首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Membranes prepared from Rhodopseudomonas capsulata grown heterotrophically in the dark perform phosphorylation linked to oxidation of NADH and succinate, with P/2e ratios of about 0.5 and 0.15, respectively. The localization of the sites of energy conservation was investigated by observing the respiration-induced quenching of the fluorescence of atebrine.

Energization of the membrane can be demonstrated when NADH is oxidized by O2, ferricyanide or Q1, when succinate is oxidized by O2 or by oxidized diaminodurene, and during the oxidation of reduced diaminodurene.

Antimycin A completely inhibits energization between succinate and O2 or succinate and diaminodurene; however, it only inhibits partially NADH or succinate oxidases and energization between NADH and O2. KCN inhibits NADH oxidase in a biphasic way: the first level of inhibition is observed at concentrations which block the oxidation of exogenous cytochrome c or of diaminodurene and energization between succinate or ascorbate-diaminodurene and O2. The second level corresponds to the inhibition of the antimycin-insensitive oxidase.

The results are interpreted as evidence of the presence in these bacteria of a respiratory chain branching after the dehydrogenase system, one arm of the chain being sensitive to antimycin A and low concentrations of KCN and capable of energy conservation, the other being represented by a completely uncoupled system.  相似文献   


2.
1. The reduction of cytochrome c oxidase by hydrated electrons was studied in the absence and presence of cytochrome c.

2. Hydrated electrons do not readily reduce the heme of cytochrome c oxidase. This observation supports our previous conclusion that heme a is not directly exposed to the solvent.

3. In a mixture of cytochrome c and cytochrome c oxidase, cytochrome c is first reduced by hydrated electrons (k = 4 · 1010 M−1 · s−1 at 22 °C and pH 7.2) after which it transfers electrons to cytochrome c oxidase with a rate constant of 6 · 107 M−1 · s−1 at 22 °C and pH 7.2.

4. It was found that two equivalents of cytochrome c are oxidized initially per equivalent of heme a reduced, showing that one electron is accepted by a second electron acceptor, probably one of the copper atoms of cytochrome c oxidase.

5. After the initial reduction, redistribution of electrons takes place until an equilibrium is reached similar to that found in redox experiments of Tiesjema, R. H., Muijsers, A. O. and Van Gelder, B. F. (1973) Biochim. Biophys. Acta 305, 19–28.  相似文献   


3.
Pathways of electron transport utilized for respiration in human term placental mitochondrial preparations were differentiated and characterized through the use of classical respiratory chain inhibitors and multiple sources of reducing equivalents. Mechanisms of associated energy conservation and utilization were examined in these preparations with uncouplers and inhibitors of phosphorylation.

Inhibition by rotenone, antimycin A and cyanide established the classical electron transport chain as the major pathway of respiration with glutamate and succinate as substrates. Approximately 20% of glutamate-supported respiration was insensitive to inhibitors and may proceed by the cytochrome P-450 linked pathway of electron transport. Approximately 50% of ascorbate-N,N,N′,N′-tetramethyl-p-phenylenediamine supported respiration was insensitive to 10−3 M cyanide and must utilize an undefined by-pass of cytochrome oxidase. A rotenone- and antimycin-insensitive, exterior pathway for NADH oxidation was demonstrated which could be artificially linked by exogenous cytochrome c to the cytochrome oxidase region of the classical electron transport system. Glycerol 3-phosphate also supported oxidative phosphorylation yielding ADP/O ratios of 2.

Respiration of placental mitochondria was stimulated by 2,4- dinitrophenol and gramicidin. With succinate, dinitrophenol-stimulated respiration exceeded that obtain-red in the presence of ADP. Oligomycin and atractyloside prevented the stimulation of respiration by ADP. Thus, respiration appeared coupled through normal mechanisms to ATP formation and ion transport. A preferential coupling of respiration to the energy-utilizing processes of steroid hormone biosynthesis may exist.  相似文献   


4.
A. K. Ghosh  S. N. Bhattacharyya 《BBA》1971,245(2):335-346
1. Mitochondria isolated from Saccharomyces Carlsbergensis are found to have three phosphorylation sites in the respiratory chain for the oxidation of NADH and NAD+-linked substrates and two for succinate oxidation. Freshly isolated mitochondria exist in an inhibited state with no respiratory control, but on ageing for 2–3 h a good coupled state is obtained. -Ketogultarate and -glycerophosphate are poorly oxidized in these mitochondria.

