共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary A new approach for continuous production of ethanol was developed using a Hollow fiber fermentor (HFF). Saccharomyces cerevisiae cells were packed into the shell-side of a hollow fiber module. Using 100 g/l glucose in the feed gave an optimum ethanol productivity, based on total HFF volume, of 40 g ethanol/l/h at a dilution rate of 3.0 h-1. Under these conditions, glucose utilization was 30%. However, at 85% glucose utilization the productivity was 10 g ethanol/l/h. This compares to batch fermentor productivity of 2.1 g ethanol/l/h at 100% glucose utilization. 相似文献
2.
In this research a fuzzy controller was built to perform fed-batch cultures of Saccharomyces cerevisiae with a DO-stat method. The basic principle of fed-batch culture employing the DO-stat method is that a rapid increase of dissolved oxygen concentration due to a lack of substrate (the DO signal) is used as an indicator for substrate feeding. The proposed fuzzy controller can diagnose the state of fermentation and determine a proper feed rate of substrate for the culture of high density and high yield. The results indicate that cell concentration reached to 110?g/l and residual sugar kept below the level of 0.05?g/l. 相似文献
3.
Manee Tantirungkij Tamaki Izuishi Tatsuji Seki Toshiomi Yoshida 《Applied microbiology and biotechnology》1994,41(1):8-12
Mutants of xylose-assimilating recombinant Saccharomyces cerevisiae carrying the xylose reductase and xylitol dehydrogenase genes on plasmid pEXGD8 were selected, after ethyl methanesulfonate treatment, for their rapid growth on xylose medium. The fastest growing strain (strain IM2) showed a lower activity of xylose reductase but a higher ratio of xylitol dehydrogenase to xylose reductase activities than the parent strain, as well as high xylulokinase activity. Southern hybridization of the chromosomal DNA indicated that plasmid pEXGD8 was integrated into the chromosome of mutant IM2, resulting in an increase in the stability of the cloned genes. In batch fermentation under O2 limitation, the yield and production rate of ethanol were improved 1.6 and 2.7 times, respectively, compared to the parent strain. In fed-batch culture with slow feeding of xylose and appropriate O2 supply at a low level, xylitol excreted from the cells was limited and the ethanol yield increased 1.5 times over that in the batch culture, with a high initial concentration of xylose, although the production rate was reduced. The results suggested that slow conversion of xylose to xylitol led to a lower level of intracellular xylitol, resulting in less excretion of xylitol, and an increase in the ethanol yield. It was also observed that the oxidation of xylitol was strongly affected by the O2 supply.Correspondence to: T. Yoshida 相似文献
4.
Xylitol production by immobilized recombinant Saccharomyces cerevisiae in a continuous packed-bed bioreactor 总被引:2,自引:0,他引:2
Continuous xylitol production with two different immobilized recombinant Saccharomyces cerevisiae strains (H475 and S641), expressing low and high xylose reductase (XR) activities, was investigated in a lab-scale packed-bed bioreactor. The effect of hydraulic residence time (HRT; 1.3-11.3 h), substrate/cosubstrate ratio (0.5 and 1), recycling ratio (0, 5, and 10), and aeration (anaerobic and oxygen limited conditions) were studied. The cells were immobilized by gel entrapment using Ca-alginate as support and the beads were treated with Al(3+) to improve their mechanical strength. Xylose was converted to xylitol using glucose as cosubstrate for regeneration of NAD(P)H required in xylitol formation and for generation of maintenance energy. The stability of the recombinant strains after 15 days of continuous operation was evaluated by XR activity and plasmid retention analyses. Under anaerobic conditions the volumetric xylitol productivity increased with decreasing HRT with both strains. With a recycling ratio of 10, volumetric productivities as high as 3.44 and 5.80 g/L . h were obtained with the low XR strain at HRT 1.3 h and with the high XR strain at HRT 2.6 h, respectively. However, the highest overall xylitol yields on xylose and on cosubstrate were reached at higher HRTs. Lowering the xylose/cosubstrate ratio from 1 to 0.5 increased the overall yield of xylitol on xylose, but the productivity and the xylitol yield on cosubstrate decreased. Under oxygen limited conditions the effect of the recycling ratio on production parameters was masked by other factors, such as an accumulation of free cells in the bioreactor and severe genetic instability of the high XR strain. Under anaerobic conditions the instability was less severe, causing a decrease in XR activity from 0.15 to 0.10 and from 3.18 to 1.49 U/mg with the low and high XR strains, respectively. At the end of the fermentation, the fraction of plasmid bearing cells in the beads was close to 100% for the low XR strain; however, it was significantly lower for the high XR strain, particularly for cells from the interior of the beads. (c) 1996 John Wiley & Sons, Inc. 相似文献
5.
