首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Lactococcus lactis temperate bacteriophage BK5-T is one of twelve type phages that define L. lactis phage species. This paper describes the nucleotide sequence and analysis of a 21-kbp region of the BK5-T genome and completes the nucleotide sequence of the genome of this phage. The 40,003-nucleotide linear genome encodes 63 open reading frames. Sequence runoff experiments showed that the cohesive ends of the BK5-T genome contained a 12-bp 3' single-stranded overhang with the sequence 5'-CACACACATAGG-3'. Two major BK5-T structural proteins, of approximately 30 and 20 kDa, were identified, and N-terminal sequence analysis determined that they were encoded by orf7 and orf12, respectively. A 169-bp fragment containing a 37-bp direct repeat and several smaller repeat sequences conferred resistance to BK5-T infection when introduced in trans to the host cell and is likely a part of the BK5-T origin of replication (ori).  相似文献   

2.
3.
The Lactococcus lactis temperate bacteriophage BK5-T is one of twelve type phages that define L. lactis phage species. This paper describes the nucleotide sequence and analysis of a 21-kbp region of the BK5-T genome and completes the nucleotide sequence of the genome of this phage. The 40,003-nucleotide linear genome encodes 63 open reading frames. Sequence runoff experiments showed that the cohesive ends of the BK5-T genome contained a 12-bp 3′ single-stranded overhang with the sequence 5′-CACACACATAGG-3′. Two major BK5-T structural proteins, of approximately 30 and 20 kDa, were identified, and N-terminal sequence analysis determined that they were encoded by orf7 and orf12, respectively. A 169-bp fragment containing a 37-bp direct repeat and several smaller repeat sequences conferred resistance to BK5-T infection when introduced in trans to the host cell and is likely a part of the BK5-T origin of replication (ori).  相似文献   

4.
We have determined the DNA sequence of the control region of phage D108 up to position 1419 at the left end of the phage genome. Open reading frames for the repressor gene, ner gene, and the 5' part of the A gene (which codes for transposase) are found in the sequence. The genetic organization of this region of phage D108 is quite similar to that of phage Mu in spite of considerable divergence, both in the nucleotide sequence and in the amino acid sequences of the regulatory proteins of the two phages. The N-terminal amino acid sequences of the transposases of the two phages also share only limited homology. On the other hand, a significant amino acid sequence homology was found within each phage between the N-terminal parts of the repressor and transposase. We propose that the N-terminal domains of the repressor and transposase of each phage interact functionally in the process of making the decision between the lytic and the lysogenic mode of growth.  相似文献   

5.
(Bacterio)phage PVP-SE1, isolated from a German wastewater plant, presents a high potential value as a biocontrol agent and as a diagnostic tool, even compared to the well-studied typing phage Felix 01, due to its broad lytic spectrum against different Salmonella strains. Sequence analysis of its genome (145,964 bp) shows it to be terminally redundant and circularly permuted. Its G+C content, 45.6 mol%, is lower than that of its hosts (50 to 54 mol%). We found a total of 244 open reading frames (ORFs), representing 91.6% of the coding capacity of the genome. Approximately 46% of encoded proteins are unique to this phage, and 22.1% of the proteins could be functionally assigned. This myovirus encodes a large number of tRNAs (n=24), reflecting its lytic capacity and evolution through different hosts. Tandem mass spectrometric analysis using electron spray ionization revealed 25 structural proteins as part of the mature phage particle. The genome sequence was found to share homology with 140 proteins of the Escherichia coli bacteriophage rV5. Both phages are unrelated to any other known virus, which suggests that an "rV5-like virus" genus should be created within the Myoviridae to contain these two phages.  相似文献   

