首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Garcia I  Weeks KM 《Biochemistry》2004,43(48):15179-15186
Prior to folding to a native functional structure, many large RNAs form conformationally collapsed states. Formation of the near-native collapsed state for the bI5 group I intron RNA plays an obligatory role in self-chaperoning assembly with its CBP2 protein cofactor by preventing formation of stable, misassembled complexes. We show that the collapsed state is essential because CBP2 assembles indiscriminately with the bI5 RNA in any folding state to form long-lived complexes. The most stable protein interaction site in the expanded state-CBP2 complex overlaps, but is not identical to, the native site. Folding to the collapsed state circumvents two distinct misassembly events: inhibitory binding by multiple equivalents of CBP2 and formation of bridged complexes in which CBP2 straddles cognate and noncognate RNAs. Strikingly, protein-bound sites in the expanded state RNA complex are almost the inverse of native RNA-RNA and RNA-protein interactions, indicating that folding to the collapsed state significantly reduces the fraction of RNA surfaces accessible for misassembly. The self-chaperoning function for the bI5 collapsed state is likely to be conserved in other ribonucleoproteins where a protein cofactor binds tightly at a simple RNA substructure or has an RNA binding surface composed of multiple functional sites.  相似文献   

2.
Buchmueller KL  Weeks KM 《Biochemistry》2003,42(47):13869-13878
Many large RNAs form conformationally collapsed, but non-native, states prior to folding to the native state or assembling with protein cofactors. Although RNA collapsed states play fundamental roles in RNA folding and ribonucleoprotein assembly processes, their structures have been poorly understood. We obtained 12 high-quality structural constraints for the collapsed state formed by the catalytic core of the bI5 intron RNA using site-specific cross-linking mediated by a short-lived reactant. RNA tertiary structures in the collapsed and native states are indistinguishable, even though only the native state forms a solvent-inaccessible core. Thus, structural neighbors in the collapsed state, including several long-range tertiary interactions, are approximately as close in space as in the native state, but RNA packing is sufficiently loose or dynamic to allow access by solvent. Binding by the obligate CBP2 protein cofactor has almost no effect on structural neighbors reported by cross-linking, even though protein binding chases the RNA from the collapsed state to the native state. Protein binding thus appears to promote only the final few angstroms of RNA folding rather than mediate global conformational rearrangements in the catalytic core. The bI5 RNA collapsed state functions to self-chaperone ribonucleoprotein assembly because this conformationally restrained structure lies very near that of the native state and excludes structures that otherwise misassemble efficiently.  相似文献   

3.
At physiological Mg2+ concentrations, the catalytic core of the bI5 group I intron does not fold into its native structure. In contrast, as judged by the global size, this RNA undergoes structural collapse at Mg 2+ concentrations much lower than required to drive folding of the RNA completely to the native state. The bI5 RNA therefore exists in equilibrium between expanded and collapsed non-native states. The activation energy of RNA folding from the collapsed state to the native state is negligible and the reaction is not accelerated by the addition of urea. This collapsed state is thus distinct from the kinetic traps observed during folding of other large RNAs. The collapsed non-native state forms readily in the case of bI5 RNA and may exist generically prior to assembly of other ribonucleoprotein holoenzymes, such as the ribosome.  相似文献   

4.
Like most cellular RNA enzymes, the bI5 group I intron requires binding by a protein cofactor to fold correctly. Here, we use single-molecule approaches to monitor the structural dynamics of the bI5 RNA in real time as it assembles with its CBP2 protein cofactor. These experiments show that CBP2 binds to the target RNA in two distinct modes with apparently opposite effects: a "non-specific" mode that forms rapidly and induces large conformational fluctuations in the RNA, and a "specific" mode that forms slowly and stabilizes the native RNA structure. The bI5 RNA folds though multiple pathways toward the native state, typically traversing dynamic intermediate states induced by non-specific binding of CBP2. These results suggest that the protein cofactor-assisted RNA folding involves sequential non-specific and specific protein-RNA interactions. The non-specific interaction potentially increases the local concentration of CBP2 and the number of conformational states accessible to the RNA, which may promote the formation of specific RNA-protein interactions.  相似文献   

