Furthermore, EM fungal communities in recently dewatered reservoirs may not be as effective at forming beneficial mycorrhizae as those from mature plant communities. Whole soil inoculum from mature plant communities may be important for the success of revegetating plants and recovery of mycorrhizal fungal communities.  相似文献   

7.
Ultramafic soils at Bandalup Hill (Western Australia) are characterised by high concentrations of Ni and low levels of P. Amongst the plant species that can sustain such hostile conditions, Hakea verrucosa F. Muell from a non-mycorrhizal family (Proteaceae) would be expected to rely on cluster roots to access P. However, the acidification of ultramafic soils by cluster roots might increase the dissolution of soil Ni, and therefore its availability to plants. Symbiosis with mycorrhizal fungi, on the other hand, might help to reduce the uptake of Ni by H. verrucosa. Therefore, the aim of this study was to investigate the mycorrhizal status of H. verrucosa, and assess any contribution from mycorrhizal fungi to its growth and nutrient status. Seedlings of H. verrucosa were first grown in undisturbed ultramafic soil cores from Bandalup Hill for 8 weeks to assess the presence of mycorrhizal fungi in their roots. In a second experiment, H. verrucosa seedlings were grown in the same ultramafic soil that was either steamed or left untreated. Seedlings were inoculated with an arbuscular mycorrhizal (AM) fungal consortium from Bandalup Hill. Fungal hyphae, vesicles, as well as intracellular arbuscules and hyphal coils were observed in the cluster roots of H. verrucosa in both experiments. In the first experiment, 57% of the root length was colonized by AM fungi. Seedlings had high (between 1.4 and 1.9) shoot to root ratios and their roots had very few root hairs, despite growing in P-deficient soil. Steaming of the ultramafic soil increased the growth of seedlings and their nutrient uptake. Inoculation with AM fungi reduced the seedling growth in steamed ultramafic soil; however, it increased their shoot P and K concentration and also the shoot K content. The shoot Ni concentration of seedlings was not affected by the presence of AM fungi.  相似文献   

8.
Vierheilig H  Lerat S  Piché Y 《Mycorrhiza》2003,13(3):167-170
The arbuscular mycorrhizal (AM) non-host plants mustard, sugar beet, lupin and the AM host plant cucumber were used as test plants. Cucumber plants were grown either in the absence of the AM fungus (AMF) Glomus mosseae or in a split-root system, with one side mycorrhizal and one side non-mycorrhizal. Root exudates of the AM non-host plants, the non-mycorrhizal cucumber plants and the mycorrhizal and the non-mycorrhizal side of the split-root system of mycorrhizal cucumber plants were collected and applied to cucumber plants inoculated with the AMF. Root exudates of non-mycorrhizal cucumber plants showed a significant stimulatory effect on root colonization, whereas root exudates from the mycorrhizal and the non-mycorrhizal sides of a split-root system of a mycorrhizal cucumber plant did not show this stimulatory effect and were even slightly inhibitory. Root exudates of the two AM non-host plants mustard and sugar beet significantly reduced root colonization in cucumber plants, whereas no such effect was observed when root exudates of the AM non-host plant lupin were applied.  相似文献   

9.
Clark  R.B. 《Plant and Soil》1997,192(1):15-22
Arbuscular mycorrhizal (AM) fungi colonize plant roots and often enhance host plant growth and mineral acquisition, particularly for plants grown under low nutrient and mineral stress conditions. Information about AM fungi and mycorrhizal ( +AM) host plant responses at low pH ( < 5) is limited. Acaulospora are widely reported in acid soil, and Gigaspora sp. appear to be more common in acid soils than Glomus sp. Spores of some AM fungi are more tolerant to acid conditions and high Al than others; t Acaulospora sp., Gigaspora sp., and Glomus manihotis are particularly tolerant. Root colonization is generally less in low than in high pH soils. Percentage root colonization is generally not related to dry matter (DM) produced. Maximum enhancement of plant growth in acid soil varies with AM fungal isolate and soil pH, indicating adaptation of AM isolates to edaphic conditions. Acquisition of many mineral nutrients other than P and Zn is enhanced by +AM plants in acid soil, and the minerals whose concentration is enhanced are those commonly deficient in acid soils (Ca, Mg, and K). Some AM fungal isolates are effective in overcoming soil acidity factors, especially Al toxicity, that restrict plant growth at low pH.  相似文献   