《Biochemical Engineering Journal》2007,33(3):248-252
We examined glucose 6-phosphate dehydrogenase (G6PD) production by fed-batch cultivation, using a recombinant strain of Saccharomyces cerevisiae W303-181 overexpressing this enzyme. The cultivations were carried out in a 3 L fermenter at pH 5.7, 30 °C, 2.0 vvm aeration, 200 rpm agitation and an inoculum concentration of 1.0 g/L. The volume of the culture medium in the fed-batch process varied from 1.333 to 2.0 L, due to the addition of 15.0 g/L glucose solution during 5 h. Different feeding rates were studied (exponentially increasing and decreasing feeding rates), and the feeding profile was determined by values of the parameter K (time constant), namely: 0.2, 0.5 and 0.8 h−1. The best enzyme production (847 U/L) was obtained with an exponentially increasing feeding rate and K = 0.2 h−1. The results attained also showed that this process is promising for G6PD production. 相似文献
6.
D. J. Pollard A. P. Ison P. Ayazi Shamlou M. D. Lilly 《Bioprocess and biosystems engineering》1997,16(5):273-281
The hydrodynamics (sectional gas holdup and liquid velocities) and oxygen transfer performance of a conventionally operated multiconfigurable pilot scale (0.25?m3) concentric airlift bioreactor containing baker's yeast were significantly improved by operating a marine propeller to draw liquid down the draft tube and aid recirculation at the base of the vessel. Propeller operation reduced the severe DOT heterogeneity of the reactor, which gave DOT values below 1% air saturation in the riser, by producing DOTs above 40% around the vessel at maximum energy dissipation rate. As a consequence the overall oxygen uptake rate (OUR) of the baker's yeast increased up to 3 fold with the total energy dissipation rate into the reactor until the lowest DOTs of the vessel were at or above 10%. The different degrees of heterogeneity generated by the two reactor configurations enabled the reactor to be used as a scale down tool to study the impact of heterogeneity on the physiology of fermentation broths. Comparison of the hydrodynamics and oxygen transfer between tall and short reactor heights revealed that the faster circulation times of the short reactor produced a greater improvement in the OUR with propeller operation even though similar DOT changes occurred around both sizes of reactor. This indicated that the yeast cells were responding to the rapid DOT changes around the vessel. 相似文献
7.
A diauxic fermentation was observed during batch fermentation of enzyme-hydrolyzed whey permeate to ethanol by Saccharomyces cerevisiae. Glucose was consumed before and much faster than galactose. In the continuous membrane recycle bioreactor (MRB), sugar utilization was a function of dilution rate and concentration of sugars. At a cell concentration of 160 kg/m3, optimum productivity was 31 kg/(m3 · h) at ethanol concentration of 65 kg/m3. Low levels of acetate (0.05–0.1 M) reduced cell growth during continuous fermentation, but also reduced galactose utilization. 相似文献
8.