2. Exogenous NADH is a very good substrate for yeast mitochondrial respiration and apparently has a very low Km. However, one-third of the added NADH is not available for oxidation probably due to some form of compartmentation. Studies of both oxygen uptake and the redox changes of cytochrome b show complete oxidation of two-third of the added NADH.

3. Difference spectra of yeast mitochondria at liquid-nitrogen temperatures show all the characteristic peaks of cytochromes a (600 nm), b (558, 525 and 428 nm), c1 (552 nm) and c (545 and 516 nm).

4. The reduction of cytochrome b by dicumarol in antimycin A inhibited mitochondria provides evidence for an energy conservation site on the substrate side of cytochrome b.

5. In the absence of added ADP, the oxidation of malate and pyruvate occurs in the yeast mitochondria in a new respiratory state (State X) where the oxygen uptake occurs at State 4 rate but the redox level of the flavins, cytochrome b and c are similar to State 3. State X respiration is believed to be due to depletion of the high energy intermediate C I caused by the substrate anions accumulation.

6. The responses of yeast mitochondria to Ca2+ are qualitatively similar to those in rat liver mitochondria, particularly with respect to respiratory stimulation, membrane alkalinization and its accumulation in the mitochondria with succinate as the substrate in the presence and absence of acetate.  相似文献   


5.
J. A. Berden  E. C. Slater 《BBA》1970,216(2):237-249
1. Succinate-cytochrome c reductase activity was reconstituted by incubating a mixture of succinate dehydrogenase, cytochrome c1, ubiquinone-10, phospholipid and a preparation of cytochrome b, made by the method of .

2. Preparations of cytochrome b active in reconstitution contained 5–28% native cytochrome b, as adjudged by reducibility with succinate in the reconstituted preparation and by lack of reaction with CO. Preparations of cytochrome b containing no native cytochrome b according to this criterion were inactive in reconstitution.

3. With a fixed amount of cytochrome b, the activity of the reconstituted preparation increased with increasing amounts of cytochrome c1 until a ratio of about 2b (total): 1c1 (allowing for the cytochrome c1 present in the cytochrome b preparation) was reached.

4. The amount of antimycin necessary for maximal inhibition of the reconstituted enzyme is a function of the amount of the cytochrome b and is independent of the amount of cytochrome c1. It is equal to about one half the amount of native cytochrome b.

5. Preparations of intact or reconstituted succinate-cytochrome c reductase or of cytochrome b completely quench the fluorescence of added antimycin, until an amount of antimycin equal to onehalf the amount of native cytochrome b present was added. Antimycin added in excess of this amount fluoresces with normal intensity. The quenching is only partial in the presence of Na2S2O4. Denatured cytochrome b does not quench the fluorescence.

6. Since preparations of cytochrome b active in reconstitution contained cytochrome c1 in an amount exceeding one half the amount of native cytochrome b present in the preparation, there is no evidence that native cytochrome b has been resolved from cytochrome c1. The stimulatory action of cytochrome c1 may be due to the restoration of a damaged membrane conformation.