10.
Arbuscular mycorrhizal (AM) fungi are a multifaceted group of mutualistic symbionts that are common to terrestrial ecosystems. The interaction between AM fungi and plant roots is of environmental and agronomic importance. Understanding the molecular changes within the host plant upon AM fungal colonisation is a pre-requisite to a greater understanding of the mechanisms underlying the interaction. Differential mRNA display was conducted on leaf tissue of tomato plants colonised and non-colonised by the AM fungus Glomus mosseae and five putative differentially regulated cDNAs were identified. All cDNAs isolated shared high sequence similarity to known plant genes. Differential screening was initially used to establish whether the cDNAs were differentially expressed. Semi-quantitative RT-PCR was used to establish gene expression patterns for all five clones within leaf and root tissue of mycorrhizal and non-mycorrhizal colonised tomato plants. Differential regulation was observed for all five cDNAs. Down-regulation within the leaf tissue of mycorrhizal plants was observed for 4 out of the 5 cDNAs with an up-regulation observed only for one. Tissue specific regulation was observed for several cDNAs, with down-regulation observed in mycorrhizal leaf tissue and up-regulation observed within mycorrhizal root tissue as compared to non-mycorrhizal tissue.  相似文献   

11.
Aluminum-mycorrhizal interactions in the physiology of pitch pine seedlings   总被引:7,自引:0,他引:7  
Aluminum (Al) in the rhizosphere adversely affects plant nutrition and growth. Although many conifer species, and pitch pine (Pinus rigida) in particular, have evolved on acidic soils where soluble Al is often high, controlled environment studies often indicate that Al interferes with seedling growth and nutrient relations. Under normal field conditions, conifer roots grow in a symbiotic relationship with ectomycorrhizal fungi, and this association may modulate the effects of Al on root physiology. To investigate the influence of mycorrhizal infection on Al toxicity, pitch pine seedlings were grown with or without the ectomycorrhizal symbiont Pisolithus tinctorius and were exposed to low levels of Al in sand culture. Aluminum at 50 μM reduced nonmycorrhizal seedling growth and increased foliar Al concentrations, but did not alter photosynthetic gas exchange or other aspects of seedling nutrition. Nonmycorrhizal seedlings exposed to 200 μM Al exhibited decreased growth, increased transpiration rates, decreased water use efficiency, increased foliar Al and Na levels, and reduced foliar P concentrations. Seedlings inoculated with P. tinctorius exhibited unaltered growth, physiological function, and ionic relations when exposed to Al. The fungal symbiont evidently modulated ionic relations in the rhizosphere, reducing Al-P precipitation reactions, Al uptake, and subsequent root and shoot tissue Al exposure.  相似文献   

12.
Toxic metal accumulation in soils of agricultural interest is a serious problem needing more attention, and investigations on soil–plant metal transfer must be pursued to better understand the processes involved in metal uptake. Arbuscular mycorrhizal (AM) fungi are known to influence metal transfer in plants by increasing plant biomass and reducing metal toxicity to plants even if diverging results were reported. The effects of five AM fungi isolated from metal contaminated or non-contaminated soils on metal (Cd, Zn) uptake by plant and transfer to leachates was assessed with Medicago truncatula grown in a multimetallic contaminated agricultural soil. Fungi isolated from metal-contaminated soils were more effective to reduce shoot Cd concentration. Metal uptake capacity differed between AM fungi and depended on the origin of the isolate. Not only fungal tolerance and ability to reduce metal concentrations in plant but also interactions with rhizobacteria affected heavy metal transfer and plant growth. Indeed, thanks to association with nodulating rhizobacteria, one Glomus intraradices inoculum increased particularly plant biomass which allowed exporting twofold more Cd and Zn in shoots as compared to non-mycorrhizal treatment. Cd concentrations in leachates were variable among fungal treatments, but can be significantly influenced by AM inoculation. The differential strategies of AM fungal colonisation in metal stress conditions are also discussed.  相似文献   

13.
Feng G  Zhang FS  Li XL  Tian CY  Tang C  Rengel Z 《Mycorrhiza》2002,12(4):185-190
The effect of colonization with the arbuscular mycorrhizal (AM) fungus Glomus mosseae (Nicol. & Gerd.) Gerdemann & Trappe on the growth and physiology of NaCl-stressed maize plants ( Zea mays L. cv. Yedan 13) was examined in the greenhouse. Maize plants were grown in sand with 0 or 100 mM NaCl and at two phosphorus (P) (0.05 and 0.1 mM) levels for 34 days, following 34 days of non-saline pre-treatment. Mycorrhizal plants maintained higher root and shoot dry weights. Concentrations of chlorophyll, P and soluble sugars were higher than in non-mycorrhizal plants under given NaCl and P levels. Sodium concentration in roots or shoots was similar in mycorrhizal and non-mycorrhizal plants. Mycorrhizal plants had higher electrolyte concentrations in roots and lower electrolyte leakage from roots than non-mycorrhizal plants under given NaCl and P levels. Although plants in the low P plus AM fungus treatment and those with high P minus AM fungus had similar P concentrations, the mycorrhizal plants still had higher dry weights, soluble sugars and electrolyte concentrations in roots. Similar relationships were observed regardless of the presence or absence of salt stress. Higher soluble sugars and electrolyte concentrations in mycorrhizal plants suggested a higher osmoregulating capacity of these plants. Alleviation of salt stress of a host plant by AM colonization appears not to be a specific effect. Furthermore, higher requirement for carbohydrates by AM fungi induces higher soluble sugar accumulation in host root tissues, which is independent of improvement in plant P status and enhances resistance to salt-induced osmotic stress in the mycorrhizal plant.  相似文献   