Edlich A Magdanz V Rasch D Demming S Aliasghar Zadeh S Segura R Kähler C Radespiel R Büttgenbach S Franco-Lara E Krull R 《Biotechnology progress》2010,26(5):1259-1270
A diffusion-based microreactor system operated with a reaction volume of 8 μL is presented and characterized to intensify the process understanding in microscale cultivations. Its potential as screening tool for biological processes is evaluated. The advantage of the designed microbioreactor is the use for the continuous cultivation mode by integrating online measurement technique for dissolved oxygen (DO) and optical density (OD). A further advantage is the broaden application for biological systems. The bioreactor geometry was chosen to achieve homogeneous flow during continuous process operation. The device consisted of a microstructured top layer made of poly(dimethylsiloxane) (PDMS), which was designed and fabricated using UV-depth and soft lithography assembled with a glass bottom. CFD simulation data used for geometry design were verified via microparticle-image-velocimetry (μPIV). In the used microreactor geometry no concentration gradients occurred along the entire reaction volume because of rapid diffusive mixing, the homogeneous medium flow inside the growth chamber of the microreactor could be realized. Undesirable bubble formation before and during operation was reduced by using degassed medium as well as moistened and moderate incident air flow above the gas permeable PDMS membrane. Because of this a passive oxygen supply of the culture medium in the device is ensured by diffusion through the PDMS membrane. The oxygen supply itself was monitored online via integrated DO sensors based on a fluorescent dye complex. An adequate overall volumetric oxygen transfer coefficient K(L)a as well as mechanical stability of the device were accomplished for a membrane thickness of 300 μm. Experimental investigations considering measurements of OD (online) and several metabolite concentrations (offline) in a modified Verduyn medium. The used model organism Saccharomyces cerevisiae DSM 2155 tended to strong reactor wall growth resembling a biofilm. 相似文献
9.
A fed-batch process is used for the production of concentrated pure fructose syrup and ethanol from various glucose/fructose mixtures by S. cerevisiae ATCC 36859. Applying this technique, glucose-free fructose syrups with over 250 g/l of this sugar were obtained using High Fructose Corn Syrup and hydrolyzed Jerusalem artichoke juice. By encouraging ethanol evaporation from the reactor and condensing it, a separate ethanol product with a concentration of up to 350 g/l was also produced. The rates of glucose consumption and ethanol production were higher than in classical batch ethanol fermentation processes. 相似文献
10.
酿酒酵母分批补料培养中,葡萄糖添加过量会导致乙醇大量积累,破坏细胞结构及功能,降低葡萄糖利用效率;葡萄糖添加不足会限制细胞生长。为解决这一矛盾,提出了一种基于差分进化算法的在线自适应控制策略,并利用计算机仿真方法对该策略、传统的间歇流加、分段恒速流加及PID控制策略的控制性能进行了研究和比较。结果表明,在该控制策略下,发酵液中的乙醇浓度能够被稳定地控制在1g/L的低水平,而细胞浓度却达到34.45g/L的高水平,比采用间歇流加、分段恒速流加及PID控制策略的批次分别提高了243%、18%和29%。由此可知,该自适应控制策略能够将葡萄糖流加速率控制在适宜水平,避免乙醇过量积累的同时保证细胞的快速增殖。 相似文献
11.
Batch kinetics of polyhydroxybutyrate (PHB) synthesis in a bioreactor under controlled conditions of pH and dissolved oxygen gave a biomass of 14 g l(-1) with a PHB concentration of 6.1 g l(-1) in 60 h. The data of the batch kinetics was used to develop a mathematical model, which was then extrapolated to fed-batch by incorporating the dilution due to substrate feeding. Offline computer simulation of the fed-batch model was done to develop the nutrient feeding strategies in the fed-batch cultivation. Fed-batch strategies with constant feeding of only nitrogen and constant feeding of both nitrogen and fructose were tried. Constant feeding strategy for nitrogen and fructose gave a better PHB production rate of 0.56 g h(-1) over the value obtained in batch cultivation (PHB production rate - 0.4 g h(-1)). 相似文献
12.
An increase in Brestan concentration in nutrient media decreased the content of protein, phosphorus, total ribonucleic acid,
activity of pyruvate carboxylase and isocitrate lyase in cells ofSaccharomyces cerevisiae parent strain and respiratory deficient (RD) mutant while the trehalose content increased. The respiration quotient value
for the RD mutant was higher than for the parent strain. The RD mutant lacked cytochromeaa
3; cytochromec andb contents were lower than those of the parent strain. 相似文献
13.
D. J. Pollard P. Ayazi Shamlou M. D. Lilly A. P. Ison 《Bioprocess and biosystems engineering》1996,15(5):279-290
Hydrodynamic and oxygen transfer comparisons were made between two ring sparger locations, draft tube and annulus, in a concentric
pilot scale airlift reactor with a baker's yeast suspension. Sectional hydrodynamic measurements were made and a mobile DOT
probe was used to characterise the oxygen transfer performance through the individual sections of the reactor.
