首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Activation of Mitogen-Activated Protein Kinases in Oligodendrocytes   总被引:1,自引:1,他引:1  
Abstract: The proliferation and differentiation of oligodendrocyte progenitors are stringently controlled by an interacting network of growth and differentiation factors. Not much is known, however, about the intracellular signaling pathways activated in oligodendrocytes. In this study, we have examined the activation of m itogen-a ctivated p rotein (MAP) kinase [also called e xtracellular s ignal-r egulated protein k inases (ERKs)] in primary cultures of developing oligodendrocytes and in a primary oligodendrocyte cell line, CG4, in response to platelet-derived growth factor (PDGF) and basic fibroblast growth factor. MAP kinase activation was determined by an in-gel protein kinase renaturation assay using myelin basic protein (MBP) as the substrate. The specificity of MAP kinase activation was further confirmed by an immune complex kinase assay using anti-MAP kinase antibodies. Stimulation of oligodendrocyte progenitors with the growth factors PDGF and basic fibroblast growth factor and a protein kinase C-activating tumor promoter, phorbol 12-myristate 13-acetate, resulted in a rapid activation of p42mapk (ERK2) and, to a lesser extent, p44mapk (ERK1). Immunoblot analysis with anti-phosphotyrosine antibodies revealed an increased Tyr phosphorylation of a 42-kDa phosphoprotein band cross-reacting with anti-MAP kinase antibodies. The phosphorylation of p42mapk in PDGF-treated oligodendrocyte progenitors was preceded by a robust autophosphorylation of the growth factor receptor. Immunoblot analysis with anti-pan-ERK antibodies indicated the presence of ERK-immunoreactive species other than p42mapk and p44mapk in oligodendrocytes. The presence of some of the same pan-ERK-immunoreactive species and certain renaturable MBP kinase activities was also demonstrable in myelin preparations from rat brain, suggesting that MAP kinases (and other MBP kinases) may function not only during oligodendrogenesis but also in myelinogenesis.  相似文献   

2.
We have investigated the regulation and localization of mitogen-activated protein kinase (MAPK) and mitogen-activated protein kinase kinase (MAPKK) in both cytosolic and nuclear fractions of glomerular mesangial cells. p42 MAPK was localized by both immunoblot and kinase activity in both cytosol and nucleus and was rapidly activated, in both fractions, by fetal bovine serum and TPA. Downregulation of protein kinase C (PKC) by TPA inhibited stimulation of cytosolic p42 MAPK, but unexpectedly had no effect on stimulated p42 MAPK in the nucleus. Next we studied the upstream kinase p45 MAPKK by indirect immunofluorescence microscopy, Western blot analysis, and kinase specific activity. Unlike MAPK, p45 MAPKK is almost exclusively cytosolic in resting cells and kinase activity stimulated by TPA is restricted to the cytosol. Interestingly, PKC downregulation for 24 h with TPA dramatically enhanced nuclear MAPKK as assessed by all three techniques. Cytosolic stimulated MAPKK was attenuated in PKC downregulation. Collectively these results show that in mesangial cells: (i) p42 MAPK and p45 MAPKK localize in both the cytosol and the nucleus, and (ii) PKC exerts a negative effect on nuclear MAPKK activity as documented by PKC downregulation, which augments p45 MAPKK nuclear mass and activity. These results indicate that the dual regulation of these two kinases is under differential control in the cytosol and the nucleus.  相似文献   