14.
Soil acidity is an impediment to agricultural production on a significant portion of arable land worldwide. Low productivity of these soils is mainly due to nutrient limitation and the presence of high levels of aluminium (Al), which causes deleterious effects on plant physiology and growth. In response to acidic soil stress, plants have evolved various mechanisms to tolerate high concentrations of Al in the soil solution. These strategies for Al detoxification include mechanisms that reduce the activity of Al3+ and its toxicity, either externally through exudation of Al-chelating compounds such as organic acids into the rhizosphere or internally through the accumulation of Al–organic acid complexes sequestered within plant cells. Additionally, root colonization by symbiotic arbuscular mycorrhizal (AM) fungi increases plant resistance to acidity and phytotoxic levels of Al in the soil environment. In this review, the role of the AM symbiosis in increasing the Al resistance of plants in natural and agricultural ecosystems under phytotoxic conditions of Al is discussed. Mechanisms of Al resistance induced by AM fungi in host plants and variation in resistance among AM fungi that contribute to detoxifying Al in the rhizosphere environment are considered with respect to altering Al bioavailability.  相似文献   

15.
Egerton-Warburton  L. M.  Kuo  J.  Griffin  B. J.  Lamont  B. B. 《Plant and Soil》1993,(1):481-484
The distribution of Al, Ca, Mg and P in the lateral roots and leaves of mycorrhizal and non-mycorrhizal seedlings of Eucalyptus rudis grown with and without Al was analysed using energy-dispersive X-ray microanalysis on a cryo-scanning electron microscope. Al accumulated in all tissues of nonmycorrhizal plants: the endodermis was not a barrier to the translocation of Al. In mycorrhizal roots, Al was concentrated within the sheath. The presence of Al reduced the levels of Ca and Mg in both mycorrhizal and non-mycorrhizal roots and shoots in comparison with control plants. The presence of mycorrhizas increased the levels of Ca and Mg in plants grown with Al in comparison with non-inoculated plants, although there was no evidence that mycorrhizas increased the levels of P in plants grown in Al-amended soils. P levels were higher in the mycorrhizal sheath of plants grown with Al than the controls.  相似文献   

16.
A survey of the arbuscular mycorrhizal (AM) status of plants growing in the Western Ghats region of Southern India was undertaken. Root and soil samples of plants growing in the four vegetation types forest, grassland, scrub, and cultivated land or plantation were examined. Of the 329 species (representing 61 families) examined, 174 were mycorrhizal. AM association was recorded in 81 species for the first time, including species from several families assumed to be non-mycorrhizal, e.g. Amaranthaceae, Capparaceae, Commelinaceae, Cyperaceae and Portulacaceae. AM fungal spores of 35 species belonging to Acaulospora, Gigaspora, Glomus, Sclerocystis and Scutellospora were recorded. AM fungal species richness was found to be highest in scrub and lowest in agricultural and plantation soils. Mean colonization levels were dependent on plant life-form, life-cycle pattern and vegetation type. Accepted: 26 October 1999  相似文献   

17.
Non-mycorrhizal spruce seedlings (Picea abies Karst.) and spruce seedlings colonized with Lactarius rufus (Scop.) Fr. or two strains of Paxillits involutus (Batsch) Fr. were grown in an axenic silica sand culture system with frequently renewed nutrient solution. After successful mycorrhizal colonization, the seedlings were exposed to 1 μM PbCI2 for 19 weeks. The degree of infection in all of the mycorrhizal treatments approached 100% during the experiment and was not affected by exposure to Pb. However, the number of root tips per root dry weight and the shoot: root ratio, both in the non-mycorrhizal and the mycorrhizal seedlings, had decreased after the 19 week treatment with PbCl2 Using X-ray microanalysis, the distribution and concentration of Pb in the tissues of mycorrhizal and non-mycorrhizal root tips were compared. In the mycorrhizae of seedlings exposed to Pb no significant accumulation of Pb in the hyphal mantle or in fungal cell walls of the Hartig net were detected. Lead accumulated primarily in the cortex cell walls both of non-mycorrhizal and mycorrhizal root tips. No significant difference of Pb concentrations in root cortex cell walls of non-mycorrhizal and mycorrhizal seedlings was found; except for seedlings colonized with Paxillus involutus strain 537. However, at the endodermis no effect of mycorrhizal fungal colonization on the Pb tissue concentration was detected. The presence of the fungal sheath did not prevent Pb from reaching the root cortex. The endodermis acted as a barrier to Pb radial transport in both mycorrhizal and non-mycorrhizal seedling roots.  相似文献   

