共查询到20条相似文献,搜索用时 15 毫秒
1.
S K Moestrup K Kaltoft L Sottrup-Jensen J Gliemann 《The Journal of biological chemistry》1990,265(21):12623-12628
The receptor for alpha 2-macroglobulin-proteinase complexes (alpha 2MR) was purified recently, and its binding of ligand was shown to depend on calcium ions (Moestrup, S. K., and Gliemann, J. (1989) J. Biol. Chem. 264, 15574-15577). This paper shows that the 440-kDa human placental alpha 2MR is a cysteine-rich glycoprotein with high affinity calcium binding sites important for receptor conformation; and the relationship between Ca2+ concentration and receptor function is presented. Autoradiography showed 45Ca2+ binding to the 440-kDa alpha 2MR blotted onto nitrocellulose from a sodium dodecyl sulfate-polyacrylamide gel. alpha 2MR immobilized on nitrocellulose in the absence of sodium dodecyl sulfate bound 45Ca2+ in the presence of 5 mM Mg2+, and 2-3 microM unlabeled Ca2+ was required to displace half of the bound 45Ca2+. The calcium concentration dependence showed upward concave Scatchard plots, and the number of binding sites was estimated to be approximately eight/alpha 2MR molecule. Binding of calcium did not change in the pH range 6.5-8.0 but decreased at lower pH values. Addition of Ca2+ to the medium was necessary for receptor binding of the alpha 2-macroglobulin-trypsin complex, and half of the maximal binding capacity was obtained with about 16 micrograms Ca2+ at pH 7.8. The requirement for calcium was increased at lower pH values, and half of the maximal 125I-alpha 2M-trypsin binding was obtained with about 30-40 microM Ca2+ at pH 7.0. Monoclonal antibodies were produced against alpha 2MR, and one of them distinguished between the Ca2(+)-occupied and nonoccupied forms. Like Ca2+, Sr2+ and Ba2+ elicited ligand binding affinity and competed for binding with 45Ca2+ in the order Ca2+ greater than Sr2+ greater than Ba2+. In conclusion, calcium ions bind specifically to alpha 2MR with high affinity, and it is likely that several sites on the alpha 2MR molecule have to be occupied to elicit the conformation recognizing the ligand. 相似文献
2.
The alpha 2-macroglobulin receptor was solubilized from human placental membranes, purified and characterized. Affinity cross-linking of labelled ligand to intact membranes showed a receptor size compatible with 400-500 kDa. The membranes were solubilized in 3-[(3-cholamidopropyl)dimethylammonio]propane sulfonate (CHAPS) and affinity chromatography was performed using Sepharose-immobilized alpha 2-macroglobulin-methylamine with elution in buffer containing 2 mM EDTA, pH 6.0. SDS-PAGE of the resulting receptor preparation showed a predominant approx. 440 kDa band (reducing conditions) and some minor accompanying proteins of 70-90 kDa and 40 kDa. The yield was 400-800 micrograms receptor preparation per placenta. The receptor preparation immobilized on nitrocellulose bound the alpha 2-macroglobulin-trypsin complex with a dissociation constant of about 400 pM. 125I-iodinated receptor preparation bound almost quantitatively to Sepharose-immobilized alpha 2-macroglobulin-methylamine in the presence of CHAPS alone, and bound 70-80% in the presence of 0.2% SDS. The labelled proteins were separated in the presence of 0.2% SDS by gel filtration or SDS-PAGE (unboiled samples). The 440 kDa protein accounted for the major part of the binding, although some approx. 80 kDa proteins, perhaps proteolytic degradation products, also showed binding activity. 相似文献
3.