3.
Eukaryotic initiation factor 4E (eIF4E) is a key component of the translational machinery and an important modulator of cell growth and proliferation. The activity of eIF4E is thought to be regulated by interaction with inhibitory binding proteins (4E-BPs) and phosphorylation by mitogen-activated protein (MAP) kinase-interacting kinase (MNK) on Ser209 in response to mitogens and cellular stress. Here we demonstrate that phosphorylation of eIF4E via MNK1 is mediated via the activation of either the Erk or p38 pathway. We further show that expression of active mutants of MNK1 and MNK2 in 293 cells diminishes cap-dependent translation relative to cap-independent translation in a transient reporter assay. The same effect on cap-dependent translation was observed when MNK1 was activated by the Erk or p38 pathway. In line with these findings, addition of recombinant active MNK1 to rabbit reticulocyte lysate resulted in a reduced protein synthesis in vitro, and overexpression of MNK2 caused a decreased rate of protein synthesis in 293 cells. By using CGP 57380, a novel low-molecular-weight kinase inhibitor of MNK1, we demonstrate that eIF4E phosphorylation is not crucial to the formation of the initiation complex, mitogen-stimulated increase in cap-dependent translation, and cell proliferation. Our results imply that activation of MNK by MAP kinase pathways does not constitute a positive regulatory mechanism to cap-dependent translation. Instead, we propose that the kinase activity of MNKs, eventually through phosphorylation of eIF4E, may serve to limit cap-dependent translation under physiological conditions.  相似文献   

4.
In spite of the availability of a significant amount of structural detail on docking interactions involving mitogen-activated protein kinases (MAPKs) and their substrates, the mechanism by which the disordered phospho-acceptor on the substrate transiently interacts with the kinase catalytic elements and is phosphorylated, often with high efficiency, remains poorly understood. Here, this dynamic interaction is analyzed in the context of available biophysical and biochemical data for ERK2, an archetypal MAPK. A hypothesis about the nature of the ternary complex involving a MAPK, its substrate, and ATP immediately prior to the chemical step (the pre-chemistry complex) is proposed. It is postulated that the solution ensemble (the pre-chemistry ensemble) representing the pre-chemistry complex comprises several conformations that are linked by dynamics on multiple timescales. These individual conformations possess different intrinsic abilities to proceed through the chemical step. The overall rate of chemistry is therefore related to the microscopic nature of the pre-chemistry ensemble, its constituent conformational microstates, and their intrinsic abilities to yield a phosphorylated product. While characterizing these microstates within the pre-chemistry ensemble in atomic or near-atomic detail is an extremely challenging proposition, recent developments in hybrid methodologies that employ computational approaches driven by experimental data appear to provide the most promising path forward toward achieving this goal.  相似文献   

5.
Abstract: Nicotine-induced catecholamine secretion in bovine adrenomedullary chromaffin cells is accompanied by rapid tyrosine phosphorylation of multiple cellular proteins, most notably the mitogen-activated protein kinases (MAPKs). The requirement for activation of tyrosine kinases and MAPKs in chromaffin cell exocytosis was investigated using a panel of tyrosine kinase inhibitors. Genistein and tyrphostin 23, two compounds that inhibit tyrosine kinases by distinct mechanisms, were found to inhibit secretion by >90% in cells stimulated by nicotine, 55 m M KCI, or the Ca2+ ionophore A23187. Inhibition of secretion induced by all three secretagogues correlated with a block in both protein tyrosine phosphorylation and activation of the MAPKs and their activators (MEKs) in situ. However, neither genistein nor tyrphostin 23 inhibited the activities of the MAPKs or MEKs in vitro. These results indicate that the target(s) of inhibition lie down-stream of Ca2+ influx and upstream of MEK activation. This Ca2+-activated tyrosine kinase activity could not be accounted for entirely by c-Src or Fyn (two nonreceptor tyrosine kinases that are expressed abundantly in chromaffin cells), because their in vitro kinase activities were not inhibited by tyrphostin 23 and only partially inhibited by genistein. These results demonstrate that an unidentified Ca2+-activated tyrosine kinase(s) is required for MAPK activation and exocytosis in chromaffin cells and suggest that MAPK participates in the regulation of secretion.  相似文献   

6.
7.
综述了MAPKs参与植物细胞周期调控的最新进展 ,植物激素与MAPK ,MAPK与植物细胞有丝分裂 ,以及MAPK与植物细胞分裂和生长的调控等三方面 ,阐述MAPK参与调控高等植物细胞分化和有丝分裂的机制。  相似文献   

