首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Light and substrate regulation of nitrate reductase (NR) expression were compared in wild type and mutant lines of Nicotiana plumbaginifolia. Mutants affected in the NR structural gene (nia) or in the biosynthesis of the NR molybdenum cofactor (cnx) were examined. nia mutants expressing a defective apoenzyme, as well as cnx mutants, overexpressed NR mRNA, whereas nia mutants devoid of detectable NR protein had reduced or undetectable NR mRNA levels. Diurnal fluctuations of NR mRNA were specifically abolished in nia and cnx mutants, suggesting that the integrity of NR catalytic activity is required for the expression of diurnal oscillations. Unlike some fungal mutants, the nia and cnx mutants examined retained nitrate inducibility of NR expression. The possibility of autogenous control of NR expression in higher plants is discussed.  相似文献   

2.
F. Pelsy  M. Gonneau 《Genetics》1991,127(1):199-204
Intragenic complementation has been observed between apoenzyme nitrate reductase-deficient mutants (nia) of Nicotiana plumbaginifolia. In vivo as in vitro, the NADH-nitrate reductase (NR) activity in plants heterozygous for two different nia alleles was lower than in the wild type plant, but the plants were able to grow on nitrate as a sole nitrogen source. NR activity, absent in extracts of homozygous nia mutants was restored by mixing extracts from two complementing nia mutants. These observations suggest that NR intragenic complementation results from either the formation of heteromeric NR or from the interaction between two modified enzymes. Complementation was only observed between mutants retaining different partial catalytic activities of the enzyme. Results are in agreement with molecular data suggesting the presence of three catalytic domains in the subunit of the enzyme.  相似文献   

3.
Protoplasts were isolated from two mutant cell lines of Nicotiana tabacum L. cv. Gatersleben and fused with the aid of polyethylene glycol. Both mutants lacked nitrate reductase and were thus auxotrophic for reduced nitrogen. The fusion resulted in a high frequency of hybrid cells which were detected by their regained ability to grow in media containing nitrate as sole nitrogen source. Thus, the two mutants were found to complement each other in the hybrids. In control experiments, back mutation and cross-feeding were excluded as possible explanations for the occurrence of cell lines utilizing nitrate. A total of 1061 hybrid lines capable of sustained proliferation were isolated. Some of them were further characterized with respect to nitrate reductase activity, chlorate sensitivity, chromosome number, and shoot formation. The results demonstrate that protoplast fusion can be used for the genetic analysis of cell variants of higher plants and that nitrate reductase-deficient mutants provide efficient selective systems for hybrid cells.  相似文献   

4.
A tobacco nitrite reductase (NiR) cDNA and its corresponding gene were isolated from cDNA and genomic libraries. An NiR antisense mRNA was expressed in transgenic tobacco under the control of a double 35S promoter. Transformants were obtained on a medium containing ammonium as the sole source of nitrogen. One plant growing normally on ammonium but displaying drastically reduced development and chlorotic leaves when grown on nitrate as the sole source of nitrogen was studied further. This plant accumulated nitrite fivefold over wild-type level and showed reduced amounts of ammonium (11% wild-type level), glutamine (19%), and total protein (8%). NiR mRNA and activity were below detectable levels. Under these conditions, nitrate reductase (NR) activity and mRNA were overexpressed, suggesting that N-metabolites resulting from nitrate reduction are responsible for the repression of the expression of the NR gene, independently from the presence or absence of a functional NR protein.  相似文献   

5.
侯学文  郭勇   《广西植物》1998,(2):169-172
本文通过改变培养基中的氮源组成,来研究氮源的变化对悬浮培养玫瑰茄细胞的生长及硝态氮同化指征(活体内硝酸还原酶活力)的影响。实验表明,仅在含NO-3的培养基中能检测到硝酸还原酶活力,而仅含NH+4的配方不能检测到该酶活力,表明硝酸还原酶是底物诱导酶。还探讨了培养基中不同的氮源组成对细胞生物量及pH的影响。  相似文献   