6.
C(1), a lytic bacteriophage infecting group C streptococci, is one of the earliest-isolated phages, and the method of bacterial classification known as phage typing was defined by using this bacteriophage. We present for the first time a detailed analysis of this phage by use of electron microscopy, protein profiling, and complete nucleotide sequencing. This virus belongs to the Podoviridae family of phages, all of which are characterized by short, noncontractile tails. The C(1) genome consists of a linear double-stranded DNA molecule of 16,687 nucleotides with 143-bp inverted terminal repeats. We have assigned functions to 9 of 20 putative open reading frames based on experimental substantiation or bioinformatic analysis. Their products include DNA polymerase, holin, lysin, major capsid, head-tail connector, neck appendage, and major tail proteins. Additionally, we found one intron belonging to the HNH endonuclease family interrupting the apparent lysin gene, suggesting a potential splicing event yielding a functional lytic enzyme. Examination of the C(1) DNA polymerase suggests that this phage utilizes a protein-primed mechanism of replication, which is prominent in the phi29-like members of Podoviridae. Consistent with this evidence, we experimentally determined that terminal proteins are covalently attached to both 5' termini, despite the fact that no homology to known terminal proteins could be elucidated in any of our open reading frames. Likewise, comparative genomics revealed no close evolutionary matches, suggesting that the C(1) bacteriophage is a unique member of the Podoviridae.  相似文献   

7.
Lactococcal bacteriophages represent one of the leading causes of dairy fermentation failure and product inconsistencies. A new member of the lactococcal 949 phage group, named WRP3, was isolated from cheese whey from a Sicilian factory in 2011. The genome sequence of this phage was determined, and it constitutes the largest lactococcal phage genome currently known, at 130,008 bp. Detailed bioinformatic analysis of the genomic region encoding the presumed initiator complex and baseplate of WRP3 has aided in the functional assignment of several open reading frames (ORFs), particularly that for the receptor binding protein required for host recognition. Furthermore, we demonstrate that the 949 phages target cell wall phospho-polysaccharides as their receptors, accounting for the specificity of the interactions of these phages with their lactococcal hosts. Such information may ultimately aid in the identification of strains/strain blends that do not present the necessary saccharidic target for infection by these problematic phages.  相似文献   

8.
The lytic lactococcal phage Q54 was previously isolated from a failed sour cream production. Its complete genomic sequence (26,537 bp) is reported here, and the analysis indicated that it represents a new Lactococcus lactis phage species. A striking feature of phage Q54 is the low level of similarity of its proteome (47 open reading frames) with proteins in databases. A global gene expression study confirmed the presence of two early gene modules in Q54. The unusual configuration of these modules, combined with results of comparative analysis with other lactococcal phage genomes, suggests that one of these modules was acquired through recombination events between c2- and 936-like phages. Proteolytic cleavage and cross-linking of the major capsid protein were demonstrated through structural protein analyses. A programmed translational frameshift between the major tail protein (MTP) and the receptor-binding protein (RBP) was also discovered. A "shifty stop" signal followed by putative secondary structures is likely involved in frameshifting. To our knowledge, this is only the second report of translational frameshifting (+1) in double-stranded DNA bacteriophages and the first case of translational coupling between an MTP and an RBP. Thus, phage Q54 represents a fascinating member of a new species with unusual characteristics that brings new insights into lactococcal phage evolution.  相似文献   

9.
Bacteriophage sk1 is a small isometric-headed lytic phage belonging to the 936 species. It infects Lactococcus lactis , a commonly used dairy starter organism. Nucleotide sequence data analysis indicated that the sk1 genome is 28 451 nucleotides long and contains 54 open reading frames (ORFs) of 30 or more codons, interspersed with three large intergenic regions. The nucleotide sequence of several of the sk1 ORFs demonstrated significant levels of identity to genes (many encoding proteins of unknown function) in other lactococcal phages of both small isometric-headed and prolate-headed morphotype. Based on this identity and predicted peptide structures, sk1 genes for the terminase, major structural protein and DNA polymerase have been putatively identified. Genes encoding holin and lysin were also identified, subcloned into an Escherichia coli expression vector, and their function demonstrated in vivo . The sk1 origin of replication was located by identifying sk1 DNA fragments able to support the maintenance in L. lactis of a plasmid lacking a functional Gram-positive ori . The minimal fragment conferring replication origin function contained a number of direct repeats and 179 codons of ORF47. Although no similarity between phage sk1 and coliphage λ at the nucleotide or amino acid sequence level was observed, an alignment of the sk1 late region ORFs with the λ structural and packaging genes revealed a striking correspondence in both ORF length and isoelectric point of the ORF product. It is proposed that this correspondence is indicative of a strong conservation in gene order within these otherwise unrelated isometric-headed phages that can be used to predict the functions of the sk1 gene products.  相似文献   