5.
Native folding and splicing by the Saccharomyces cerevisiae mitochondrial bI5 group I intron RNA is facilitated by both the S. cerevisiae CBP2 and Neurospora crassa CYT-18 protein cofactors. Both protein-bI5 RNA complexes splice at similar rates, suggesting that the RNA active site structure is similar in both ribonucleoproteins. In contrast, the two proteins assemble with the bI5 RNA by distinct mechanisms and bind opposing, but partially overlapping, sides of the group I intron catalytic core. Assembly with CBP2 is limited by a slow, unimolecular RNA folding step characterized by a negligible activation enthalpy. We show that assembly with CYT-18 shows four distinctive features. (1) CYT-18 binds stably to the bI5 RNA at the diffusion controlled limit, but assembly to a catalytically active RNA structure is still limited by RNA folding, as visualized directly using time-resolved footprinting. (2) This mechanism of rapid stable protein binding followed by subsequent assembly steps has a distinctive kinetic signature: the apparent ratio of k(off) to k(on), determined in a partitioning experiment, differs from the equilibrium K(d) by a large factor. (3) Assembly with CYT-18 is characterized by a large activation enthalpy, consistent with a rate limiting conformational rearrangement. (4) Because assembly from the kinetically trapped state is faster at elevated temperature, we can identify conditions where CYT-18 accelerates (catalyzes) bI5 RNA folding relative to assembly with CBP2.  相似文献   

6.
The terminal intron (bI2) of the yeast mitochondrial cytochrome b gene is a group I intron capable of self-splicing in vitro at high concentrations of Mg2+. Excision of bI2 in vivo, however, requires a protein encoded by the nuclear gene CBP2. The CBP2 protein has been partially purified from wild-type yeast mitochondria and shown to promote splicing at physiological concentrations of Mg2+. The self-splicing and protein-dependent splicing reactions utilized a guanosine nucleoside cofactor, the hallmark of group I intron self-splicing reactions. Furthermore, mutations that abolished the autocatalytic activity of bI2 also blocked protein-dependent splicing. These results indicated that protein-dependent excision of bI2 is an RNA-catalyzed process involving the same two-step transesterification mechanism responsible for self-splicing of group I introns. We propose that the CBP2 protein binds to the bI2 precursor, thereby stabilizing the catalytically active structure of the RNA. The same or a similar RNA structure is probably induced by high concentrations of Mg2+ in the absence of protein. Binding of the CBP2 protein to the unspliced precursor was supported by the observation that the protein-dependent reaction was saturable by the wild-type precursor. Protein-dependent splicing was competitively inhibited by excised bI2 and by a splicing-defective precursor with a mutation in the 5' exon near the splice site but not by a splicing-defective precursor with a mutation in the core structure. Binding of the CBP2 protein to the precursor RNA had an effect on the 5' splice site helix, as evidenced by suppression of the interaction of an exogenous dinucleotide with the internal guide sequence.  相似文献   

7.
Many proteins populate collapsed intermediate states during folding. In order to elucidate the nature and importance of these species, we have mapped the structure of the on-pathway intermediate of the four-helix protein, Im7, together with the conformational changes it undergoes as it folds to the native state. Kinetic data for 29 Im7 point mutants show that the intermediate contains three of the four helices found in the native structure, packed around a specific hydrophobic core. However, the intermediate contains many non-native interactions; as a result, hydrophobic interactions become disrupted in the rate-limiting transition state before the final helix docks onto the developing structure. The results of this study support a hierarchical mechanism of protein folding and explain why the misfolding of Im7 occurs. The data also demonstrate that non-native interactions can play a significant role in folding, even for small proteins with simple topologies.  相似文献   

8.
9.
The local environment at adenosine residues in the bI5 group I intron RNA was monitored as a function of Mg(2+) using both the traditional method of dimethyl sulfate (DMS) N1 methylation and a new approach, selective acylation of 2'-amine substituted nucleotides. These probes yield complementary structural information because N1 methylation reports accessibility at the base pairing face, whereas 2'-amine acylation scores overall residue flexibility. 2'-Amine acylation robustly detects RNA secondary structure and is sensitive to higher order interactions not monitored by DMS. Disruption of RNA structure due to the 2'-amine substitution is rare and can be compensated by stabilizing folding conditions. Peripheral helices that do not interact with other parts of the RNA are more stable than both base paired helices and tertiary interactions in the conserved catalytic core. The equilibrium state of the bI5 intron RNA, prior to assembly with its protein cofactor, thus features a relatively loosely packed core anchored by more stable external stem-loop structures. Adenosine residues in J4/5 and P9.0 form structures in which the nucleotide is constrained but the N1 position is accessible, consistent with pre-organization to form long-range interactions with the 5' and 3' splice sites.  相似文献   