7. Based on the assumption that the bc1 segment of the respiratory chain contains 2b:1c1:1 antimycin-binding sites, the specific quenching of antimycin fluorescence by binding to cytochrome b enables an accurate determination of the absorbance coefficients of cytochromes b and c1. These are 25.6 and 20.1 mM−1×cm−1 for the wavelength pairs 563–577 nm and 553–539 nm, respectively, in the difference spectrum reduced minus oxidized.  相似文献   


6.
J.Peter Kusel  Bayard T. Storey 《BBA》1973,305(3):570-580
Highly purified mitochondrial preparations from the trypanosomatid hemoflagellate, Crithidia fasciculata (A.T.C.C. No.11745), were examined by low-temperature difference spectroscopy. The cytochrome a+a3 maximum of hypotonically-treated mitochondria reduced with succinate, was shifted from 605 nm at room temperature to 601 nm at 77 °K. The Soret maximum, found at 445 nm at 23 °C, was split at 77 °K into two approximately equally absorbing species with maxima at 438 and 444 nm. A prominent shoulder observed at 590 nm with hypotonically-treated mitochondria was not present in spectra of isotonic controls.

The cytochrome b maxima observed in the presence of succinate plus antimycin A were shifted from the 431 and 561 nm positions observed at 23 °C to 427 and 557 nm at 77 °K. Multiple b cytochromes were not apparent.

Unlike other soluble c-type cytochromes, the maximum of cytochrome c555 was not shifted at 77 °K although it was split to give a 551 nm shoulder adjacent to the 555 nm maximum. This lack of a low-temperature blue shift was true for partially purified hemoprotein preparations as well as in situ in the mitochondrial membrane.

Using cytochrome c555-depleted mitochondria, a cytochrome c1 pigment was observed with a maximum at 420 nm and multiple maxima at 551, 556, and 560 nm. After extraction of non-covalently bound heme, the pyridine hemochromogen difference spectrum of cytochrome c555-depleted preparations exhibited an maximum at 553 nm at room temperature.

The reduced rate of succinate oxidation by cytochrome c555-depleted mitochondria and the ferricyanide requirement for the reoxidation of cytochrome c1, even in the presence of antimycin, indicated that cytochrome c555-mediated electron transfer between cytochromes c1 and a+a3 in a manner analagous to that of cytochrome c in mammalian mitochondria.  相似文献   


7.
The cytoplasmic membrane of the H37Ra strain of Mycobacterium tuberculosis has been isolated free of cell wall.

These membrane preparations contain very small quantities of cytochromes c, b and cytochrome oxidase. The cytochrome c is not extracted by any method attempted. The cytochrome b is reducible only by dithionite and is believed not to be involved in the direct transfer of electrons during the oxidation of NADH by these preparations. The NADH oxidase activity of the membrane is inhibited by high concentrations of cyanide and also by 2-(n-heptyl)-4-hydroxyquinoline-N-oxide (HQNO). The cytochrome oxidase of the membrane contains both cytochromes a and a3 and is present in low concentrations relative to cytochrome c. The cytochrome a3 component was identified by characteristic complexes with both CO and cyanide and shows a γ-band absorption maximum at a slightly lower wavelength than the cytochrome oxidase of mammalian mitochondria (442 nm vs. 445 nm). The functional activity of the cytochrome oxidase is indicated by the inhibition of reoxidation of reduced cytochromes c and a in the presence of cyanide.  相似文献   


8.
Propionic and methylmalonic acidemic patients have severe neurologic symptoms whose etiopathogeny is still obscure. Since increase of lactic acid is detected in the urine of these patients, especially during metabolic decompensation when high concentrations of methylmalonate (MMA) and propionate (PA) are produced, it is possible that cellular respiration may be impaired in these individuals. Therefore, we investigated the effects of MMA and PA (1, 2.5 and 5 mM), the principal metabolites which accumulate in these conditions, on the mitochondrial respiratory chain complex activities succinate: 2,6-dichloroindophenol (DCIP) oxireductase (complex II); succinate: cytochrome c oxireductase (complexII+CoQ+III); NADH: cytochrome c oxireductase (complex I+CoQ+complex III); and cytochrome c oxidase (COX) (complex IV) from cerebral cortex homogenates of young rats. The effect of MMA on ubiquinol: cytochrome c oxireductase (complex III) and NADH: ubiquinone oxireductase (complex I) activities was also tested. Control groups did not contain MMA and PA in the incubation medium. MMA significantly inhibited complex I+III (32–46%), complex I (61–72%), and complex II+III (15–26%), without affecting significantly the activities of complexes II, III and IV. However, by using 1 mM succinate in the assay instead of the usual 16 mM concentration, MMA was able to significantly inhibit complex II activity in the brain homogenates. In contrast, PA did not affect any of these mitochondrial enzyme activities. The effect of MMA and PA on succinate: phenazine oxireductase (soluble succinate dehydrogenase (SDH)) was also measured in mitochondrial preparations. The results showed significant inhibition of the soluble SDH activity by MMA (11–27%) in purified mitochondrial fractions. Thus, if the in vitro inhibition of the oxidative phosphorylation system is also expressed under in vivo conditions, a deficit of brain energy production might explain some of the neurological abnormalities found in patients with methylmalonic acidemia (MMAemia) and be responsible for the lactic acidemia/aciduria identified in some of them.  相似文献   