N Boisset J C Taveau M Barray F Van Leuven E Delain J N Lamy 《Biology of the cell / under the auspices of the European Cell Biology Organization》1988,64(1):45-55
Alpha 2-macroglobulin (alpha 2M) is a plasma inhibitor of proteinases, the steric mechanism of which is based on a considerable conformational change. The typical and distinct H-like shape of alpha 2M-chymotrypsin (alpha 2M-chy) complexes seen by electron microscopy led us to an ultrastructural study of the binding of a monoclonal antibody (Mab) specific for this conformation of alpha 2M. The epitope of this Mab is located near the extremities of the 4 arms of the H-like alpha 2M-chy, at a site that is not accessible on the native molecule. The identical binding of the Mab on the 4 arms of the tetrameric molecule demonstrates that these arms are equivalent portions of the 4 monomers. Various types of immune complexes between alpha 2M and IgG are described, and images of individual immune complexes were processed by correspondence analysis. This extracts new information concerning the organization of chymotrypsin-transformed alpha 2M. The molecule appears asymmetrical, presents 2 conformational states (which we describe as relaxed and twisted), and has flexible arms. These intramolecular motions are supposed to be related to IgG binding. The results are discussed in comparison with previously published models of proteinase-transformed alpha 2M. 相似文献
4.
P G Prokopenko 《Biulleten' eksperimental'no? biologii i meditsiny》1977,84(8):210-213
Renospecific alpha2-macroglobulin (RS) with molecular weight 2 000 000 was identified by methods of immunochemical analysis. The revealed antigen was not identical to alpha2H-globulin (ferritin), to reno-pancreatic alpha2-globulin, uromucoid and alpha 2-macroglobulin of blood serum. The RS alpha2-macroglobulin content in the tumour tissue of the kidney decreased as compared to that in the normal kidney, in 16 of 23 tumors it was not revealed. On the sensitivity level of the monospecific RS alpha2-macroglobulin test-system it was not demonstrated in the blood of healthy persons and in the blood and urine of nephrologic patients. 相似文献
5.
S K Moestrup K Kaltoft C M Petersen S Pedersen J Gliemann E I Christensen 《Experimental cell research》1990,190(2):195-203
The alpha 2-macroglobulin receptor was recently purified from rat liver and human placenta. Three different monoclonal antibodies have now been raised against the human receptor and expression of the 440-kDa receptor protein is demonstrated in human placenta, fibroblasts, liver, and monocytes by immunoblot analysis. Flow cytometric studies showed that anti-alpha 2-macroglobulin receptor monoclonal antibodies bind to 90-100% of the blood monocyte population and not to other blood cells. This defines the alpha 2-macroglobulin receptor as a monocyte differentiation antigen, different from any of the classified leucocyte cluster determinants. Electron microscopic gold immunocytochemistry revealed the subcellular distribution of the receptor in human cultured monocytes and fibroblasts. In these cells, 18-33% of the gold particles were found on the outside of the plasma membrane, and in fibroblasts, especially, in coated invaginations. The intracellular receptors were mainly distributed in vesicles and tubular structures. 相似文献
6.
Two characteristics of highly malignant cells are their increased motility and secretion of proteinases allowing these cells to penetrate surrounding basement membranes and metastasize. Activation of 21-kDa activated kinases (PAKs) is an important mechanism for increasing cell motility. Recently, we reported that binding of receptor-recognized forms of the proteinase inhibitor alpha2-macroglobulin (alpha2M*) to GRP78 on the cell surface of 1-LN human prostate cancer cells induces mitogenic signaling and cellular proliferation. In the current study, we have examined the ability of alpha2M* to activate PAK-1 and PAK-2. Exposure of 1-LN cells to alpha2M* caused a 2- to 3-fold increase in phosphorylated PAK-2 and a similar increase in its kinase activity toward myelin basic protein. By contrast, the phosphorylation of PAK-1 was only negligibly affected. Silencing the expression of the GRP78 gene, using either of two different mRNA sequences, greatly attenuated the appearance of phosphorylated PAK-2 in alpha2M*-stimulated cells. Treatment of 1-LN cells with alpha2M* caused translocation of PAK-2 in association with NCK to the cell surface as evidenced by the co-immunoprecipitation of PAK-2 and NCK in the GRP78 immunoprecipitate from plasma membranes. alpha2M*-induced activation of PAK-2 was inhibited by prior incubation of the cells with specific inhibitors of tyrosine kinases and phosphatidylinositol 3-kinase. PAK-2 activation was accompanied by significant increases in the levels of phosphorylated LIMK and phosphorylated cofilin. Silencing the expression of the PAK-2 gene greatly attenuated the phosphorylation of LIMK. In conclusion, we show for the first time the activation of PAK-2 in 1-LN prostate cancer cells by a proteinase inhibitor, alpha2-macroglobulin. These studies suggest a mechanism by which alpha2M* enhances the metastatic potential of these cells. 相似文献
7.