10.
11.
An unusual, spontaneous, phage sk1-resistant mutant (RMSK1/1) of Lactococcus lactis C2 apparently blocks phage DNA entry into the host. Although no visible plaques formed on RMSK1/1, this host propagated phage at a reduced efficiency. This was evident from center-of-infection experiments, which showed that 21% of infected RMSK1/1 formed plaques when plated on its phage-sensitive parental strain, C2. Moreover, viable cell counts 0 and 4 h after infection were not significantly different from those of an uninfected culture. Further characterization showed that phage adsorption was normal, but burst size was reduced fivefold and the latent period was increased from 28.5 to 36 min. RMSK1/1 was resistant to other, but not all, similar phages. Phage sensitivity was restored to RMSK1/1 by transformation with a cloned DNA fragment from a genomic library of a phage-sensitive strain. Characterization of the DNA that restored phage sensitivity revealed an open reading frame with similarity to sequences encoding lysozymes (beta-1,4-N-acetylmuramidase) and lysins from various bacteria, a fungus, and phages of Lactobacillus and Streptococcus and also revealed DNA homologous to noncoding sequences of temperate phage of L. lactis, DNA similar to a region of phage sk1, a gene with similarity to tRNA genes, a prophage attachment site, and open reading frames with similarities to sun and to sequences encoding phosphoprotein phosphatases and protein kinases. Mutational analyses of the cloned DNA showed that the region of homology with lactococcal temperate phage was responsible for restoring the phage-sensitive phenotype. The region of homology with DNA of lactococcal temperate phage was similar to DNA from a previously characterized lactococcal phage that suppresses an abortive infection mechanism of phage resistance. The region of homology with lactococcal temperate phage was deleted from a phage-sensitive strain, but the strain was not phage resistant. The results suggest that the cloned DNA with homology to lactococcal temperate phage was not mutated in the phage-resistant strain. The cloned DNA apparently suppressed the mechanism of resistance, and it may do so by mimicking a region of phage DNA that interacts with components of the resistance mechanism.  相似文献   

12.
SH Kim  JH Park  BK Lee  HJ Kwon  JH Shin  J Kim  S Kim 《Journal of virology》2012,86(18):10253-10254
A Salmonella lytic bacteriophage, SS3e, was isolated, and its genome was sequenced completely. This phage is able to lyse not only various Salmonella serovars but also Escherichia coli, Shigella sonnei, Enterobacter cloacae, and Serratia marcescens, indicating a broad host specificity. Genomic sequence analysis of SS3e revealed a linear double-stranded DNA sequence of 40,793 bp harboring 58 open reading frames, which is highly similar to Salmonella phages SETP13 and MB78.  相似文献   

13.
Sequences in the human genome with homology to the murine mammary tumor virus (MMTV) pol gene were isolated from a human phage library. Ten clones with extensive pol homology were shown to define five separate loci. These loci share common sequences immediately adjacent to the pol-like segments and, in addition, contain a related repeat element which bounds this region. This organization is suggestive of a proviral structure. We estimate that the human genome contains 30 to 40 copies of these pol-related sequences. The pol region of one of the cloned segments (HM16) and the complete MMTV pol gene were sequenced and compared. The nucleotide homology between these pol sequences is 52% and is concentrated in the terminal regions. The MMTV pol gene contains a single long open reading frame encoding 899 amino acids and is demarcated from the partially overlapping putative gag gene by termination codons and a shift in translational reading frame. The pol sequence of HM16 is multiply terminated but does contain open reading frames which encode 370, 105, and 112 amino acid residues in separate reading frames. We deduced a composite pol protein sequence for HM16 by aligning it to the MMTV pol gene and then compared these sequences with other retroviral pol protein sequences. Conserved sequences occur in both the amino and carboxyl regions which lie within the polymerase and endonuclease domains of pol, respectively.  相似文献   