6.
C Meyer  I Cherel  T Moureaux  J Hoarau  J Gabard  P Rouze 《Biochimie》1987,69(6-7):735-742
NADH: nitrate reductase (EC 1.6.6.1) was purified from Nicotiana plumbaginifolia leaves. As recently observed with nitrate reductase from other sources, this enzyme is able to reduce nitrate using reduced bromphenol blue (rBPB) as the electron donor. In contrast to the physiological NADH-dependent activity, the rBPB-dependent activity is stable in vitro. The latter activity is non-competitively inhibited by NADH. The monoclonal antibody ZM.96(9)25, which inhibits the NADH: nitrate reductase total activity as well as the NADH: cytochrome c reductase and reduced methyl viologen (rMV): nitrate reductase partial activities, has no inhibitory effect on the rBPB: nitrate reductase activity. Conversely, the monoclonal antibody NP.17-7(6) inhibits nitrate reduction with all three electron donors: NADH, MV or BPB. Among various nitrate reductase-deficient mutants, an apoprotein gene mutant (nia. E56) shows reduced terminal activities but a highly increased rBPB:nitrate reductase activity. rBPB:nitrate reductase thus appears to be a new terminal activity of higher plant nitrate reductase and involves specific sites which are not shared by the other activities.  相似文献   

7.
Chlorate, the chlorine analog of nitrate, is a herbicide that has been used to select mutants impaired in the process of nitrate assimilation. In Arabidopsis thaliana, mutations at any one of eight distinct loci confer resistance to chlorate. The molecular identities of the genes at these loci are not known; however, one of these loci--chl3--maps very near the nitrate reductase structural gene NIA2. Through the isolation, characterization, and genetic analysis of new chlorate-resistant mutants generated by gamma irradiation, we have been able to demonstrate that the CHL3 gene and the NIA2 gene are identical. Three new chlorate-resistant mutants were identified that had deletions of the entire NIA2 gene. These nia2 null mutants were viable and still retained 10% of wild-type nitrate reductase activity in the leaves of the plants. All three deletion mutations were found to be new alleles of chl3. Introduction of the NIA2 gene back into these chl3 mutants by Agrobacterium-mediated transformation partially complemented their mutant phenotype. From these data, we conclude that Arabidopsis has at least two functional nitrate reductase genes and that the NIA2 gene product accounts for the majority of the leaf nitrate reductase activity and chlorate sensitivity of Arabidopsis plants.  相似文献   

8.
Summary Chlorate-resistant cell lines were established from survivors after plating allodihaploid cells of Nicotiana tabacum into solid medium containing 20 mM chlorate and amino acids as sole nitrogen source. Data characterizing 9 of the most resistant lines are presented. The mutational origin of these lines was inferred on the basis of the enhancement of the variant frequency by mutagen treatment, and of the persistance of the variant phenotype in cell progeny during growth in the absence of selection for more than 3 years and in plants regenerated from two of the lines.Seven lines completely lacked in vivo nitrate reductase (NR) activity and two lines exhibited low (less than 5% of the wild type) NR activity. The abolition of NR activity was found to be not due to an impaired induction by nitrate. Data reported elsewhere show that one of the NR-negative mutants simultaneously lacks xanthine dehydrogenase activity. This pleiotropic mutation is interpreted to affect the synthesis of a molybdenum-containing cofactor, whereas the 8 other lines carry mutations specifically affecting the synthesis of the NR. Both types of NR-negative mutants were unable to grow on minimal medium containing nitrate as sole nitrogen source, but grew well on amino acids. They proved extremely sensitive to the standard medium containing nitrate and ammonium. Differences between the NR-negative mutants with respect to chlorate resistance suggest that chlorate inhibits cultured N tabacum cells not only via its NR-catalysed conversion to chlorite, but also by NR-independent mechanisms.  相似文献   

9.
Electrofusion of protoplasts from two complementary nitrate reductase deficient mutants of Nicotiana plumbaginifolia has resulted in somatic hybrid lines. Mesophyll protoplasts isolated from the cofactor mutant CNX 20 and fluorescein diacetate stained protoplasts derived from a cell suspension culture of the NA 36 line, being defective in the apoenzyme, were used in the fusion experiments. In total, 594 lines were recovered which could proliferate on a selective medium with nitrate as the sole nitrogen source. This is including 141 putative hybrid lines which were obtained after transfer of 1048 heterokaryons with a micromanipulator one day after electrofusion. The hybrid character of some of the selected lines was confirmed by nitrate reductase activity measurements. Plants were grown from hybrid calli.Abbreviations NR nitrate reductase - FDA fluorescein diacetate - 2,4-D 2,4-dichlorophenoxyacetic acid - BAP benzylaminopurine - NAA naphthaleneacetic acid - NED N-1-naphtyl-ethylenediamide hydrochloride - PEG polyethylene glycol - AC alternating current - DC direct current  相似文献   

