首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Proton translocation in the catalytic cycle of cytochrome c oxidase (CcO) proceeds sequentially in a four-stroke manner. Every electron donated by cytochrome c drives the enzyme from one of four relatively stable intermediates to another, and each of these transitions is coupled to proton translocation across the membrane, and to uptake of another proton for production of water in the catalytic site. Using cytochrome c oxidase from Paracoccus denitrificans we have studied the kinetics of electron transfer and electric potential generation during several such transitions, two of which are reported here. The extent of electric potential generation during initial electron equilibration between CuA and heme a confirms that this reaction is not kinetically linked to vectorial proton transfer, whereas oxidation of heme a is kinetically coupled to the main proton translocation events during functioning of the proton pump. We find that the rates and amplitudes in multiphase heme a oxidation are different in the OH-->EH and PM-->F steps of the catalytic cycle, and that this is reflected in the kinetics of electric potential generation. We discuss this difference in terms of different driving forces and relate our results, and data from the literature, to proposed mechanisms of proton pumping in cytochrome c oxidase.  相似文献   

2.
In mitochondria and many aerobic bacteria cytochrome c oxidase is the terminal enzyme of the respiratory chain where it catalyses the reduction of oxygen to water. The free energy released in this process is used to translocate (pump) protons across the membrane such that each electron transfer to the catalytic site is accompanied by proton pumping. To investigate the mechanism of electron-proton coupling in cytochrome c oxidase we have studied the pH-dependence of the kinetic deuterium isotope effect of specific reaction steps associated with proton transfer in wild-type and structural variants of cytochrome c oxidases in which amino-acid residues in proton-transfer pathways have been modified. In addition, we have solved the structure of one of these mutant enzymes, where a key component of the proton-transfer machinery, Glu286, was modified to an Asp. The results indicate that the P3-->F3 transition rate is determined by a direct proton-transfer event to the catalytic site. In contrast, the rate of the F3-->O4 transition, which involves simultaneous electron transfer to the catalytic site and is characteristic of any transition during CytcO turnover, is determined by two events with similar rates and different kinetic isotope effects. These reaction steps involve transfer of protons, that are pumped, via a segment of the protein including Glu286 and Arg481.  相似文献   

3.
Cytochrome c oxidase is a membrane-bound enzyme, which catalyses the one-electron oxidation of four molecules of cytochrome c and the four-electron reduction of O(2) to water. Electron transfer through the enzyme is coupled to proton pumping across the membrane. Protons that are pumped as well as those that are used for O(2) reduction are transferred though a specific intraprotein (D) pathway. Results from earlier studies have shown that replacement of residue Asn139 by an Asp, at the beginning of the D pathway, results in blocking proton pumping without slowing uptake of substrate protons used for O(2) reduction. Furthermore, introduction of the acidic residue results in an increase of the apparent pK(a) of E286, an internal proton donor to the catalytic site, from 9.4 to ~11. In this study we have investigated intramolecular electron and proton transfer in a mutant cytochrome c oxidase in which a neutral residue, Thr, was introduced at the 139 site. The mutation results in uncoupling of proton pumping from O(2) reduction, but a decrease in the apparent pK(a) of E286 from 9.4 to 7.6. The data provide insights into the mechanism by which cytochrome c oxidase pumps protons and the structural elements involved in this process.  相似文献   

4.
Lepp H  Svahn E  Faxén K  Brzezinski P 《Biochemistry》2008,47(17):4929-4935
Cytochrome c oxidase couples electron transfer from cytochrome c to O 2 to proton pumping across the membrane. In the initial part of the reaction of the reduced cytochrome c oxidase with O 2, an electron is transferred from heme a to the catalytic site, parallel to the membrane surface. Even though this electron transfer is not linked to proton uptake from solution, recently Belevich et al. [(2006) Nature 440, 829] showed that it is linked to transfer of charge perpendicular to the membrane surface (electrogenic reaction). This electrogenic reaction was attributed to internal transfer of a proton from Glu286, in the D proton pathway, to an unidentified protonatable site "above" the heme groups. The proton transfer was proposed to initiate the sequence of events leading to proton pumping. In this study, we have investigated electrogenic reactions in structural variants of cytochrome c oxidase in which residues in the second, K proton pathway of cytochrome c oxidase were modified. The results indicate that the electrogenic reaction linked to electron transfer to the catalytic site originates from charge transfer within the K pathway, which presumably facilitates reduction of the site.  相似文献   