14.
A specific fragment of the genome of Tuc2009, a temperate lactococcal bacteriophage, was shown to contain several open reading frames, whose deduced protein products exhibited similarities to proteins known to be involved in DNA replication and modification. In this way, a putative single-stranded binding protein, replisome organizer protein, topoisomerase I, and a methylase were identified. When the genetic information coding for the putative replisome organizer protein of Tuc2009, Rep2009, was supplied on a high-copy-number plasmid vector, it was shown to confer a phage-encoded resistance (Per) phenotype on its lactococcal host UC509.9. The presence of this recombinant plasmid was shown to cause a marked reduction in Tuc2009 DNA replication, suggesting that the observed phage resistance was due to titration of a factor, or factors, required for Tuc2009 DNA replication. Further experiments delineated the phage resistance-conferring region to a 160-bp fragment rich in direct repeats. Gel retardation experiments, which indicated a protein-DNA interaction between this 160-bp fragment and the Rep2009 protein, were performed. UC509.9 strains harboring plasmids with randomly mutated versions of this fragment were shown to display a variable phage resistance phenotype, depending on the position of the mutations.  相似文献   

15.
Pediococcus damnosus (P. damnosus) bacteriophage (phage) clP1 is a novel virulent phage isolated from a municipal sewage sample collected in Southern Ireland. This phage infects the beer spoilage strain P. damnosus P82 which was isolated from German breweries. Sequencing of the phage has revealed a linear double stranded DNA genome of 38,013 base pairs (bp) with an overall GC content of 47.6%. Fifty seven open reading frames (ORFs) were identified of which 30 showed homology to previously sequenced proteins, and as a consequence 20 of these were assigned predicted functions. The majority of genes displayed homology with genes from the Lactobacillus plantarum phage phiJL-1. All genes were located on the same coding strand and in the same orientation. Morphological characterisation placed phage clP1 as a member of the Siphoviridae family with an isometric head (59 nm diameter) and non-contractile tail (length 175 nm; diameter 10nm. Interestingly, the phage clP1 genome was found to share very limited identity with other phage genome sequences in the database, and was hence considered unique. This was highlighted by the genome organisation which differed slightly to the consensus pattern of genomic organisation usually found in Siphoviridae phages. With the genetic machinery present for a lytic lifecycle and the absence of potential endotoxin factors, this phage may have applications in the biocontrol of beer spoilage bacteria. To our knowledge, this study represents the first reported P. damnosus phage genome sequence.  相似文献   

16.
An insertion in the lactococcal plasmid pGBK17, which inactivated the gene(s) encoding resistance to the prolate-headed phage c2, was cloned, sequenced, and identified as a new lactococcal insertion sequence (IS). IS981 was 1,222 bp in size and contained two open reading frames, one large enough to encode a transposase. IS981 ended in imperfect inverted repeats of 26 of 40 bp and generated a 5-bp direct repeat of target DNA at the site of insertion. IS981 was present on the chromosome of Lactococcus lactis subsp. lactis LM0230 from where it transposed to pGBK17 during transformation. Twenty-three strains of lactococci examined for the presence of IS981 by Southern hybridization showed 4 to 26 copies per genome, with L. lactis subsp. cremoris strains containing the highest number of copies. Comparison of the DNA sequence and the amino acid sequence of the long open reading frame to other known sequences showed that IS981 is related to a family of IS elements that includes IS2, IS3, IS51, IS150, IS600, IS629, IS861, IS904, and ISL1.  相似文献   