10.
Summary Cell suspensions of diploid Arabidopsis thaliana were screened for resistance to chlorate on a medium with ammonium nitrate as the nitrogen source, and after plating on filters to increase the plating efficiency. Thirty-nine lines were selected, four of which were still resistant after two years of subculturing on non-selective medium. Of the latter lines three were nitrate reductase deficient but exhibited some residual nitrate reductase activity; the fourth line showed a high level of enzyme activity. Screening M2-seeds for callus production on selective medium with amino acids as the nitrogen source and chlorate revealed resistant calli in 17 out of 483 M2-groups. Nine well-growing lines, all but one (G3) exhibiting no detectable in vivo nitrate reductase activity, were classified as defective in the cofactor. Two lines (G1 and G3) could be analysed genetically at the plant level. Chlorate resistance was monogenic and recessive. Sucrose gradient fractionation of callus extracts of G1 revealed that a complete enzyme molecule can be assembled. Nitrate reductase activity in G1 could partly be restored by excess molybdenum. It is suggested that G1 is disturbed in the catalytic properties of the cofactor. It appeared that G1 is neither allelic with another molybdenum repairable mutant (B73) nor with another cofactor mutant (B25). Wilting of intact G1 plants could be ascribed to non-closing stomata.  相似文献   

11.
Thymidine kinase and dihydrofolate reductase mRNA levels and enzyme activities were determined in two temperature-sensitive cell lines, tsAF8 and ts13, that growth arrest in the G1 phase of the cell cycle at the restrictive temperature. The levels of thymidine kinase mRNA and enzyme activity increased markedly in both cell lines serum stimulated from quiescence at the permissive temperature. At the nonpermissive temperature, the levels of thymidine kinase mRNA and enzyme activity remain at the low levels of quiescent G0 cells. The levels of dihydrofolate reductase mRNA as well as the enzyme activity also increase when both cell lines are serum stimulated at the permissive temperature. When ts13 cells are serum stimulated at the nonpermissive temperature dihydrofolate reductase enzyme activity declines rapidly and dihydrofolate reductase mRNA is below detectable levels. On the contrary, when tsAF8 cells are serum stimulated at the nonpermissive temperature dihydrofolate reductase enzyme activity increases and mRNA levels are detectable slightly above G0 levels, even though the cells are blocked in the G1 phase. Studies with 2 other cDNA clones (one with an insert whose expression is cell cycle dependent and the other with an insert whose expression is not cell cycle dependent) indicate that the results are not due to aspecific toxicity or the effect of temperature. We conclude that the expression of different genes is affected differently by the ts block in G1, even when these genes are all growth-related.  相似文献   

12.
Summary Chlorate resistant mutants of Arabidopsis thaliana were isolated, of which 10 exhibited a lowered nitrate reductase activity and 51 were chlorate-resistant because of an impaired uptake of chlorate. The 51 mutants of this type are all affected in the same gene. The mutants with a lowered nitrate reductase activity fall into 7 different complementation groups. Three of these mutants grow poorly on media with nitrate as the sole nitrogen source, while the others apparently can reduce sufficient nitrate to bring about growth. In all cases a low nitrate reductase activity coincides with an enhanced nitrite reductase activity. After sucrose gradient centrifugation of wildtype extracts nitrate reductase is found at the 8S position, whereas cytochrome-c reductase is found both at 4 and 8S positions. It is suggested that the functional nitrate reductase is a complex consisting of 4S subunits showing cytochrome-c reductase activity and a Mo-bearing cofactor. All mutants except B25 are capable of assembling the 4S subunits into complexes which for most mutants have a lower S value and exhibit a lower nitrate reductase activity than the wildtype complexes. Since the mutants B25 and B73 exhibit a low xanthine dehydrogenase activity, the Mo-bearing cofactor is probably less available in these mutants than in the wildtype. B73 appears to be the only mutant which is partly repaired by excessive Mo. The possible role of several genes is discussed.  相似文献   