10.
The use of simple theoretical models has provided a considerable contribution to our present understanding of the means by which proteins adopt their native fold from the plethora of available unfolded states. A common assumption in building computationally tractable models has been the neglect of stabilizing non-native interactions in the class of models described as "Gō-like." The focus of this study is the characterization of the folding of a number of proteins via a Gō-like model, which aims to map a maximal amount of information reflecting the protein sequence onto a "minimalist" skeleton. This model is shown to contain sufficient information to reproduce the folding transition states of a number of proteins, including topologically analogous proteins that fold via different transition states. Remarkably, these models also demonstrate consistency with the general features of folding transition states thought to be stabilized by non-native interactions. This suggests that native interactions are the primary determinant of most protein folding transition states, and that non-native interactions lead only to local structural perturbations. A prediction is also included for an asymmetrical folding transition state of bacteriophage lambda protein W, which has yet to be subjected to experimental characterization.  相似文献   

11.
BACKGROUND: A large energy gap between the native state and the non-native folded states is required for folding into a unique three-dimensional structure. The features that define this energy gap are not well understood, but can be addressed using de novo protein design. Previously, alpha(2)D, a dimeric four-helix bundle, was designed and shown to adopt a native-like conformation. The high-resolution solution structure revealed that this protein adopted a bisecting U motif. Glu7, a solvent-exposed residue that adopts many conformations in solution, might be involved in defining the unique three-dimensional structure of alpha(2)D. RESULTS: A variety of hydrophobic and polar residues were substituted for Glu7 and the dynamic and thermodynamic properties of the resulting proteins were characterized by analytical ultracentrifugation, circular dichroism spectroscopy, and nuclear magnetic resonance spectroscopy. The majority of substitutions at this solvent-exposed position had little affect on the ability to fold into a dimeric four-helix bundle. The ability to adopt a unique conformation, however, was profoundly modulated by the residue at this position despite the similar free energies of folding of each variant. CONCLUSIONS: Although Glu7 is not involved directly in stabilizing the native state of alpha(2)D, it is involved indirectly in specifying the observed fold by modulating the energy gap between the native state and the non-native folded states. These results provide experimental support for hypothetical models arising from lattice simulations of protein folding, and underscore the importance of polar interfacial residues in defining the native conformations of proteins.  相似文献   

12.
Chen C  Xiao Y 《Physical biology》2006,3(3):161-171
Computer simulations of beta-hairpin folding are relatively difficult, especially those based on the explicit water model. This greatly limits the complete analysis and understanding of their folding mechanisms. In this paper, we use the generalized Born/solvent accessible implicit solvent model to simulate the folding processes of a nine-residue beta-hairpin. We find that the beta-hairpin can fold into its native structure very easily, even using the traditional molecular dynamics method. This allows us to extract 21 complete folding events and investigate the folding process sufficiently. Our results show that there exist four most stable states on the free energy landscape of the short peptide, one native state and three intermediates. We find that two of the non-native stable states have almost the same potential energy as the native state but with lower entropy. This suggests that the native state can be stabilized entropically. Furthermore, we find that the folding processes of this peptide have common features: to fold into its native state, the peptide undergoes a continuous collapsing-extending-recollapsing process to adjust the positions of the side chains in order to form the native middle inter-strand hydrogen bonds. The formations of these bonds are the key step of the folding process. Once these bonds are formed, the peptide can fold into the native state quickly.  相似文献   

13.
We have investigated the folding energy landscape of cytochrome c by exploiting the widely different electron-transfer (ET) reactivities of buried and exposed Zn(II)-substituted hemes. An electronically excited Zn-porphyrin in guanidine hydrochloride denatured Zn-substituted cytochrome c (Zn-cyt c) reduces ruthenium(III) hexaammine about ten times faster than when embedded in the fully folded protein. Measurements of ET kinetics during Zn-cyt c folding reveal a burst intermediate in which one-third of the ensemble has a protected Zn-porphyrin and slow ET kinetics; the remaining fraction exhibits fast ET characteristic of a solvent-exposed redox cofactor. The ET data show that, under solvent conditions favoring the folded protein, collapsed non-native structures are not substantially more stable than extended conformations, and that the two populations interchange rapidly. Most of the folding free energy, then, is released when compact structures evolve into the native fold.  相似文献   