9.
W. Bandlow  K. Wolf  F. Kaudewitz  E.C. Slater 《BBA》1974,333(3):446-459
1. A chromosomal respiration-deficient mutant of the petite-negative yeast Schizosaccharomyces pombe was isolated. Its mitochondria show respiration rates of about 7% of the wild-type respiration with NADH and succinate as substrate, and 45% with ascorbate in the presence of tetramethyl-p-phenylenediamine. Oxidation of NADH and succinate is insensitive to antimycin and cyanide and that of ascorbate is much less sensitive to cyanide than the wild type.

2. The amounts of cytochromes c1 and aa3 are similar in the mutant and wild type. Cytochrome b-566 could not be detected in low-temperature spectra after reduction with various substrates or dithionite. A b-558 is, however, present.

3. The b-cytochromes in the mutant are not reduced by NADH or succinate during the steady state even after addition of ubiquinone-1. QH2-3: cytochrome c reductase activity is very low and succinate oxidation is highly stimulated by phenazine methosulphate.

4. Antimycin does not bind to either oxidized or reduced mitochondrial particles of the mutant.

5. In contrast to the b-cytochromes of the wild type, b-558 in the mutant reacts with CO.

6. Cytochromes aa3, c and c1 are partly reduced in aerated submitochondrial particles isolated from the mutant and the EPR signal of Cu (II), measured at 35°K, is detectable only after the addition of ferricyanide. In the mutant, a signal with a trough at g = 2.01 is found, in addition to the signal at g = 1.98 found in the wild type.

7. The ATPase activity of particles isolated from the mutant is much lower than in the wild type but is still inhibited by oligomycin.  相似文献   


10.
Biochemical micromethods were used for the investigation of changes in mitochondrial oxidative phosphorylation associated with cytochrome c oxidase deficiency in brain cortex from Mo(vbr) (mottled viable brindled) mice, an animal model of Menkes' copper deficiency syndrome. Enzymatic analysis of cortex homogenates from Mo(vbr) mice showed an approximately twofold decrease in cytochrome c oxidase and a 1.4-fold decrease in NADH:cytochrome c reductase activities as compared with controls. Assessment of mitochondrial respiratory function was performed using digitonin-treated homogenates of the cortex, which exhibited the main characteristics of isolated brain mitochondria. Despite the substantial changes in respiratory chain enzyme activities, no significant differences were found in maximal pyruvate or succinate oxidation rates of brain cortex homogenates from Mo(vbr) and control mice. Inhibitor titrations were used to determine flux control coefficients of NADH:CoQ oxidoreductase and cytochrome c oxidase on the rate of mitochondrial respiration. Application of amobarbital to titrate the activity of NADH:CoQ oxidoreductase showed very similar flux control coefficients for control and mutant animals. Alternately, titration of respiration with azide revealed for Mo(vbr) mice significantly sharper inhibition curves than for controls, indicating a more than twofold elevated flux control coefficient of cytochrome c oxidase. Owing to the reserve capacity of respiratory chain enzymes, the reported changes in activities do not seem to affect whole-brain high-energy phosphates, as observed in a previous study using 31P NMR.  相似文献   