13.
Summary Thirty-nine chlorate resistant cell lines were isolated after plating ethylmethane sulphonate treated allodihaploid cells of Nicotiana tabacum cv. Xanthi on agar medium containing 20 mM chlorate. Thirty-two of these cell lines grew as well on nitrate medium as on amino acid medium and three other cell lines grew well on amino acid medium but poorly on nitrate medium. Four other cell lines, 042, P12, P31 and P47 which could grow on amino acid medium, but not on nitrate medium, were examined further. They lacked in vitro nitrate reductase activity but were able to accumulate nitrate. All lines possessed nitrite reductase activity. Lines 042, P12, and P31 had a cytochrome c reductase species which was the same size as the wild type nitrate reductase associated cytochrome c reductase species, whilst the cytochrome c reductase species in line P47 was slightly smaller. All four lines lacked xanthine dehydrogenase activity and neither nitrate reductase nor xanthine dehydrogenase activity was restored by subculture of the four lines into either nitrate medium or glutamine medium supplemented with 1 mM sodium molybdate. These four lines are different from other molybdenum cofactor defective cell lines so far described in N. tabacum and possess similar properties to certain other cnx mutants described in Aspergillus nidulans.  相似文献   

14.
Significant nitrate reductase activity was detected in mutants of Salmonella typhimurium which mapped at or near chlC and which were incapable of growth with nitrate as electron acceptor. The same mutants were sensitive to chlorate and performed sufficient nitrate reduction to permit anaerobic growth with nitrate as the sole nitrogen source in media containing glucose. The mutant nitrate-reducing protein did not migrate with the wild-type nitrate reductase in polyacrylamide electrophoretic gels. Studies of the electrophoretic mobility in gels of different polyacrylamide concentration revealed that the wild-type and mutant nitrate reductases differed significantly in both size and charge. The second enzyme also differed from the wild-type major enzyme in its response to repression by low pH and its lack of response to repression by glucose. The same mutants were found to be derepressed for nitrite reductase and for a cytochrome with a maximal reduced absorbance at 555 nm at 25°C. This cytochrome was not detected in preparations of the wild type grown under the same conditions. Extracts of these mutants contained normal amounts of the b-type cytochromes which, in the wild type, were associated with nitrate reductase and formate dehydrogenase, respectively, although they could not mediate the oxidation of these cytochromes with nitrate. They were capable of oxidizing the derepressed 555-nm peak cytochrome with nitrate. It is suggested that these mutants synthesize a nitrate-reducing enzyme which is distinct from the chlC gene product and which is repressed in the wild type during anaerobic growth with nitrate.  相似文献   

15.
Spontaneous chlorate-resistant (Clr) mutants of three classes were isolated from Nostoc muscorum under three different selective conditions. A Clr-N2 class of mutants lacked nitrate reductase and showed nitrate inhibition of nitrogen fixation. A Clr-NO3 group of het+ nif- mutants formed heterocysts, but lacked nitrogen fixation and active nitrogenase enzyme. The Clr-NO2 class included those mutants deficient in both active nitrogenase and nitrate reductase, as they were unable to grow at the expense of molecular nitrogen or with nitrate nitrogen. The results suggest a common genetic determinant of active nitrogenase and nitrate reductase in the blue-green alga N. muscorum.  相似文献   

16.
A Paracoccus denitrificans strain (M6Ω) unable to use nitrate as a terminal electron acceptor was constructed by insertional inactivation of the periplasmic and membrane-bound nitrate reductases. The mutant strain was able to grow aerobically with nitrate as the sole nitrogen source. It also grew anaerobically with nitrate as sole nitrogen source when nitrous oxide was provided as a respiratory electron acceptor. These growth characteristics are attributed to the presence of a third, assimilatory nitrate reductase. Nitrate reductase activity was detectable in intact cells and soluble fractions using nonphysiological electron donors. The enzyme activity was not detectable when ammonium was included in the growth medium. The results provide an unequivocal demonstration that P. denitrificans can express an assimilatory nitrate reductase in addition to the well-characterised periplasmic and membrane-bound nitrate reductases. Received: 12 August 1996 / Accepted: 29 October 1996  相似文献   