Evolution of alpha 2-macroglobulin. The demonstration in a variety of vertebrate species of a protein resembling human alpha 2-macroglobulin. 总被引:3,自引:2,他引:3
下载免费PDF全文
![点击此处可从《The Biochemical journal》网站下载免费的PDF全文](/ch/ext_images/free.gif)
The amino acid sequence of the Pronase-released heads of neuraminidase subtype N2 from the A/Tokyo/3/67 strain of influenza virus was determined by a combination of peptide and nucleic acid sequence analysis. The results show that the Pronase-released heads contain 396 amino acid residues and extend from residue 74 in the original protein to the C-terminus at residue 469. The heads contain five potential glycosylation sites at asparagine residues 86, 146, 200, 234 and 402, but only the first four are glycosylated. The sequence homology with the corresponding region of the previously published sequence of the neuraminidase subtype N1 [Fields, Winter & Brownlee (1981) Nature (London) 290, 213-217] is 45%. Detailed evidence for the sequence data has been deposited as Supplementary Publication SUP 50116 (14 pages) at the British Library Lending Division, Boston Spa, Wetherby, West Yorkshire LS23 7BQ, U.K., from whom copies may be obtained on the terms given in Biochem. J. (1981) 193, 5. 相似文献
8.
9.
Isolation and renaturation of alpha 2-macroglobulin receptor from diploid human fibroblasts. 总被引:1,自引:0,他引:1
下载免费PDF全文
![点击此处可从《The Biochemical journal》网站下载免费的PDF全文](/ch/ext_images/free.gif)
alpha 2-Macroglobulin receptor was extracted from human diploid fibroblasts and purified by affinity chromatography in a single step. The receptor had mol.wt. 125 000 after sodium dodecyl sulphate (SDS)/polyacrylamide-gel electrophoresis. The isolated receptor was separated by SDS/polyacrylamide-gel electrophoresis, transferred on to nitrocellulose sheets and subsequently renatured, as shown by a specific binding test, by incubation with Nonidet P40. 相似文献
10.
Carbohydrates were characterized in the human placental alpha 2-macroglobulin receptor and its associated protein. Carbohydrates, largely N-linked, contributed to about 18% of the size of the receptor alpha-chain and to about 25% of the beta-chain. The 40 kDa receptor-associated protein also contained carbohydrate. The alpha- and beta-chains contained a wide variety of carbohydrates as judged by binding of lectins. Monosaccharide-competing inhibition of alpha 2M-methylamine binding by WGA suggested a functional significance of sugars in binding of ligands to the alpha-chain. 相似文献
11.
Human alpha(2)-macroglobulin-proteinase complexes bind to their receptor, the low density lipoprotein receptor-related protein (LRP), through a discrete 138-residue C-terminal receptor binding domain (RBD), which also binds to the beta-amyloid peptide. We have used NMR spectroscopy on recombinantly expressed uniformly (13)C/(15)N-labeled human RBD to determine its three-dimensional structure in solution. Human RBD is a sandwich of two antiparallel beta-sheets, one four-strand and one five-strand, and also contains one alpha-helix of 2.5 turns and an additional 1-turn helical region. The principal alpha-helix contains two lysine residues on the outer face that are known to be essential for receptor binding. A calcium binding site (K(d) approximately 11 mM) is present in the loop region at one end of the beta-sandwich. Calcium binding principally affects this loop region and does not significantly perturb the stable core structure of the domain. The structure and NMR assignments will enable us to examine in solution specific binding of RBD to domains of the receptor and to beta-amyloid peptide. 相似文献
12.