5.
Cytochrome c oxidase is a large intrinsic membrane protein designed to use the energy of electron transfer and oxygen reduction to pump protons across a membrane. The molecular mechanism of the energy conversion process is not understood. Other proteins with simpler, better resolved structures have been more completely defined and offer insight into possible mechanisms of proton transfer in cytochrome c oxidase. Important concepts that are illustrated by these model systems include the ideas of conformational change both close to and at a distance from the triggering event, and the formation of a transitory water-linked proton pathway during a catalytic cycle. Evidence for the applicability of these concepts to cytochrome c oxidase is discussed.  相似文献   

6.
Cytochrome c oxidase is an efficient energy transducer that reduces oxygen to water and converts the released chemical energy into an electrochemical membrane potential. As a true proton pump, cytochrome c oxidase translocates protons across the membrane against this potential. Based on a wealth of experiments and calculations, an increasingly detailed picture of the reaction intermediates in the redox cycle has emerged. However, the fundamental mechanism of proton pumping coupled to redox chemistry remains largely unresolved. Here we examine and extend a kinetic master-equation approach to gain insight into redox-coupled proton pumping in cytochrome c oxidase. Basic principles of the cytochrome c oxidase proton pump emerge from an analysis of the simplest kinetic models that retain essential elements of the experimentally determined structure, energetics, and kinetics, and that satisfy fundamental physical principles. The master-equation models allow us to address the question of how pumping can be achieved in a system in which all reaction steps are reversible. Whereas proton pumping does not require the direct modulation of microscopic reaction barriers, such kinetic gating greatly increases the pumping efficiency. Further efficiency gains can be achieved by partially decoupling the proton uptake pathway from the active-site region. Such a mechanism is consistent with the proposed Glu valve, in which the side chain of a key glutamic acid shuttles between the D channel and the active-site region. We also show that the models predict only small proton leaks even in the absence of turnover. The design principles identified here for cytochrome c oxidase provide a blueprint for novel biology-inspired fuel cells, and the master-equation formulation should prove useful also for other molecular machines. .  相似文献   

7.
Cytochrome c oxidase catalyzes the reduction of oxygen to water. This process is accompanied by the vectorial transport of protons across the mitochondrial or bacterial membrane ("proton pumping"). The mechanism of proton pumping is still a matter of debate. Many proposed mechanisms require structural changes during the reaction cycle of cytochrome c oxidase. Therefore, the structure of the cytochrome c oxidase was determined in the completely oxidized and in the completely reduced states at a temperature of 100 K. No ligand exchanges or other major structural changes upon reduction of the cytochrome c oxidase from Paracoccus denitrificans were observed. The three histidine Cu(B) ligands are well defined in the oxidized and in the reduced states. These results are hardly compatible with the "histidine cycle" mechanisms formulated previously.  相似文献   

8.
The current status of our knowledge about the mechanism of proton pumping by cytochrome oxidase is discussed. Significant progress has resulted from the study of site-directed mutants within the proton-conducting pathways of the bacterial oxidases. There appear to be two channels to facilitate proton translocation within the enzyme and they are important at different parts of the catalytic cycle. The use of hydrogen peroxide as an alternative substrate provides a very useful experimental tool to explore the enzymology of this system, and insights gained from this approach are described. Proton transfer is coupled to and appears to regulate the rate of electron transfer steps during turnover. It is proposed that the initial step in the reaction involves a proton transfer to the active site that is important to convert metal-ligated hydroxide to water, which can more rapidly dissociate from the metals and allow the reaction with dioxygen which, we propose, can bind the one-electron reduced heme-copper center. Coordinated movement of protons and electrons over both short and long distances within the enzyme appear to be important at different parts of the catalytic cycle. During the initial reduction of dioxygen, direct hydrogen transfer to form a tyrosyl radical at the active site seems likely. Subsequent steps can be effectively blocked by mutation of a residue at the surface of the protein, apparently preventing the entry of protons.  相似文献   

9.
Using electrostatic calculations, we have examined the dependence of the protonation state of cytochrome c oxidase from bovine heart on its redox state. Based on these calculations, we propose a possible scheme of redox-linked proton pumping. The scheme involves His291 - one of the ligands of the Cu(B) redox center - which plays the role of the proton loading site (PLS) of the pump. The mechanism of pumping is based on ET reaction between two hemes of the enzyme, which is coupled to a transfer of two protons. Upon ET, the first proton (fast reaction) is transferred to the PLS (His291), while subsequent transfer of the second "chemical" proton to the binuclear center (slow reaction) is accompanied by the ejection of the first (pumped) proton. Within the proposed model, we discuss the catalytic cycle of the enzyme.  相似文献   