11.
The quantification of mitochondrial enzyme activities in skeletal muscle samples of patients suspected of having mitochondrial myopathies is problematic. Therefore, we have evaluated different methods for the determination of activities cytochrome c oxidase and NADH:CoQ oxidoreductase in human skeletal muscle samples. The measurement of cytochrome c oxidase activity in the presence of 200 microM ferrocytochrome c and the detection of NADH:CoQ oxidoreductase as rotenone-sensitive NADH:CoQ(1) reductase resulted in comparable citrate synthase-normalized respiratory chain enzyme activities of both isolated mitochondria and homogenates from control human skeletal muscle samples. These methods allowed the precise detection of deficiencies of respiratory chain enzymes in skeletal muscle of two patients harboring only 20 and 27% of deleted mitochondrial DNA, respectively. Therefore, citrate synthase-normalized respiratory chain activities can serve as stable reference values for the determination of a putative mitochondrial defect in human skeletal muscle.  相似文献   

12.
K.A. Davis  Y. Hatefi  K.L. Poff  W.L. Butler 《BBA》1973,325(3):341-356

1. 1. Three b-type cytochromes (b557.5, b560, and b562.5), plus a chromophore with an absorption peak at 558 nm at 77 °K, have been found to be associated with the electron transport system of bovine heart mitochondria. The reduced minus oxidized spectra of these components at 77 °K, as well as that of cytochrome c1, have been recorded with a wavelength accuracy of ± 0.1 nm and presented to the nearest 0.5 nm. All the major and β absorption peaks of cytochromes b557.5, b560, b562.5, c1 and c have been shown by fourth derivative analysis to be present in the dithionite-reduced minus oxidized spectra of mitochondria and submitochondrial particles.

2. 2. The distribution of the above components has been studied in the four electron transfer complexes of the respiratory chain. Cytochromes b560, b562.5 and c1, as well as chromophore-558, were found to fractionate into Complex III (reduced ubiquinone-cytochrome c reductase), whereas cytochrome b557.5 was found in Complex II (succinate-ubiquinone reductase).

3. 3. Cytochrome b560 was readily reduced by NADH or succinate, but b562.5 was not reduced by substrates unless the preparation was treated with antimycin A. In antimycin-treated preparations pre-reduction of c1 with ascorbate inhibited the subsequent reduction of b562.5 by substrates. These results indicate that b560 and b562.5 correspond, respectively, to bK and bT previously described by Chance et al.14 (1970, Proc. Natl. Acad. Sci. U.S. 66, 1175–1182).

4. 4. Similar to b560, chromophore-558 can be reduced by substrates in the absence or presence of antimycin A. However, in antimycin-treated preparations, pre-reduction of c1 inhibits its subsequent reduction by substrates. This property is similar to that of b562.5.

5. 5. Cytochrome b557.5, which occurs in Complex II, appears to have a low mid-point potential. It can be reduced with dithionite and oxidized by fumarate or ubiquinone. CO treatment of dithionite-reduced b557.5 neither modified the spectrum of this cytochrome nor diminished the extent of b557.5 reoxidation by fumarate.

6. 6. Antimycin A treatment does not appear to alter the spectra of the above cytochromes. However, small amounts (< 4%) of ethanol or methanol, which are usually added to particles as solvent for antimycin A, have a pronounced effect on the peaks of cytochrome c1. The spectrum of cytochrome c1 at 77 °K as modified by 3% (v/v) ethanol is shown.