Human alpha 2-macroglobulin (alpha 2M) of Mr approximately 720,000 is a proteinase inhibitor whose four identical subunits are arranged to form two adjacent inhibitory units. At present, the spatial arrangement of the two subunits which form one inhibitory unit (the functional "half-molecule") is not known. Treatment of alpha 2M with either 0.5 mM dithiothreitol (DTT) or 4 M urea results in dissociation of the native tetramer into two half-molecules of Mr approximately 360,000. These half-molecules retain trypsin inhibitory activity, but in each case, the reaction results in reassociation of the half-molecules to produce tetramers of Mr approximately 720,000. However, when reacted with plasmin, the preparations of half-molecules have different properties. DTT-induced half-molecules protect the activity of plasmin from inhibition by soybean trypsin inhibitor (STI) without reassociation, while urea-induced half-molecules show no ability to protect plasmin from reaction with STI. High-performance size-exclusion chromatography and sedimentation velocity ultracentrifugation studies were then used to estimate the Stokes radius (Re) of alpha 2M and both DTT- and urea-induced half-molecules of alpha 2M. The Re of tetrameric alpha 2M was 88-94 A, while that of DTT-induced half-molecules was 57-60 A and urea-induced half-molecules 75-77 A. These results demonstrate that DTT- and urea-induced half-molecules have fundamentally different molecular dimensions as well as inhibitory properties. The hydrodynamic data suggest that the urea-induced half-molecule is a "rod"-like structure, although it is not possible to predict the three-dimensional structure of this molecule with the available data.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
13.
M Z Kounnas W S Argraves D K Strickland 《The Journal of biological chemistry》1992,267(29):21162-21166
The 39-kDa receptor-associated protein (RAP) binds to the alpha 2-macroglobulin receptor/low density lipoprotein receptor-related protein (alpha 2MR/LRP) and inhibits binding of ligands to this receptor. The in vivo function of RAP may be to regulate ligand binding and/or assist in the correct biosynthetic processing or trafficking of the alpha 2MR/LRP. Here we show that RAP binds another putative receptor, the kidney glycoprotein 330 (gp330). Gp330 is a high molecular weight glycoprotein that is structurally similar to both the alpha 2MR/LRP and low density lipoprotein receptor. The ability of RAP to bind to gp330 was demonstrated by ligand blotting and solid phase binding assays, which showed that RAP binds to gp330 with high affinity (Kd = 8 nM). Exploiting the interaction of gp330 and RAP, we purified gp330 by affinity chromatography with a column of RAP coupled to Sepharose. Gp330 preparations obtained by this procedure were notably more homogeneous than those obtained by conventional methods. Immunocytochemical staining of human kidney sections localized RAP to the brush-border epithelium of proximal tubules. The fact that gp330 is also primarily expressed by proximal tubule epithelial cells strengthens the likelihood that the interaction between gp330 and RAP occurs in vivo. The functional significance of RAP binding to gp330 may be to antagonize ligand binding as has been demonstrated for the alpha 2MR/LRP or to assist in the biosynthetic processing and/or trafficking of this receptor. 相似文献
14.
Kolodziej SJ Wagenknecht T Strickland DK Stoops JK 《The Journal of biological chemistry》2002,277(31):28031-28037
Three-dimensional electron microscopy reconstructions of the human alpha(2)-macroglobulin (alpha(2)M) dimer and chymotrypsin-transformed alpha(2)M reveal the structural arrangement of the two dimers that comprise native and proteinase-transformed molecules. They consist of two side-by-side extended strands that have a clockwise and counterclockwise twist about their major axes in the native and transformed structures, respectively. This and other studies show that there are major contacts between the two strands at both ends of the molecule that evidently sequester the receptor binding domains. Upon proteinase cleavage of the bait domains and subsequent thiol ester cleavages, which occur near the central region of the molecule, the two strands separate by 40 A at both ends of the structure to expose the receptor binding domains and form the arm-like extensions of the transformed alpha(2)M. During the transformation of the structure, the strands untwist to expose the alpha(2)M central cavity to the proteinase. This extraordinary change in the architecture of alpha(2)M functions to completely engulf two molecules of chymotrypsin within its central cavity and to irreversibly encapsulate them. 相似文献
15.