10.
The transient kinetics of proton pumping and the electron transfer properties of cytochrome oxidase inserted into small unilamellar vesicles have been investigated by stopped-flow spectrophotometry. In the presence of valinomycin, proton pumping and cytochrome c oxidation by cytochrome oxidase are synchronous up to rate constants of approximately 9 sec-1. Moreover, the enzyme depleted of subunit III ("three-less oxidase") was also shown to pump protons, although with a significantly smaller stoichiometry. Thus, subunit III is not the only (or even the main) proton channel, although it may be involved in the regulation of activity. The kinetics of cytochrome c oxidation by COV in the absence and in the presence of ionophores have been investigated. Analysis of the time course of the process in the transient and steady state phases indicates that the onset of control by the electrochemical gradient follows the transfer of four electrons, i.e., one complete turnover of the oxidase. Two possible alternative interpretations for the control of the turnover phase are presented and discussed.  相似文献   

11.
Heme-copper oxidases are membrane-bound proteins that catalyze the reduction of O(2) to H(2)O, a highly exergonic reaction. Part of the free energy of this reaction is used for pumping of protons across the membrane. The ba(3) oxidase from Thermus thermophilus presumably uses a single proton pathway for the transfer of substrate protons used during O(2) reduction as well as for the transfer of the protons that are pumped across the membrane. The pumping stoichiometry (0.5 H(+)/electron) is lower than that of most other (mitochondrial-like) oxidases characterized to date (1?H(+)/electron). We studied the pH dependence and deuterium isotope effect of the kinetics of electron and proton transfer reactions in the ba(3) oxidase. The results from these studies suggest that the movement of protons to the catalytic site and movement to a site located some distance from the catalytic site [proposed to be a "proton-loading site" (PLS) for pumped protons] are separated in time, which allows individual investigation of these reactions. A scenario in which the uptake and release of a pumped proton occurs upon every second transfer of an electron to the catalytic site would explain the decreased proton pumping stoichiometry compared to that of mitochondrial-like oxidases.  相似文献   

12.
In this paper, the mechanism of proton pumping in cytochrome c oxidase is examined. Data on cooperative linkage of vectorial proton translocation to oxido-reduction of Cu(A) and heme a in the CO-inhibited, liposome-reconstituted bovine cytochrome c oxidase are reviewed. Results on proton translocation associated to single-turnover oxido-reduction of the four metal centers in the unliganded, membrane-reconstituted oxidase are also presented. On the basis of these results, X-ray crystallographic structures and spectrometric data for a proton pumping model in cytochrome c oxidase is proposed. This model, which is specifically derived from data available for the bovine cytochrome c oxidase, is intended to illustrate the essential features of cooperative coupling of proton translocation at the low potential redox site. Variants will have to be introduced for those members of the heme copper oxidase family which differ in the redox components of the low potential site and in the amino acid network connected to this site. The model we present describes in detail steps of cooperative coupling of proton pumping at the low potential Cu(A)-heme a site in the bovine enzyme. It is then outlined how this cooperative proton transfer can be thermodynamically and kinetically coupled to the chemistry of oxygen reduction to water at the high potential Cu(B)-heme a(3) center, so as to result in proton pumping, in the turning-over enzyme, against a transmembrane electrochemical proton gradient of some 250 mV.  相似文献   

13.
Cytochrome c oxidase (CcO) is the terminal enzyme in the respiratory electron transport chain of aerobic organisms. It catalyses the reduction of atmospheric oxygen to water, and couples this reaction to proton pumping across the membrane; this process generates the electrochemical gradient that subsequently drives the synthesis of ATP. The molecular details of the mechanism by which electron transfer is coupled to proton pumping in CcO is poorly understood. Recent calculations from our group indicate that His291, a ligand of the Cu(B) center of the enzyme, may play the role of the pumping element. In this paper we describe calculations in which a DFT/continuum electrostatic method is used to explore the coupling of the conformational changes of Glu242 residue, the main proton donor of both chemical and pump protons, to its pKa, and the pKa of His291, a putative proton loading site of our pumping model. The computations are done for several redox states of metal centers, different protonation states of Glu242 and His291, and two well-defined conformations of the Glu242 side chain. Thus, in addition to equilibrium redox/protonation states of the catalytic cycle, we also examine the transient and intermediate states. Different dielectric models are employed to investigate the robustness of the results, and their viability in the light of the proposed proton pumping mechanism of CcO. The main results are in agreement with the experimental measurements and support the proposed pumping mechanism. Additionally, the present calculations indicate a possibility of gating through conformational changes of Glu242; namely, in the pumping step, we find that Glu242 needs to be reprotonated before His291 can eject a proton to the P-site of membrane. As a result, the reprotonation of Glu can control proton release from the proton loading site.  相似文献   