The hydrodynamic performance of the reactor was improved by using a draft tube ring sparger rather than the annulus ring sparger.
This was due to the influence of the ratio of the cross sectional area of the downcomer and riser (A
D/AR) in conjunction with the effect of liquid velocity and a parameter,C
0, describing the distribution of the liquid velocity and gas holdup across the riser on the bubble coalescence rates.
The mixing performance of the reactor was dominated by the frequency of the passage of the broth through the end sections
of the reactor. An optimum liquid height above the draft tube, for liquid mixing was demonstrated, above which no further
improvement in mixing occurred. The liquid velocity and degree of gas entrainment showed little dependency on top section
size for both sparger configurations.
Extreme dissolved oxygen heterogeneity was demonstrated around the vessel with both sparger configurations and was shown to
be detrimental to the oxygen uptake rate of the baker's yeast. Dissolved oxygen tensions below 1% air saturation occurred
along the length of the riser and then rose in the downcomer. The greater oxygen transfer rate in the downcomer than in the
riser was caused by the combined effects of a larger slip velocity in the downcomer which enhancedk
La and gas residence time, high downcomer gas holdup, and the change in bubble size distribution between the riser and downcomer.
The position of greatest oxygen transfer rate in the downcomer was shown to be affected by the reactor from the influence
on downcomer liquid linear velocity.
UCL is the Biotechnology and Biological Sciences Research Council sponsored Advanced Centre for Biochemical Engineering and
the Council's support is greatly acknowledged. 相似文献
14.
AIMS: The present investigation deals with the development of thermotolerant mutant strain of yeast for studying enhanced productivity of ethanol from molasses in a fully controlled bioreactor. METHODS AND RESULTS: The parental culture of Saccharomyces cerevisiae ATCC 26602 was mutated using UV treatment. A single thermotolerant mutant was isolated after extensive screening and optimization, and grown on molasses medium in liquid cultures. The mutant was 1.45-fold improved than its wild parent with respect to ethanol productivity (7.2 g l-1 h-1), product yield (0.44 g ethanol g-1 substrate utilized) and specific ethanol yield (19.0 g ethanol g-1 cells). The improved ethanol productivity was directly correlated with titres of intracellular and extracellular invertase activities. The mutant supported higher volumetric and product yield of ethanol, significantly (P相似文献
15.
酿酒酵母S.cerevisiae高密度培养条件优化研究 总被引:9,自引:0,他引:9
考察了培养基组成和培养条件对酿酒酵母Saccharomyces cerevisiae发酵的影响。以TB培养基为初始培养基,通过正交实验设计优化培养基组成,确定了影响酵母细胞产量最主要的因素是葡萄糖,最适培养基组成为:酪蛋白胨15 g/L,酵母粉25 g/L,葡萄糖30 g/L,KH2PO42.4g/L,K2HPO4.3H2O 16.34 g/L。并确定了最佳培养条件:温度30℃,转速150 r/min。采用优化培养基及培养条件下进行发酵,菌液最高OD600值和细胞密度分别达15.82和2.03×108/mL,比优化前分别提高24.2%和22.0%。 相似文献
16.
Continuous production of a recombinant murine granulocyte-macrophage colony-stimulating factor (MuGM-CSF) by immobilized yeast cells, Saccharomyces cerevisiae strain XV2181 (a/a, Trp1) containing plasmid palphaADH2, in a fluidized bed bioreactor was studied at a 0.03 h(-1) dilution rate and various particle loading rates ranging from 5% to 33% (v/v). Cells were immobilized on porous glass beads fluidized in an air-lift draft tube bioreactor. A selective medium containing glucose was used to start up the reactor. After reaching a stable cell concentration, the reactor feed was switched to a rich, nonselective medium containing ethanol as the carbon source for GM-CSF production. GM-CSF production increased initially and then dropped gradually to a stable level. During the same period, the fraction of plasmid-carrying cells declined continuously to a lower level, depending on the particle loading. The relatively stable GM-CSF production, despite the large decline in the fraction of plasmid-carrying cells, was attributed to cell immobilization. As the particle loading rate increased, the plasmid stability also increased. Also, as the particle loading increased from 5% to 33%, total cell density in the bioreactor increased from 16 to 36 g/L, and reactor volumetric productivity increased from 0.36 to 1.31 mg/L.h. However, the specific productivity of plasmid-carrying cells decreased from 0.55 to 0.07 mg/L.g cell. The decreased specific productivity at higher particle loading rates was attributed to reduced growth efficiency caused by nutrient limitations at higher cell densities. Both the reactor productivity and specific cell productivity increased by two- to threefold or higher when the dilution rate was increased from 0.03 to 0.07 h(-1). (c) 1996 John Wiley & Sons, Inc. 相似文献
17.