16.
Disulfide bonds in alpha 2-macroglobulin (alpha 2M) were reduced with the thioredoxin system from Escherichia coli. Under the conditions selected, 3.5-4.1 disulfide bonds were cleaved in each alpha 2M molecule, as determined by the consumption of NADPH during the reaction and by the incorporation of iodo[3H]acetate into the reaction product. This extent of disulfide bond reduction, approximately corresponding to that expected from specific cleavage of all four interchain disulfide bonds of the protein, coincided with the nearly complete dissociation of the intact alpha 2M molecule to a species migrating as an alpha 2M subunit in gel electrophoresis, under both denaturing and nondenaturing conditions. The dissociation was accompanied by only small changes of the spectroscopic properties of the subunits, which thus retain a near-native conformation. Reaction of isolated subunits with methylamine or trypsin led to the appearance of approximately 0.55 mol of thiol group/mol of subunits, indicating that the thio ester bonds are largely intact. Moreover, the rate of cleavage of these bonds by methylamine was similar to that in the whole alpha 2M molecule. Although the bait region was specifically cleaved by nonstoichiometric amounts of trypsin, the isolated subunits had minimal proteinase binding ability. Reaction of subunits with methylamine or trypsin produced changes of farultraviolet circular dichroism and near-ultraviolet absorption similar to those induced in the whole alpha 2M molecule, although in contrast with whole alpha 2M no fluorescence change was observed. The methylamine- or trypsin-treated subunits reassociated to a tetrameric species, migrating as the "fast" form of whole alpha 2M in gradient gel electrophoresis.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
17.
Localization of basic residues required for receptor binding to the single alpha-helix of the receptor binding domain of human alpha2-macroglobulin. 总被引:1,自引:0,他引:1
下载免费PDF全文
![点击此处可从《Protein science : a publication of the Protein Society》网站下载免费的PDF全文](/ch/ext_images/free.gif)
W. Huang K. Dolmer X. Liao P. G. Gettins 《Protein science : a publication of the Protein Society》1998,7(12):2602-2612
To better understand the structural basis for the binding of proteinase-transformed human alpha2-macroglobulin (alpha2M) to its receptor, we have used three-dimensional multinuclear NMR spectroscopy to determine the secondary structure of the receptor binding domain (RBD) of human alpha2M. Assignment of the backbone NMR resonances of RBD was made using 13C/15-N and 15N-enriched RBD expressed in Escherichia coli. The secondary structure of RBD was determined using 1H and 13C chemical shift indices and inter- and intrachain nuclear Overhauser enhancements. The secondary structure consists of eight strands in beta-conformation and one alpha-helix, which together comprise 44% of the protein. The beta-strands form three regions of antiparallel beta-sheet. The two lysines previously identified as being critical for receptor binding are located in (Lys1374), and immediately adjacent to (Lys1370) the alpha-helix, which also contains an (Arg1378). Secondary structure predictions of other alpha-macroglobulins show the conservation of this alpha-helix and suggest an important role for this helix and for basic residues within it for receptor binding. 相似文献
18.
E Boel T Kristensen C M Petersen S B Mortensen J Gliemann L Sottrup-Jensen 《Biochemistry》1990,29(17):4081-4087
Human alpha 2-macroglobulin (alpha 2M) is a unique 720-kDa proteinase inhibitor with a broad specificity. Unlike most other proteinase inhibitors, it does not inhibit proteolytic activity by blocking the active site of the proteinase. During complex formation with a proteinase, alpha 2M entraps the proteinase molecule in a reaction that involves large conformational changes in alpha 2M. We describe the molecular cloning of alpha 2M cDNA from the human hepatoblastoma cell line HepG2. The cDNA was subcloned under control of the adenovirus major late promoter in a mammalian expression vector and introduced into the baby hamster kidney (BHK) cell line. Transformed clones were isolated and tested for production of human alpha 2M with a specific enzyme-linked immunosorbent assay. Human recombinant alpha 2M (r alpha 2M), secreted and purified from isolated transfected BHK cell lines, was structurally and functionally compared to alpha 2M purified from human serum. The results show that r alpha 2M was secreted from the BHK cells as an active proteinase-binding tetramer with functional thiol esters. Cleavage reactions of r alpha 2M with methylamine and trypsin showed that the recombinant product, which was correctly processed at the N-terminus, exhibited molecular characteristics similar to those of the human serum derived reference. Moreover, r alpha 2M-trypsin complex bound to purified human placental alpha 2M receptor with an affinity indistinguishable from that of a complex formed from serum-derived alpha 2M and trypsin. 相似文献
19.