8.
We report here on the identification of the major plasma membrane (PM) ascorbate-reducible b-type cytochrome of bean (Phaseolus vulgaris) and soybean (Glycine max) hypocotyls as orthologs of Arabidopsis (Arabidopsis thaliana) AIR12 (for auxin induced in root cultures). Soybean AIR12, which is glycosylated and glycosylphosphatidylinositol-anchored to the external side of the PM in vivo, was expressed in Pichia pastoris in a recombinant form, lacking the glycosylphosphatidylinositol modification signal and purified from the culture medium. Recombinant AIR12 is a soluble protein predicted to fold into a β-sandwich domain and belonging to the DOMON (for dopamine β-monooxygenase N terminus) domain superfamily. It is shown to be a b-type cytochrome with a symmetrical α-band at 561 nm, fully reduced by ascorbate, and fully oxidized by monodehydroascorbate radical. AIR12 is a high-potential cytochrome b showing a wide bimodal dependence from the redox potential between +80 mV and +300 mV. Optical absorption and electron paramagnetic resonance analysis indicate that AIR12 binds a single, highly axial low-spin heme, likely coordinated by methionine-91 and histidine-76, which are strongly conserved in AIR12 sequences. Phylogenetic analyses reveal that the auxin-responsive genes AIR12 represent a new family of PM b-type cytochromes specific to flowering plants. Circumstantial evidence suggests that AIR12 may interact with other redox partners within the PM to constitute a redox link between cytoplasm and apoplast.Complex interactions between plant cells and the environment are mediated by the apoplast. The apoplastic liquid phase permeating the cell wall contains relatively low concentrations of solutes (Dietz, 1997). Its composition, although largely determined by the protoplast, is easily perturbed by environmental challenges that can thus be perceived by the apoplast and translated into signals that trigger cell responses (Pignocchi and Foyer, 2003; Foyer and Noctor, 2005). Environmental challenges affecting the apoplast commonly result in an oxidative load, caused, for instance, by pollutants (e.g. ozone; Sandermann, 2008) or by endogenously generated reactive oxygen species (ROS). Several enzymatic and nonenzymatic systems are able to generate ROS in the apoplast (Fry, 1998; Apel and Hirt, 2004), an event that is not restricted to biotic or abiotic stresses (Torres and Dangl, 2005), but also involved in diverse physiological conditions, including stomata closure and cell growth (Foreman et al., 2003; Mori and Schroeder, 2004; Gapper and Dolan, 2006; Schopfer and Liszkay, 2006).Apoplastic reductants not only act as an antioxidant barrier, but they could also modulate oxidative signals, thus actively contributing to plant adaptation to the environment. Ascorbate occurs at 10−4 to 10−3 m concentrations in the apoplast, where it represents the major pool of low-molecular-mass antioxidants (Dietz, 1997; Pignocchi and Foyer, 2003; Padu et al., 2005). Maintenance of the apoplastic ascorbate pool depends on transport systems of the plasma membrane (PM; Horemans et al., 2000). The redox state of the ascorbate in the apoplast is relatively flexible and typically more oxidized than in the symplast (Cordoba-Pedregosa et al., 2003, 2005; de Pinto and De Gara, 2004; Padu et al., 2005; Pignocchi et al., 2006). Ascorbate oxidation can be effected enzymatically by ascorbate oxidase or ascorbate peroxidase, and nonenzymatically by direct interaction with ROS (including ozone; Sandermann, 2008), transition metals (e.g. iron, copper; Fry, 1998), or phenolic radicals (Takahama, 1993). Oxidation of ascorbate gives rise to the monodehydroascorbate (MDA) radical, which can disproportionate into ascorbate and fully oxidized dehydroascorbate. In addition, the apoplastic MDA radical can be reduced back to ascorbate by a trans-PM redox system that uses cytosolic ascorbate as a reductant and involves a high-potential cytochrome b (Horemans et al., 1994). The latter has escaped molecular identification thus far (Trost et al., 2000; Bérczi et al., 2003; Griesen et al., 2004; Preger et al., 2005).It was suggested (Asard et al., 2001) that the trans-PM electron transfer from cytosolic ascorbate to apoplastic MDA may be effected by a cytochrome b561, in analogy to the electron transfer of animal chromaffin vesicles (Kelley and Njus, 1986). Cytochromes b561 are high-potential, transmembrane redox proteins of about 25 kD made of six membrane-spanning α-helices, which bind two hemes b. One heme is predicted to be close to an ascorbate binding site facing the cytosol, whereas the second heme faces the opposite side of the membrane and can be oxidized by either MDA or ferrichelates (Tsubaki et al., 1997; McKie et al., 2001; Bérczi et al., 2005; Kamensky et al., 2007). Plants contain several orthologous genes to animal cytochrome b561 (Asard et al., 2000; Bashtovyy et al., 2003). Arabidopsis (Arabidopsis thaliana) contains four genes belonging to this family (Tsubaki et al., 2005) and one of these (At4g25570, CYBASC1), expressed in recombinant form, showed similar biochemical properties to animal cytochrome b561 (Bérczi et al., 2007). However, the localization in vivo of plant cytochrome b561 is controversial. Arabidopsis CYBASC1 was found to be associated with the tonoplast membrane (Griesen et al., 2004) and annotated in proteomic studies as either a tonoplast protein (Carter et al., 2004; Shimaoka et al., 2004) or a chloroplast protein (Zybailov et al., 2008). Tonoplast localization was also reported for bean (Phaseolus vulgaris) CYBASC1 in etiolated hypocotyls (Preger et al., 2005), whereas a GFP construct of CYBASC1 from wild watermelon (Citrullus lanatus) was shown to be targeted to the PM in transformed onion (Allium cepa) epidermal cells (Nanasato et al., 2005). No data are available for any other isoform of cytochrome b561 in plants.An ascorbate-reducible cytochrome b from enriched PM preparations was purified as a glycosylated protein of 55 to 63 kD (bean hypocotyls; Trost et al., 2000) or 120 kD (Arabidopsis; Bérczi et al., 2003) in SDS-PAGE. The association to the PM of the bean hypocotyl cytochrome was confirmed by analytical Suc gradient centrifugation (Preger et al., 2005). Based on potentiometric redox titrations, both bean and Arabidopsis cytochrome b preparations were suggested to bind two hemes with distant redox potentials (Em7 +135 and +180/+200 mV). However, the nature of this high-potential cytochrome b of plant PM remained elusive, although clearly different from tonoplast cytochrome b561 (Preger et al., 2005).In this article, we report on the purification, molecular identification, cloning, and biochemical characterization of the major ascorbate-reducible cytochrome b associated with the PM of soybean (Glycine max) etiolated hypocotyls. The coding gene, known as AIR12 (for auxin induced in root cultures), is early expressed during auxin-induced lateral root formation in Arabidopsis (Laskowski et al., 2006). We demonstrate that AIR12 is a member of a new family of ascorbate-reducible cytochromes b specific to flowering plant species. The protein is glycosylated and hydrophilic and predicted to be associated in vivo with the external face of the PM by means of a glycosylphosphatidylinositol (GPI) anchor (Borner et al., 2003). AIR12 has been found to be associated with lipid rafts together with other redox proteins (Lefebvre et al., 2007), which may act as its partners in a possible electron link between apoplast and symplast.  相似文献   