17.
An insertion in the lactococcal plasmid pGBK17, which inactivated the gene(s) encoding resistance to the prolate-headed phage c2, was cloned, sequenced, and identified as a new lactococcal insertion sequence (IS). IS981 was 1,222 bp in size and contained two open reading frames, one large enough to encode a transposase. IS981 ended in imperfect inverted repeats of 26 of 40 bp and generated a 5-bp direct repeat of target DNA at the site of insertion. IS981 was present on the chromosome of Lactococcus lactis subsp. lactis LM0230 from where it transposed to pGBK17 during transformation. Twenty-three strains of lactococci examined for the presence of IS981 by Southern hybridization showed 4 to 26 copies per genome, with L. lactis subsp. cremoris strains containing the highest number of copies. Comparison of the DNA sequence and the amino acid sequence of the long open reading frame to other known sequences showed that IS981 is related to a family of IS elements that includes IS2, IS3, IS51, IS150, IS600, IS629, IS861, IS904, and ISL1.  相似文献   

18.
The lytic activity induced by the lactococcal bacteriophage P001 was isolated from phage lysates of Lactococcus lactis by a four-step purification procedure. Two proteins lytic for L. lactis were identified with molecular weights of 28 kDA and 8 kDa, respectively. The N-terminal amino acid sequences of the two proteins were determined and degenerated oligonucleotide probes corresponding to these sequences were synthesized. DNA hybridization experiments with phage P001-DNA and lactococcal DNA revealed that both proteins were apparently encoded by a single lysin gene located on the phage P001 genome. This was confirmed by alignment of the determined N-terminal amino acid sequences with nucleotide sequences which were deduced from cloned Lactococcus bacteriophage lysin genes.  相似文献   

19.
Bacteriophage asccphi28 infects dairy fermentation strains of Lactococcus lactis. This report describes characterization of asccphi28 and its full genome sequence. Phage asccphi28 has a prolate head, whiskers, and a short tail (C2 morphotype). This morphology and DNA hybridization to L. lactis phage P369 DNA showed that asccphi28 belongs to the P034 phage species, a group rarely encountered in the dairy industry. The burst size of asccphi28 was found to be 121 +/- 18 PFU per infected bacterial cell after a latent period of 44 min. The linear genome (18,762 bp) contains 28 possible open reading frames (ORFs) comprising 90% of the total genome. The ORFs are arranged bidirectionally in recognizable functional modules. The genome contains 577 bp inverted terminal repeats (ITRs) and putatively eight promoters and four terminators. The presence of ITRs, a phage-encoded DNA polymerase, and a terminal protein that binds to the DNA, along with BLAST and morphology data, show that asccphi28 more closely resembles streptococcal phage Cp-1 and the phi29-like phages that infect Bacillus subtilis than it resembles common lactococcal phages. The sequence of this phage is the first published sequence of a P034 species phage genome.  相似文献   

20.
We have determined the complete nucleotide sequence of an infectious cloned genome of ground squirrel hepatitis virus (GSHV), a nonpathogenic member of the hepadnavirus group. The genome is 3,311 base pairs long and contains the major open reading frames described for the related human and woodchuck hepatitis B viruses (HBV and WHV, respectively). These reading frames include genes for the major structural proteins (the surface and core antigens), unassigned open reading frames (A and B), the longer of which is presumed to encode the viral DNA polymerase, and an open reading frame preceding and continuous with the surface antigen gene. The arrangement of these open reading frames is similar to that encountered in the genomes of HBV and WHV: all of the reading frames are encoded on the same strand, they are positioned in the same fashion with respect to each other, and a large portion (at least 51%) of the genome can be translated in two reading frames. Comparisons of the predicted translational products of the three mammalian hepadnaviruses reveal 78% amino acid homology between the proteins of GSHV and WHV and 43% homology between those of GSHV and HBV. In addition, a perfect direct repeat of 10 to 11 base pairs, separated by ca. 46 to 223 base pairs, is present in the three mammalian viruses and in duck hepatitis B virus; the position of the repeats near the 5' termini of the two strands of virion DNA suggests a role in viral replication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号