14.
The fast folding of small proteins is likely to be the product of evolutionary pressures that balance the search for native-like contacts in the transition state with the minimum number of stable non-native interactions that could lead to partially folded states prone to aggregation and amyloid formation. We have investigated the effects of non-native interactions on the folding landscape of yeast ubiquitin by introducing aromatic substitutions into the beta-turn region of the N-terminal beta-hairpin, using both the native G-bulged type I turn sequence (TXTGK) as well as an engineered 2:2 XNGK type I' turn sequence. The N-terminal beta-hairpin is a recognized folding nucleation site in ubiquitin. The folding kinetics for wt-Ub (TLTGK) and the type I' turn mutant (TNGK) reveal only a weakly populated intermediate, however, substitution with X = Phe or Trp in either context results in a high propensity to form a stable compact intermediate where the initial U-->I collapse is visible as a distinct kinetic phase. The introduction of Trp into either of the two host turn sequences results in either complex multiphase kinetics with the possibility of parallel folding pathways, or formation of a highly compact I-state stabilized by non-native interactions that must unfold before refolding. Sequence substitutions with aromatic residues within a localized beta-turn capable of forming non-native hydrophobic contacts in both the native state and partially folded states has the undesirable consequence that folding is frustrated by the formation of stable compact intermediates that evolutionary pressures at the sequence level may have largely eliminated.  相似文献   

15.
Most large ribozymes require protein cofactors in order to function efficiently. The yeast mitochondrial bI3 group I intron requires two proteins for efficient splicing, Mrs1 and the bI3 maturase. Mrs1 has evolved from DNA junction resolvases to function as an RNA cofactor for at least two group I introns; however, the RNA binding site and the mechanism by which Mrs1 facilitates splicing were unknown. Here we use high-throughput RNA structure analysis to show that Mrs1 binds a ubiquitous RNA tertiary structure motif, the GNRA tetraloop-receptor interaction, at two sites in the bI3 RNA. Mrs1 also interacts at similar tetraloop-receptor elements, as well as other structures, in the self-folding Azoarcus group I intron and in the RNase P enzyme. Thus, Mrs1 recognizes general features found in the tetraloop-receptor motif. Identification of the two Mrs1 binding sites now makes it possible to create a model of the complete six-component bI3 ribonucleoprotein. All protein cofactors bind at the periphery of the RNA such that every long-range RNA tertiary interaction is stabilized by protein binding, involving either Mrs1 or the bI3 maturase. This work emphasizes the strong evolutionary pressure to bolster RNA tertiary structure with RNA-binding interactions as seen in the ribosome, spliceosome, and other large RNA machines.  相似文献   

16.
Atomic-level analyses of non-native protein ensembles constitute an important aspect of protein folding studies to reach a more complete understanding of how proteins attain their native form exhibiting biological activity. Previously, formation of hydrophobic clusters in the 6 M urea-denatured state of an ultrafast folding mini-protein known as TC5b from both photo-CIDNP NOE transfer studies and FCS measurements was observed. Here, we elucidate the structural properties of this mini-protein denatured in 6 M urea performing (15)N NMR relaxation studies together with a thorough NOE analysis. Even though our results demonstrate that no elements of secondary structure persist in the denatured state, the heterogeneous distribution of R(2) rate constants together with observing pronounced heteronuclear NOEs along the peptide backbone reveals specific regions of urea-denatured TC5b exhibiting a high degree of structural rigidity more frequently observed for native proteins. The data are complemented with studies on two TC5b point mutants to verify the importance of hydrophobic interactions for fast folding. Our results corroborate earlier findings of a hydrophobic cluster present in urea-denatured TC5b comprising both native and non-native contacts underscoring their importance for ultra rapid folding. The data assist in finding ways of interpreting the effects of pre-existing native and/or non-native interactions on the ultrafast folding of proteins; a fact, which might have to be considered when defining the starting conditions for molecular dynamics simulation studies of protein folding.  相似文献   