17.
The presence of nitrate is required for the induced synthesis of NADPH-nitrate reductase and its related partial activity Benzyl Viologen-nitrate reductase in a wild-type strain of Neurospora. In nit-3, a mutant lacking complete NADPH-nitrate reductase activity but retaining the partial activity Benzyl Viologen-nitrate reductase, the presence of nitrate ions is not required for the de-repressed synthesis of the latter enzyme. The accumulation of the capacity to synthesize nitrate reductase, and the related Benzyl Viologen-nitrate reductase, in the absence of protein synthesis does not require nitrate in the normal strain or in strain nit-3. Ammonia antagonizes the accumulation of this capacity in both strains. Nitrate is required for the synthesis of nitrate reductase and related activities from presumedly preformed mRNA in the wild-type strain. Nitrate is not required for the comparable function in strain nit-3. Ammonia appears to stop the synthesis of nitrate reductase and related activities from presumedly preformed mRNA in the wild-type strain and in strain nit-3. The effects of nitrate, or ammonia and of no nitrogen source on the induced synthesis of nitrate reductase cannot be explained on the basis of the effects of the different nitrogen sources on general synthesis of RNA or of protein.  相似文献   

18.
Sixty-five Nicotiana plumbaginifolia mutants affected in the nitrate reductase structural gene (nia mutants) have been analyzed and classified. The properties evaluated were: (a) enzyme-linked immunosorbent assay (two-site ELISA) using a monoclonal antibody as coating reagent and (b) presence of partial catalytic activities, namely nitrate reduction with artificial electron donors (reduced methyl viologen, reduced flavin mononucleotide, or reduced bromphenol blue), and cytochrome c (Cyt c) reduction with NADH. Four classes have been defined: 40 mutants fall within class 1 which includes all mutants that have no protein detectable in ELISA and no partial activities; mutants of classes 2 and 3 exhibit an ELISA-detectable nitrate reductase protein and lack either Cyt c reductase activity (class 2: fourteen mutants) or the terminal nitrate reductase activities (class 3: eight mutants) of the enzyme. Three mutants (class 4) are negative in the ELISA test, lack Cyt c reductase activity, and lack or have a very low level of reduced methyl viologen or reduced flavin mononucleotide-nitrate reductase activities; however, they retain the reduced bromphenol blue nitrate reductase activity. Variations in the degrees of terminal nitrate reductase activities among the mutants indicated that the flavin mononucleotide and methyl viologen-dependent activities were linked while the bromphenol blue-dependent activity was independent of the other two. The putative positions of the lesions in the mutant proteins and the nature of structural domains of nitrate reductase involved in each partial activity are discussed.  相似文献   

19.
The Azospirillum brasilense Sp245 napABC genes, encoding nitrate reductase activity, were isolated and sequenced. The derived protein sequences are very similar throughout the whole Nap segment to the NapABC protein sequences of Escherichia coli, Pseudomonas sp. G-179, Ralstonia eutropha, Rhodobacter sphaeroides, and Paracoccus denitrificans. Based on whole-cell nitrate reductase assays with the artificial electron donors benzyl viologen and methyl viologen, and assays with periplasmic cell-free extracts, it was concluded that the napABC-encoded enzyme activity in Azospirillum brasilense Sp245 corresponds to a periplasmic dissimilatory nitrate reductase, which was expressed under anoxic conditions and oxic conditions. A kanamycin-resistant Azospirillum brasilense Sp245 napA insertion mutant was constructed. The mutant still expressed assimilatory nitrate reductase activity, but was devoid of its periplasmic dissimilatory nitrate reductase activity.  相似文献   

20.
Three nitrate reductase mutants were independently isolated and characterized in the colonial alga, Eudorina elegans Ehrenberg. nar-1 is a leaky mutant, deficient in the production of nitrate reductase. nar-2 and nar-3 both lack the ability to produce nitrate reductase. However, nar-2 grows and nar-3 does not grow when hypoxanthine is the sole nitrogen source. The specific activity of the next enzyme, in the pathway, nitrite reductase is increased in nar-3 when compared to wild-type, nar-1 and nar-2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号