9.
10.
The urokinase-type plasminogen activator, or urokinase, stimulates proliferation, adhesion, and migration of different type cells both due to its proteolytic activity and by activation of intracellular transduction pathways after interaction with the external cell surface. It is suggested that activation of p42/p44erk1,2 MAP-kinases in response to specific receptor binding to the urokinase N-terminal domain is the key event in initiation of cell migration. However, we have found that the central kringle-domain of urokinase has its own target on the cell surface, and that its binding causes a migration response of human smooth muscle cells (SMCs). In the present study, we have shown that the urokinase kringle-domain is required to activate the p38 MAP kinase cascade, and that its inhibition leads to suppression of the migration response of SMCs. On the contrary, stimulation of the p42/p44erk1,2 MAP-kinase cascade is determined only by proteolytic activity of urokinase and does not depend on its binding to SMCs. Selective inhibition of the p42/p44erk1,2 MAP-kinase cascade produced a depression of the SMC migration induced by catalytically active urokinase, but did not affect the migration induced by non-active urokinase. It is concluded that binding of the urokinase kringle-domain to a yet unidentified target at the SMC surface is required for activation of the p38 MAP-kinase cascade and of the cell migration. Urokinase was shown to stimulate phosphorylation and activation of regulatory light myosin chains that are required to increase the cytoskeleton dynamics and SMC motility. The participation of p42/p44erk1,2 and p38 MAP-kinase cascade in the realization of this effect is discussed.  相似文献   