Increase in air or oxygen pressure in microbial cell cultures can cause oxidative stress and consequently affect cell physiology and morphology. The behaviour of Saccharomyces cerevisiae grown under hyperbaric atmospheres of air and pure oxygen was studied. A limit of 1.0 MPa for the air pressure increase (i.e. 0.21 MPa of oxygen partial pressure) in a fed-batch culture of S. cerevisiae was established. Values of 1.5 MPa air pressure and 0.32 MPa pure oxygen pressure strongly inhibited the metabolic activity and the viability of the cells. Also, morphological changes were observed, especially cell-size distribution and the genealogical age profile. Pressure caused cell compression and an increase in number of aged cells. These effects were attributed to oxygen toxicity since similar results were obtained using air or oxygen, if oxygen partial pressure was equal to or higher than 0.32 MPa. The activity of the antioxidant enzymes, catalase and superoxide dismutase (SOD) (cytosolic and mitochondrial isoformes) indicated that the enzymes have different roles in oxidative stress cell protection, depending on other factors that affect the cell physiological state. 相似文献
18.
An increase of biotin concentration in nutrient media increased the content of protein, phosphorus, total ribonucleic acids, activity of pyruvate carboxylase and isocitrate lyase in cells and decreased the content of trehalose, glycogen and respiratory quotient of yeast cells in the course of continuous cultivation of Saccharomyces cerevisiae. 相似文献
19.
Fed-batch culture of Bacillus thuringiensis in a modified airlift reactor has been developed by using adaptive control of glucose concentration in the reactor. The glucose concentration was estimated via a correlation equation between carbon dioxide production rate and glucose consumption rate. The estimated glucose concentration as the output variable was fed back to computer for calculation of substrate addition. The modified reactor was an airlift reactor with a net draft tube. The airlift reactor had high oxygen transfer rate and low shear stress which were important factors for production of thuringiensin. Fed-batch culture of Bacillus thuringiensis in the modified airlift reactor provided significant improvement of thuringiensin production. (c) 1995 John Wiley & Sons, Inc. 相似文献
20.
Furfural is an important inhibitor of yeast metabolism in lignocellulose-derived substrates. The effect of furfural on the physiology of Saccharomyces cerevisiae CBS 8066 was investigated using anaerobic continuous cultivations. Experiments were performed with furfural in the feed medium (up to 8.3 g/L) using three different dilution rates (0.095, 0.190, and 0.315 h(-1)). The measured concentration of furfural was low (< 0.1 g/L) at all steady states obtained. However, it was not possible to achieve a steady state at a specific conversion rate of furfural, q(f), higher than approximately 0.15 g/g.h. An increased furfural concentration in the feed caused a decrease in the steady-state glycerol yield. This agreed well with the decreased need for glycerol production as a way to regenerate NAD+, i.e., to function as a redox sink because furfural was reduced to furfuryl alcohol. Transient experiments were also performed by pulse addition of furfural directly into the fermentor. In contrast to the situation at steady-state conditions, both glycerol and furfuryl alcohol yields increased after pulse addition of furfural to the culture. Furthermore, the maximum specific conversion rate of furfural (0.6 g/g.h) in dynamic experiments was significantly higher than what was attainable in the chemostat experiments. The dynamic furfural conversion could be described by the use of a simple Michaelis-Menten-type kinetic model. Also furfural conversion under steady-state conditions could be explained by a Michaelis-Menten-type kinetic model, but with a higher affinity and a lower maximum conversion rate. This indicated the presence of an additional component with a higher affinity, but lower maximum capacity, either in the transport system or in the conversion system of furfural. 相似文献