Thrombin-induced conformational changes of human alpha 2-macroglobulin: evidence for two functional domains 总被引:1,自引:0,他引:1
The interaction of thrombin with alpha 2-macroglobulin (alpha 2M) was characterized by monitoring conformational changes and measuring the increase of free sulfhydryl groups during the reaction. Under experimental conditions where [thrombin] greater than [alpha 2M], the conformational change, measured by increases in the fluorescence of 6-(p-toluidino)-2-naphthalenesulfonate, and thiol group appearance displayed biphasic kinetics. The initial rapid phase results in the formation of a stable complex, the appearance of two sulfhydryl groups, the cleavage of approximately half of the Mr 180 000 subunits, and a conformational change that is not as extensive as that which occurs with trypsin. The slower phase is associated with the appearance of two additional sulfhydryl groups, increased cleavage of the Mr 180 000 subunit, and additional conformational changes. The available evidence suggests that the slow phase results from hydrolysis of the Mr 180 000 subunit(s) due to proteolysis of the alpha 2M-thrombin complex by free thrombin. Experiments with 125I-thrombin document the binding of 1 mol of thrombin/mol of alpha 2M that is not dissociated upon sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the complex. At higher ratios of thrombin to alpha 2M, a second mole of thrombin will reversibly associate with the 1:1 alpha 2M-thrombin complex. Under conditions where [thrombin] less than [alpha 2M], biphasic kinetics were not observed, and the conformational change, sulfhydryl appearance, and hydrolysis of the Mr 180 000 subunit were found to follow second-order kinetics.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
20.
U K Misra G Gawdi M Gonzalez-Gronow S V Pizzo 《The Journal of biological chemistry》1999,274(36):25785-25791
We have studied insulin-dependent regulation of macrophage alpha(2)-macroglobulin signaling receptors (alpha(2)MSR) and low density lipoprotein receptor-related protein/alpha(2)M receptors (LRP/alpha(2)MR) employing cell binding of (125)I-alpha(2)M*, inhibition of binding by receptor-associated protein (RAP) or Ni(2+), LRP/alpha(2)MR mRNA levels, and generation of second messengers. Insulin treatment increased the number of alpha(2)M* high (alpha(2)MSR) and low (LRP/alpha(2)MR) affinity binding sites from 1, 600 and 67,000 to 2,900 and 115,200 sites per cell, respectively. Neither RAP nor Ni(2+) blocked the binding of (125)I-alpha(2)M* to alpha(2)MSR on insulin- or buffer-treated cells, but they both blocked binding to LRP/alpha(2)MR. Insulin significantly increased LRP/alpha(2)MR mRNA levels in a dose- and time-dependent manner. Insulin-augmented (125)I-alpha(2)M* binding to macrophages was severely reduced by wortmannin, LY294002, PD98059, SB203580, or rapamycin. The increase in alpha(2)MSR receptor synthesis was reflected by augmented generation of IP(3) and increased [Ca(2+)](i) levels upon receptor ligation. Incubation of macrophages with wortmannin, LY294002, PD98059, SB203580, rapamycin, or antibodies against insulin receptors before insulin treatment and alpha(2)M* stimulation significantly reduced the insulin-augmented increase in IP(3) and [Ca(2+)](i) levels. Pretreatment of cells with actinomycin D or cycloheximide blocked the synthesis of new alpha(2)MSR. In conclusion, we show here that insulin coordinately regulates macrophage alpha(2)MSR and LRP/alpha(2)MR, utilizing both the PI 3-kinase and Ras signaling pathways to induce new synthesis of these receptors. 相似文献