11.
12.
Microtubule-associated protein 2 (MAP2) is an excellent substrate for both cyclic-AMP (cAMP)-dependent and Ca2+/calmodulin-dependent kinases. A recently purified cytosolic Ca2+/calmodulin-dependent kinase (now designated CaM kinase II) phosphorylates MAP2 as a major substrate. We now report that microtubule-associated cAMP-dependent and calmodulin-dependent protein kinases phosphorylate MAP2 on separate sites. Tryptic phosphopeptide digestion and two-dimensional phosphopeptide mapping revealed 11 major peptides phosphorylated by microtubule-associated cAMP-dependent kinase and five major peptide species phosphorylated by calmodulin-dependent kinase. All 11 of the cAMP-dependently phosphorylated peptides were phosphorylated on serine residues, whereas four of five major peptides phosphorylated by the calmodulin-dependent kinase were phosphorylated on threonine. Only one peptide spot phosphorylated by both kinases was indistinguishable by both migration and phosphoamino acid site. The results indicate that cAMP-dependent and calmodulin-dependent kinases may regulate microtubule and cytoskeletal dynamics by phosphorylation of MAP2 at distinct sites.  相似文献   

13.
Functional redundancy is a pivotal mechanism that supports the robustness of biological systems at a molecular, cellular, and organismal level. The extensive prevalence of redundancy in molecular networks has been highlighted by recent systems biology studies; however, a detailed mechanistic understanding of redundant functions in specific signaling modules is often missing. We used affinity purification of protein complexes coupled to tandem mass spectrometry to generate a high-resolution protein interaction map of the three homologous p38 mitogen-activated protein kinases (MAPKs) in Drosophila and assessed the utility of such a map in defining the extent of common and unique functions. We found a correlation between the depth of integration of individual p38 kinases into the protein interaction network and their functional significance in cultured cells and in vivo. Based on these data, we propose a central role of p38b in the Drosophila p38 signaling module, with p38a and p38c playing more peripheral, auxiliary roles. We also present the first in vivo evidence demonstrating that an evolutionarily conserved complex of p38b with glycogen synthase links stress sensing to metabolic adaptation.  相似文献   