Abbreviations: ETP, non-phosphorylating electron transport particle preparation; ETPH, phosphorylating electron transport particle preparation; TMPD, tetramethylphenylenediamine; Complexes I, preparations of NADH-ubiquinone reductase; Complexes II, succinate-ubiquinone reductase; Complexes III, reduced ubiquinone-cytochrome c reductase; Complexes I-III, NADH-cytochrome c reductase; Complexes II-III, succinate-cytochrome c reductase  相似文献   


13.
The objective of this study was to explore the possible cause(s) underlying the previously observed, age-related increase in the rate of mitochondrial H2O2 release in the housefly. The hypothesis that an imbalance between different respiratory complexes may be a causal factor was tested. Cytochrome c oxidase activity was found to sharply decline in the latter part of the life span of the flies. Effects of different substrates and respiratory inhibitors were determined in order to ascertain if a decrease in cytochrome c oxidase activity could be responsible for the increased H2O2 release. H2O2 was measured spectrofluorometrically using horseradish peroxidase and p-hydrophenylacetate as an indicator. Neither NADH-linked substrates nor succinate caused a stimulation of H2O2 production. H2O2 release by mitochondria, inhibited with rotenone and antimycin A, was greatly increased upon supplementation with -glycerophosphate; however, the further addition of KCN or myxothiazol, to such preparations, caused a depression of H2O2 generation. In contrast, relatively low concentrations of KCN or myxothiazol were found to stimulate H2O2 release in insect mitochondria supplemented with -glycerophosphate and exposed to rotenone, but not antimycin A. Results are interpreted to suggest that partial inhibition of cytochrome c oxidase activity can lead to the stimulation of mictochondrial H2O2 production in the housefly at site(s) other than NADH dehydrogenase and ubisemiquinone/ cytochrome b region; a possible source may be glycerophosphate dehydrogenase.  相似文献   

14.
Nine members of the genus Taenia (Taenia taeniaeformis, Taenia hydatigena, Taenia pisiformis, Taenia ovis, Taenia multiceps, Taenia serialis, Taenia saginata, Taenia solium and the Asian Taenia) were characterised by their mitochondrial NADH dehydrogenase subunit 1 gene sequences and their genetic relationships were compared with those derived from the cytochrome c oxidase subunit I sequence data. The extent of inter-taxon sequence difference in NADH dehydrogenase subunit 1 (5.9–30.8%) was usually greater than in cytochrome c oxidase subunit I (2.5–18%). Although topology of the phenograms derived from NADH dehydrogenase subunit 1 and cytochrome c oxidase subunit I sequence data differed, there was concordance in that T. multiceps, T. serialis (of canids), T. saginata and the Asian Taenia (of humans) were genetically most similar, and those four members were genetically more similar to T. ovis and T. solium than they were to T. hydatigena and T. pisiformis (of canids) or T. taeniaeformis (of cats). The NADH dehydrogenase subunit 1 sequence data may prove useful in studies of the systematics and population genetic structure of the Taeniidae.  相似文献   

15.
Changes in the mitochondria of aerobically grown Saccharomyces cerevisiae cells upon deaeration and subsequent aeration of the medium were studied.

1. It is shown that removal of oxygen at the end of the exponential phase of growth (after completion of mitochondria formation) causes a decrease in activity of the respiratory enzymes. The activity of the complete respiratory system decreases much more rapidly than the activities of its fragments (NADH: ferricyanide reductase, succinate:ferricyanide reductase, NADH:cytochrome c reductase, succinate:cytochrome c reductase and cytochrome oxidase). The activities are restored to their initial level upon aeration of the cell suspension. The addition of Tween-80 and ergosterol to the medium prior to deaeration does not prevent inactivation of the respiratory system.

All the changes in mitochondria described occurred under conditions where cell division was insignificant.

2. Deaeration of the medium decreases the content of cytochromes b and aa3 in the mitochondrial fraction, cytochrome aa3 “disappearing” more quickly. The concentration of cytochromes in this fraction increases upon subsequent aeration of the cells. The total cytochromal content of the cells remains practically unchanged under the same conditions.

3. According to electron microscopic data, anaerobiosis causes a certain disorganization of mitochondrial cristal membranes. The mitochondrial structures are recovered upon aeration of the yeast cell suspension. It may be reasoned that inactivation and reactivation of the respiratory system are associated with reversible changes in mitochondrial membrane structure.