14.
A combined DFT/electrostatic approach is employed to study the coupling of proton and electron transfer reactions in cytochrome c oxidase (CcO) and its proton pumping mechanism. The coupling of the chemical proton to the internal electron transfer within the binuclear center is examined for the O→E transition. The novel features of the His291 pumping model are proposed, which involve timely well-synchronized sequence of the proton-coupled electron transfer reactions. The obtained pK(a)s and E(m)s of the key ionizable and redox-active groups at the different stages of the O→E transition are consistent with available experimental data. The PT step from E242 to H291 is examined in detail for various redox states of the hemes and various conformations of E242 side-chain. Redox potential calculations of the successive steps in the reaction cycle during the O→E transition are able to explain a cascade of equilibria between the different intermediate states and electron redistribution between the metal centers during the course of the catalytic activity. All four electrometric phases are discussed in the light of the obtained results, providing a robust support for the His291 model of proton pumping in CcO.  相似文献   

15.
《BBA》2013,1827(7):826-833
The membrane-bound enzyme cNOR (cytochrome c dependent nitric oxide reductase) catalyzes the reduction of NO in a non-electrogenic process. This is in contrast to the reduction of O2 in cytochrome c oxidase (CcO), the other member of the heme-copper oxidase family, which stores energy by the generation of a membrane gradient. This difference between the two enzymes has not been understood, but it has been speculated to be of kinetic origin, since per electron the NO reduction is more exergonic than the O2 reduction, and the energy should thus be enough for an electrogenic process. However, it has not been clear how and why electrogenicity, which mainly affects the thermodynamics, would slow down the very exergonic NO reduction. Quantum chemical calculations are used to construct a free energy profile for the catalytic reduction of NO in the active site of cNOR. The energy profile shows that the reduction of the NO molecules by the enzyme and the formation of N2O are very exergonic steps, making the rereduction of the enzyme endergonic and rate-limiting for the entire catalytic cycle. Therefore the NO reduction cannot be electrogenic, i.e. cannot take electrons and protons from the opposite sides of the membrane, since it would increase the endergonicity of the rereduction when the gradient is present, thereby increasing the rate-limiting barrier, and the reaction would become too slow. It also means that proton pumping coupled to electron transfer is not possible in cNOR. In CcO the corresponding rereduction of the enzyme is very exergonic.  相似文献   

16.
Cytochrome c oxidase is a multisubunit membrane-bound enzyme, which catalyzes oxidation of four molecules of cytochrome c2+ and reduction of molecular oxygen to water. The electrons are taken from one side of the membrane while the protons are taken from the other side. This topographical arrangement results in a charge separation that is equivalent to moving one positive charge across the membrane for each electron transferred to O2. In this reaction part of the free energy available from O2 reduction is conserved in the form of an electrochemical proton gradient. In addition, part of the free energy is used to pump on average one proton across the membrane per electron transferred to O2. Our understanding of the molecular design of the machinery that couples O2 reduction to proton pumping in oxidases has greatly benefited from studies of so called “uncoupled” structural variants of the oxidases. In these uncoupled oxidases the catalytic O2-reduction reaction may display the same rates as in the wild-type CytcO, yet the electron/proton transfer to O2 is not linked to proton pumping. One striking feature of all uncoupled variants studied to date is that the (apparent) pKa of a Glu residue, located deeply within a proton pathway, is either increased or decreased (from 9.4 in the wild-type oxidase). The altered pKa presumably reflects changes in the local structural environment of the residue and because the Glu residue is found near the catalytic site as well as near a putative exit pathway for pumped protons these changes are presumably important for controlling the rates and trajectories of the proton transfer. In this paper we summarize data obtained from studies of uncoupled structural oxidase variants and present a hypothesis that in quantitative terms offers a link between structural changes, modulation of the apparent pKa and uncoupling of proton pumping from O2 reduction.  相似文献   