14.
c-Jun N-terminal protein kinase (JNK) and p38, two distinct members of the mitogen-activated protein (MAP) kinase family, regulate gene expression in response to various extracellular stimuli, yet their physiological functions are not completely understood. In this report we show that JNK and p38 exerted opposing effects on the development of myocyte hypertrophy, which is an adaptive physiological process characterized by expression of embryonic genes and unique morphological changes. In rat neonatal ventricular myocytes, both JNK and p38 were stimulated by hypertrophic agonists like endothelin-1, phenylephrine, and leukemia inhibitory factor. Expression of MAP kinase kinase 6b (EE), a constitutive activator of p38, stimulated the expression of atrial natriuretic factor (ANF), which is a genetic marker of in vivo cardiac hypertrophy. Activation of p38 was required for ANF expression induced by the hypertrophic agonists. Furthermore, a specific p38 inhibitor, SB202190, significantly changed hypertrophic morphology induced by the agonists. Surprisingly, activation of JNK led to inhibition of ANF expression induced by MEK kinase 1 (MEKK1) and the hypertrophic agonists. MEKK1-induced ANF expression was also negatively regulated by expression of c-Jun. Our results demonstrate that p38 mediates, but JNK suppresses, the development of myocyte hypertrophy.  相似文献   

15.
Three protein kinases (HK-I, HK-II and HK-III) have been partiallypurified from the 1.0 M KC1 extract of Marchantia polymorphaand biochemically characterized. It was found that (i) the molecularweights of HK-I, HK-II and HK-III were approximately 23 kDa,47 kDa and 28 kDa, respectively; (ii) these three kinases requireddivalent cations, such as Mn2+ and Mg2+, but not Ca2+, for activity;and (iii) histone H1 was an effective phosphate acceptor forboth HK-I and HK-II, whereas the other kinase (HK-III) effectivelyphosphorylated whole histone (Type II-A from calf thymus) ratherthan histone H1. Heparin (20µg/ml), an inhibitor of caseinkinase II, significantly stimulated the phosphorylation of cellularpolypeptides by HK-II, which was thermo sensitive even at 30?C,rather than that by the other kinases (HK-I and HK-III). Moreover,experiments in vitro and in vivo to determine the native phosphateacceptors for HK-II indicated that a 60-kDa cellular polypeptidemay be one of the native phosphate acceptors for the proteinkinase. In addition, the similarity in properties of cdc2-kinase,which plays an important role in the cell cycle (in the transitionfrom the G2 phase to mitosis) of yeast and many eukaryotic cells,to HK-II is discussed. (Received May 2, 1990; Accepted December 6, 1990)  相似文献   

16.
Most cell surface receptors for growth factors and cytokines dimerize in order to mediate signal transduction. For many such receptors, the Janus kinase (Jak) family of non-receptor protein tyrosine kinases are recruited in pairs and juxtaposed by dimerized receptor complexes in order to activate one another by trans-phosphorylation. An alternative mechanism for Jak trans-phosphorylation has been proposed in which the phosphorylated kinase interacts with the Src homology 2 (SH2) domain of SH2-B, a unique adaptor protein with the capacity to homo-dimerize. Building on a rule-based kinetic modeling approach that considers the concerted nature and combinatorial complexity of modular protein domain interactions, we examine these mechanisms in detail, focusing on the growth hormone (GH) receptor/Jak2/SH2-Bβ system. The modeling results suggest that, whereas Jak2-(SH2-Bβ)2-Jak2 heterotetramers are scarcely expected to affect Jak2 phosphorylation, SH2-Bβ and dimerized receptors synergistically promote Jak2 trans-activation in the context of intracellular signaling. Analysis of the results revealed a unique mechanism whereby SH2-B and receptor dimers constitute a bipolar ‘clamp’ that stabilizes the active configuration of two Jak2 molecules in the same macro-complex.  相似文献   

17.
The effect of L-glutamate (Glu) and its structural analogs N-methyl-D-aspartate (NMDA), kainate (KA) and -amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA), on the activation of p42 mitogen activated protein kinase (MAPK) was examined in cultured chick radial glia cells, namely retinal Müller cells and cerebellar Bergmann cells. Glu, NMDA, AMPA and KA evoked a dose and time dependent increase in MAPK activity. AMPA and KA responses were blocked by 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) whereas NMDA responses were sensitive to 3-[(RS)-2-carboxypiperazin-4-yl)]-propyl-1-phosphonate (CPP) indicating that the increase in MAPK activity is mediated by AMPA/low affinity KA and NMDA subtypes of Glu receptors. The present findings open the possibility of a MAPK cascade involvement in the regulation of Glu-induced gene expression in radial glia.  相似文献   