18.
The effects of Ni and Cd on growth and nutrient uptake of mycorrhizal and non-mycorrhizal Pinus sylvestris L. seedlings were investigated in a pot experiment. Seedlings were either inoculated with Laccaria bicolor (Maire) Orton or left uninoculated before being planted in pots containing a mixture of sandy soil from the B-horizon of a coniferous forest, small stones and pure quartz sand. The pots were supplied with small amounts of a balanced nutrient solution every 24 h using peristaltic pumps. Nickel or Cd were added as chlorides to the nutrient solution at levels of 85 M Ni (Ni 1), 170 M Ni (Ni 2), or 8.9 M Cd. Mycorrhizal colonisation of the roots was nearly 100% in the mycorrhizal treatments. The mycorrhizal seedlings grew significantly better than the non-mycorrhizal ones. The weight of mycorrhizal seedlings in the Ni 2 treatment was 29% lower than that of the mycorrhizal controls, but still 34% greater than that of the non-mycorrhizal seedlings not exposed to metals. There was an overall, statistically significant, negative effect of metals on plant yield. Mycorrhizal plants had lower root:shoot (R:S) ratios than non-mycorrhizal plants and the R:S ratio was increased by metal exposure, particularly in the non-mycorrhizal seedlings. Plant concentrations of Cd or Ni were not affected by mycorrhizal colonisation, but total uptake of Cd and Ni was higher in bigger mycorrhizal seedlings. Nickel decreased P concentration in all seedlings and Cd decreased P concentration in the non-mycorrhizal seedlings. Generally, the mycorrhizal seedlings grew better than non-mycorrhizal ones and had better P, K, Mg and S status. Root growth was not significantly affected by the metal treatments. The reduction in mean shoot growth of non-mycorrhizal plants, relative to the metal-free control, appeared higher than in mycorrhizal plants but was not statistically significant due to high variation in the non-mycorrhizal plants not exposed to metals. The main mycorrhizal effect was thus increased nutrient uptake and growth of the seedlings.  相似文献   

19.
Plant growth enhancing effects of arbuscular mycorrhizal (AM) fungi are suitably quantified by comparisons of mycorrhizal and non-mycorrhizal plant growth responses to added phosphorus (P). The ratio between the amounts of added P required for the same yield of mycorrhizal and non-mycorrhizal plants is termed the relative effectiveness of the mycorrhiza. Variation in this relative effectiveness was examined for subterranean clover grown on a high P-fixing soil. Plants were either left non-mycorrhizal or inoculated with one of three AM fungal species with well-characterised differences in external hyphal spread. With no P added, plants from all treatments produced <10% of their maximum growth achieved at non-limiting P supply. The growth response of non-mycorrhizal plants was markedly sigmoid. Mycorrhizal growth responses were not sigmoid but their shape was two-phased. The first phase was an asymptotic approach to 25–30% of maximum growth, followed by a second asymptotic rise to maximum growth. Growth effects of Glomus invermaium and Acaulospora laevis were quite similar. Plants in these treatments produced up to four times greater shoot dry biomass than non-mycorrhizal plants. Scutellospora calospora was less effective. The relative effectiveness of AM fungi varied with the level of P application. This is expected to apply to all soils on which a sigmoid response is obtained for growth of non-mycorrhizal plants. In a simple approximation the relative effectiveness was calculated to range from 1.46 to 15.57. Shoot P contents were increased by up to 25 times by A. laevis, significantly more than by the other two fungi. The further mycelial spread of this fungus is thought to have contributed to its relatively greater effect on plant P content.  相似文献   

20.
Geostatistical techniques were used to assess the spatial patterns of spores of arbuscular mycorrhizal fungi (AMF) in soils from two contrasting plant communities: a salt marsh containing only arbuscular mycorrhizal and non-mycorrhizal plants in a distinct clumped distribution pattern and a maquis with different types of mycorrhiza where most plants were relatively randomly distributed. Also evaluated was the relationship between the spatial distribution of spores and AM plant distribution and soil properties. A nested sampling scheme was applied in both sites with sample cores taken from nested grids. Spores of AMF and soil characteristics (organic matter and moisture) were quantified in each core, and core sample location was related to plant location. Semivariograms for spore density indicated strong spatial autocorrelation and a patchy distribution within both sites for all AM fungal genera found. However, the patch size differed between the two plant communities and AM fungal genera. In the salt marsh, AM fungal spore distribution was correlated with distance to AM plants and projected stand area of AM plants. In maquis, spatial AM fungal spore distribution was correlated with organic matter. These results suggest that spore distribution of AMF varied between the two plant communities according to plant distribution and soil properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号