4. The effect of protein synthesis inhibitors on the restoration of mitochondria was investigated. It is shown that chloramphenicol does not suppress this process. In the presence of cycloheximide, oxygen induces reactivation of the respiratory system and simultaneously the appearance of particles resembling mitochondria. However, these particles gradually undergo morphological changes and the respiratory activity of the mitochondrial fraction decreases. Cycloheximide added to yeast cells that had not been deaerated, did not affect their mitochondria.

5. The results described suggest that the functions of oxygen in the formation of mitochondria are not restricted to the induction of mitochondrial protein synthesis and to the participation in the synthesis of certain non protein membrane components. Evidently, oxygen has a direct effect on the assembly of the respiratory system and mitochondrial membranes as a whole.  相似文献   


16.
Aspergillus fumigatus is an unusual pathogen in immunocompetent individuals; its incidence has increased in the last decades in patients immunocompromised, like those with chronic granulomatosis disease and AIDS. The aim of this study was to identify differences between the respiratory chain of host and the fungus planning to use the later as a pharmacological target. We evaluated respiration, membrane potential and oxidative phosphorylation of mitochondria of the spheroplasts of A. fumigatus in situ, after permeabilization with digitonin. Firstly, a functional respiratory chain (complex I-V) was demonstrated: adenosine 5'-diphosphate (ADP) induced an oligomycin-sensitive transition from resting to phophorylating respiration in the presence of the oxidizable substrates malate, glutamate, alpha-ketoglutarate, pyruvate, dihydroorotate, succinate, N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD) and exogenous NADH. In addition, the ability of the fungus to oxidize exogenous NADH, as well as the insensitivity of its respiration to rotenone, in association with the sensitivity to flavone, indicate the presence of an alternative NADH-ubiquinone oxidoreductase; the partial sensitivity of respiration to antimycin A and cyanide, in association with the sensitivity to benzohydroxamic acid, indicates the presence of an alternative oxidase. The fatty acid-uncoupled respiration was partly reversed by bovine serum albumin (BSA) and guanosine 5'-triphosphate (GTP) and was insensitive to either carboxyatractyloside or ADP. These results, together with evidences obtained using antibodies raised against uncoupling protein (UCP) from potato, indicate in addition, the presence of an uncoupling protein in the respiratory chain of A. fumigatus.  相似文献   

17.
Resolution and reconstitution has been used to examine the involvement of the iron-sulfur protein of the cytochrome b-c1 segment in electron transfer reactions in this region of the mitochondrial respiratory chain. The iron-sulfur protein is required for electron transfer from succinate and from ubiquinol to cytochrome c1. It is not required for reduction of cytochrome b under these conditions, but it is required for oxidation of cytochrome b by cytochrome c plus cytochrome c oxidase. Removal of the iron-sulfur protein from the b-c1 complex prevents reduction of both cytochromes b and c1 by succinate or ubiquinol if antimycin is added to the depleted complex. As increasing amounts of iron-sulfur protein are reconstituted to the depleted complex, the amounts of cytochromes b and c1 reduced by succinate in the presence of antimycin increase and closely parallel the amounts of ubiquinol-cytochrome c reductase activity restored to the reconstituted complex, measured before addition of antimycin. The function of the iron-sulfur protein in these oxidation-reduction reactions is consistent with a cyclic pathway of electron transfer through the cytochrome b-c1 complex, in which the iron-sulfur protein functions as a ubiquinol-cytochrome c1/ubisemiquinone-cytochrome b oxidoreductase.  相似文献   