18.
In plants and animals, induced resistance (IR) to biotic and abiotic stress is associated with priming of cells for faster and stronger activation of defense responses. It has been hypothesized that cell priming involves accumulation of latent signaling components that are not used until challenge exposure to stress. However, the identity of such signaling components has remained elusive. Here, we show that during development of chemically induced resistance in Arabidopsis thaliana, priming is associated with accumulation of mRNA and inactive proteins of mitogen-activated protein kinases (MPKs), MPK3 and MPK6. Upon challenge exposure to biotic or abiotic stress, these two enzymes were more strongly activated in primed plants than in nonprimed plants. This elevated activation was linked to enhanced defense gene expression and development of IR. Strong elicitation of stress-induced MPK3 and MPK6 activity is also seen in the constitutive priming mutant edr1, while activity was attenuated in the priming-deficient npr1 mutant. Moreover, priming of defense gene expression and IR were lost or reduced in mpk3 or mpk6 mutants. Our findings argue that prestress deposition of the signaling components MPK3 and MPK6 is a critical step in priming plants for full induction of defense responses during IR.  相似文献   

19.
The pathogenesis of interstitial cystitis/painful bladder syndrome (IC/PBS) is multifactorial, but likely involves urothelial cell dysfunction and mast cell accumulation in the bladder wall. Activated mast cells in the bladder wall release several inflammatory mediators, including histamine and tryptase. We determined whether mitogen-activated protein (MAP) kinases are activated in response to tryptase stimulation of urothelial cells derived from human normal and IC/PBS bladders. Tryptase stimulation of normal urothelial cells resulted in a 2.5-fold increase in extracellular signal regulated kinase 1/2 (ERK 1/2). A 5.5-fold increase in ERK 1/2 activity was observed in urothelial cells isolated from IC/PBS bladders. No significant change in p38 MAP kinase was observed in tryptase-stimulated normal urothelial cells but a 2.5-fold increase was observed in cells isolated from IC/PBS bladders. Inhibition of ERK 1/2 with PD98059 or inhibition of p38 MAP kinase with SB203580 did not block tryptase-stimulated iPLA2 activation. Incubation with the membrane phospholipid-derived PLA2 hydrolysis product lysoplasmenylcholine increased ERK 1/2 activity, suggesting the iPLA2 activation is upstream of ERK 1/2. Real time measurements of impedance to evaluate wound healing of cell cultures indicated increased healing rates in normal and IC/PBS urothelial cells in the presence of tryptase, with inhibition of ERK 1/2 significantly decreasing the wound healing rate of IC/PBS urothelium. We conclude that activation of ERK 1/2 in response to tryptase stimulation may facilitate wound healing or cell motility in areas of inflammation in the bladder associated with IC/PBS.  相似文献   

20.
植物MAPK信号途径在植物生长发育以及多种逆境胁迫响应和激素调控过程中发挥着至关重要的作用。本文利用RACE-PCR技术克隆三叶木通促分裂原活化蛋白激酶基因mapk3的全长c DNA序列,并对其进行生物信息学分析和时空表达分析。克隆所得的Aktmapk3基因的ORF全长序列为1 164 bp,编码387个氨基酸,其编码的蛋白具有ATP结合位点,MAPK激酶保守结构和丝氨酸/苏氨酸蛋白激酶激活位点,推测其可能通过被磷酸化而激活以及通过磷酸化下游蛋白而执行生理功能。实时荧光定量PCR结果显示,Aktmapk3基因在三叶木通各组织器官均有表达,在芽成熟叶片以及花中表达量比较高,在茎、幼叶和果肉中的表达量最低,暗示该基因可能参与了三叶木通芽的形成和花的发育。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号