17.
The development of electrostatic interactions during the folding of the N-terminal domain of the ribosomal protein L9 (NTL9) is investigated by pH-dependent rate equilibrium free energy relationships. We show that Asp8, among six acidic residues, is involved in non-native, electrostatic interactions with K12 in the transition state for folding as well as in the denatured state. The perturbed native state pK(a) of D8 (pK(a) = 3.0) appears to be maintained through non-native interactions in both the transition state and the denatured state. Mutational effects on the stability of the transition state for protein (un)folding are often analyzed in respect to change in ground states. Thus, the interpretation of transition state analysis critically depends on an understanding of mutational effects on both the native and denatured state. Increasing evidence for structurally biased denatured states under physiological conditions raises concerns about possible denatured state effects on folding studies. We show that the structural interpretation of transition state analysis can be altered dramatically by denatured state effects.  相似文献   

18.
By considering the denatured state of a protein as an ensemble of conformations with varying numbers of sequence-specific interactions, the effects on stability, folding kinetics, and aggregation of perturbing these interactions can be predicted from changes in the molecular partition function. From general considerations, the following conclusions are drawn: (1) A perturbation that enhances a native interaction in denatured state conformations always increases the stability of the native state. (2) A perturbation that promotes a non-native interaction in the denatured state always decreases the stability of the native state. (3) A change in the denatured state ensemble can alter the kinetics of aggregation and folding. (4) The loss (or increase) in stability accompanying two mutations, each of which lowers (or raises) the free energy of the denatured state, will be less than the sum of the effects of the single mutations, except in cases where both mutations affect the same set of partially folded conformations. By modeling the denatured state as the ensemble of all non-native conformations of hydrophobic-polar (HP) chains configured on a square lattice, it can be shown that the stabilization obtained from enhancement of native interactions derives in large measure from the avoidance of non-native interactions in the D state. In addition, the kinetic effects of fixing single native contacts in the denatured state or imposing linear gradients in the HH contact probabilities are found, for some sequences, to significantly enhance the efficiency of folding by a simple hydrophobic zippering algorithm. Again, the dominant mechanism appears to be avoidance of non-native interactions. These results suggest stabilization of native interactions and imposition of gradients in the stability of local structure are two plausible mechanisms involving the denatured state that could play a role in the evolution of protein folding and stability.  相似文献   

19.
Duncan CD  Weeks KM 《Biochemistry》2008,47(33):8504-8513
Most functional RNAs require proteins to facilitate formation of their active structures. In the case of the yeast bI3 group I intron, splicing requires binding by two proteins, the intron-encoded bI3 maturase and the nuclear encoded Mrs1. Here, we use selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) chemistry coupled with analysis of point mutants to map long-range interactions in this RNA. This analysis reveals two critical features of the free RNA state. First, the catalytic intron is separated from the flanking exons via a stable anchoring helix. This anchoring helix creates an autonomous structural domain for the intron and functions to prevent misfolding with the flanking exons. Second, the thermodynamically most stable structure for the free RNA is not consistent with the catalytically active conformation as phylogenetically conserved elements form stable, non-native structures. These results highlight a fragile bI3 RNA for which binding by protein cofactors functions to promote extensive secondary structure rearrangements that are an obligatory prerequisite for forming the catalytically active tertiary structure.  相似文献   

20.
About 30% of proteins require cofactors for their proper folding. The effects of cofactors on the folding reaction have been investigated with alpha-lactalbumin as a model protein and metal ions as cofactors. Metal ions accelerate the refolding of alpha-lactalbumin by lessening the energy barrier between the molten globule state and the transition state, mainly by decreasing the difference of entropy between the two states. These effects are linked to metal ion binding to the protein in the native state. Hence, relationships between the metal affinities for the intermediate states and those for the native state are observed. Some residual specificity for the calcium ion is still observed in the molten globule state, this specificity getting closer in the transition state to that of the native state. The comparison between kinetic and steady-state data in association with the Phi value method indicates the binding of the metal ions on the unfolded state of alpha-lactalbumin. Altogether, these results provide insight into cofactor effects on protein folding. They also suggest new possibilities to investigate the presence of residual native structures in the unfolded state of protein and the effects of such structures on the protein folding reaction and on protein stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号