17.
Electrostatic control of proton pumping in cytochrome c oxidase   总被引:2,自引:0,他引:2  
As part of the mitochondrial respiratory chain, cytochrome c oxidase utilizes the energy produced by the reduction of O2 to water to fuel vectorial proton transport. The mechanism coupling proton pumping to redox chemistry is unknown. Recent advances have provided evidence that each of the four observable transitions in the complex catalytic cycle consists of a similar sequence of events. However, the physico-chemical basis underlying this recurring sequence has not been identified. We identify this recurring pattern based on a comprehensive model of the catalytic cycle derived from the analysis of oxygen chemistry and available experimental evidence. The catalytic cycle involves the periodic repetition of a sequence of three states differing in the spatial distribution of charge in the active site: [0|1], [1|0], and [1|1], where the total charge of heme a and the binuclear center appears on the left and on the right, respectively. This sequence recurs four times per turnover despite differences in the redox chemistry. This model leads to a simple, robust, and reproducible sequence of electron and proton transfer steps and rationalizes the pumping mechanism in terms of electrostatic coupling of proton translocation to redox chemistry. Continuum electrostatic calculations support the proposed mechanism and suggest an electrostatic origin for the decoupled and inactive phenotypes of ionic mutants in the principal proton-uptake pathway.  相似文献   

18.
This review describes the development and application of photoactive ruthenium complexes to study electron transfer and proton pumping reactions in cytochrome c oxidase (CcO). CcO uses four electrons from Cc to reduce O(2) to two waters, and pumps four protons across the membrane. The electron transfer reactions in cytochrome oxidase are very rapid, and cannot be resolved by stopped-flow mixing techniques. Methods have been developed to covalently attach a photoactive tris(bipyridine)ruthenium group [Ru(II)] to Cc to form Ru-39-Cc. Photoexcitation of Ru(II) to the excited state Ru(II*), a strong reductant, leads to rapid electron transfer to the ferric heme group in Cc, followed by electron transfer to Cu(A) in CcO with a rate constant of 60,000s(-1). Ruthenium kinetics and mutagenesis studies have been used to define the domain for the interaction between Cc and CcO. New ruthenium dimers have also been developed to rapidly inject electrons into Cu(A) of CcO with yields as high as 60%, allowing measurement of the kinetics of electron transfer and proton release at each step in the oxygen reduction mechanism.  相似文献   

19.
Cytochrome c oxidase is a redox-driven proton pump, which couples the reduction of oxygen to water to the translocation of protons across the membrane. The recently solved x-ray structures of cytochrome c oxidase permit molecular dynamics simulations of the underlying transport processes. To eventually establish the proton pump mechanism, we investigate the transport of the substrates, oxygen and protons, through the enzyme. Molecular dynamics simulations of oxygen diffusion through the protein reveal a well-defined pathway to the oxygen-binding site starting at a hydrophobic cavity near the membrane-exposed surface of subunit I, close to the interface to subunit III. A large number of water sites are predicted within the protein, which could play an essential role for the transfer of protons in cytochrome c oxidase. The water molecules form two channels along which protons can enter from the cytoplasmic (matrix) side of the protein and reach the binuclear center. A possible pumping mechanism is proposed that involves a shuttling motion of a glutamic acid side chain, which could then transfer a proton to a propionate group of heme α3. Proteins 30:100–107, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

20.
Cytochrome c oxidase (CytcO) is a membrane-bound enzyme, which catalyzes the reduction of di-oxygen to water and uses a major part of the free energy released in this reaction to pump protons across the membrane. In the Rhodobacter sphaeroides aa? CytcO all protons that are pumped across the membrane, as well as one half of the protons that are used for O? reduction, are transferred through one specific intraprotein proton pathway, which holds a highly conserved Glu286 residue. Key questions that need to be addressed in order to understand the function of CytcO at a molecular level are related to the timing of proton transfers from Glu286 to a "pump site" and the catalytic site, respectively. Here, we have investigated the temperature dependencies of the H/D kinetic-isotope effects of intramolecular proton-transfer reactions in the wild-type CytcO as well as in two structural CytcO variants, one in which proton uptake from solution is delayed and one in which proton pumping is uncoupled from O? reduction. These processes were studied for two specific reaction steps linked to transmembrane proton pumping, one that involves only proton transfer (peroxy-ferryl, P→F, transition) and one in which the same sequence of proton transfers is also linked to electron transfer to the catalytic site (ferryl-oxidized, F→O, transition). An analysis of these reactions in the framework of theory indicates that that the simpler, P→F reaction is rate-limited by proton transfer from Glu286 to the catalytic site. When the same proton-transfer events are also linked to electron transfer to the catalytic site (F→O), the proton-transfer reactions might well be gated by a protein structural change, which presumably ensures that the proton-pumping stoichiometry is maintained also in the presence of a transmembrane electrochemical gradient. Furthermore, the present study indicates that a careful analysis of the temperature dependence of the isotope effect should help us in gaining mechanistic insights about CytcO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号