18.
External NADH and succinate were oxidized at similar rates by soybean (Glycine max) cotyledon and leaf mitochondria when the cytochrome chain was operating, but the rate of NADH oxidation via the alternative oxidase was only half that of succinate. However, measurements of the redox poise of the endogenous quinone pool and reduction of added quinones revealed that external NADH reduced them to the same, or greater, extent than did succinate. A kinetic analysis of the relationship between alternative oxidase activity and the redox state of ubiquinone indicated that the degree of ubiquinone reduction during external NADH oxidation was sufficient to fully engage the alternative oxidase. Measurements of NADH oxidation in the presence of succinate showed that the two substrates competed for cytochrome chain activity but not for alternative oxidase activity. Both reduced Q-1 and duroquinone were readily oxidized by the cytochrome oxidase pathway but only slowly by the alternative oxidase pathway in soybean mitochondria. In mitochondria isolated from the thermogenic spadix of Philodendron selloum, on the other hand, quinol oxidation via the alternative oxidase was relatively rapid; in these mitochondria, external NADH was also oxidized readily by the alternative oxidase. Antibodies raised against alternative oxidase proteins from Sauromatum guttatum cross-reacted with proteins of similar molecular size from soybean mitochondria, indicating similarities between the two alternative oxidases. However, it appears that the organization of the respiratory chain in soybean is different, and we suggest that some segregation of electron transport chain components may exist in mitochondria from nonthermogenic plant tissues.  相似文献   

19.
Fungal respiration: a fusion of standard and alternative components   总被引:22,自引:0,他引:22  
In animals, electron transfer from NADH to molecular oxygen proceeds via large respiratory complexes in a linear respiratory chain. In contrast, most fungi utilise branched respiratory chains. These consist of alternative NADH dehydrogenases, which catalyse rotenone insensitive oxidation of matrix NADH or enable cytoplasmic NADH to be used directly. Many also contain an alternative oxidase that probably accepts electrons directly from ubiquinol. A few fungi lack Complex I. Although the alternative components are non-energy conserving, their organisation within the fungal electron transfer chain ensures that the transfer of electrons from NADH to molecular oxygen is generally coupled to proton translocation through at least one site. The alternative oxidase enables respiration to continue in the presence of inhibitors for ubiquinol:cytochrome c oxidoreductase and cytochrome c oxidase. This may be particularly important for fungal pathogens, since host defence mechanisms often involve nitric oxide, which, whilst being a potent inhibitor of cytochrome c oxidase, has no inhibitory effect on alternative oxidase. Alternative NADH dehydrogenases may avoid the active oxygen production associated with Complex I. The expression and activity regulation of alternative components responds to factors ranging from oxidative stress to the stage of fungal development.  相似文献   

20.
1. In membranes prepared from dark grown cells of Rhodopseudomonas capsulata, five cytochromes of b type (E0 at pH 7.0 +413±5, +270±5, +148±5, +56±5 and −32±5 mV) can be detected by redox titrations at different pH values. The midpoint potentials of only three of these cytochromes (b148, b56, and b−32) vary as a function of pH with a slope of 30 mV per pH unit.

2. In the presence of a Co/N2 mixture, the apparent E0 of cytochrome b270 shifts markedly towards higher potentials (+355 mV); a similar but less pronounced shift is apparent also for cytochrome b150. The effect of CO on the midpoint potential of cytochrome b270 is absent in the respiration deficient mutant M6 which possesses a specific lesion in the CO-sensitive segment of the branched respiratory chain present in the wild type strain.

3. Preparations of spheroplasts with lysozyme digestion lead to the release of a large amount of cytochrome c2 and of virtually all cytochrome cc′. These preparations show a respiratory chain impaired in the electron pathway sensitive to low KCN concentration, in agreement with the proposed role of cytochrome c2 in this branch; on the contrary, the activity of the CO-sensitive branch remains unaffected, indicating that neither cytochrome c2 nor the CO-binding cytochrome cc′ are involved in this pathway.

4. Membranes prepared from spheroplasts still possess a CO-binding pigment characterized by maxima at 420.5, 543 and 574 nm and minima at 431, 560 nm in CO-difference spectra and with an band at 562.5 nm in reduced minus oxidized difference spectra. This membrane-bound cytochrome, which is coincident with cytochrome b270, can be classified as a typical cytochrome “o” and considered the alternative CO-sensitive oxidase.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号