首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Srinivasan M 《Oecologia》2003,137(1):76-84
Many coral reef fishes have restricted depth ranges that are established at settlement or soon after, but the factors limiting these distributions are largely unknown. This study examines whether the availability of microhabitats (reef substrata) explains depth limits, and evaluates whether juvenile growth and survival are lower beyond these limits. Depth-stratified surveys of reef fishes at Kimbe Bay (Papua New Guinea) showed that the abundance of new settlers and the cover of coral substrata differed significantly among depths. A field experiment investigated whether settling coral reef fishes preferred particular depths, and whether these depth preferences were dependent on microhabitat. Small patch reefs composed of identical coral substrata were set up at five depths (3, 6, 10, 15 and 20 m), and settlement patterns were compared to those on unmanipulated reef habitat at the same five depths. For all species, settlement on patch reefs differed significantly among depths despite uniform substratum composition. For four of the six species tested, depth-related settlement patterns on unmanipulated habitat and on patch reefs did not differ, while for the other two, depth ranges were greater on the patch reefs than on unmanipulated habitat. A second experiment examined whether depth preferences reflected variation in growth and survival when microhabitat was similar. Newly settled individuals of Chrysiptera parasema and Dascyllus melanurus were placed, separately, on patch reefs at five depths (as above) and their survival and growth monitored. D. melanurus, which is restricted to shallow depths, had highest survival and growth at the shallowest depth. Depth did not affect either survival or growth of C. parasema, which has a broader depth range than D. melanurus (between 6 and 15 m). This suggests that the fitness costs potentially incurred by settling outside a preferred depth range may depend on the strength of the depth preference.  相似文献   

2.
Benthic recovery from climate-related disturbances does not always warrant a commensurate functional recovery for reef-associated fish communities. Here, we examine the distribution of benthic groupers (family Serranidae) in coral reef communities from the Lakshadweep archipelago (Arabian Sea) in response to structural complexity and long-term habitat stability. These coral reefs that have been subject to two major El Niño Southern Oscillation-related coral bleaching events in the last decades (1998 and 2010). First, we employ a long-term (12-yr) benthic-monitoring dataset to track habitat structural stability at twelve reef sites in the archipelago. Structural stability of reefs was strongly driven by exposure to monsoon storms and depth, which made deeper and more sheltered reefs on the eastern aspect more stable than the more exposed (western) and shallower reefs. We surveyed groupers (species richness, abundance, biomass) in 60 sites across the entire archipelago, representing both exposures and depths. Sites were selected along a gradient of structural complexity from very low to high. Grouper biomass appeared to vary with habitat stability with significant differences between depth and exposure; sheltered deep reefs had a higher grouper biomass than either sheltered shallow or exposed (deep and shallow) reefs. Species richness and abundance showed similar (though not significant) trends. More interestingly, average grouper biomass increased exponentially with structural complexity, but only at the sheltered deep (high stability) sites, despite the availability of recovered structure at exposed deep and shallow sites (lower-stability sites). This trend was especially pronounced for long-lived groupers (life span >10 yrs). These results suggest that long-lived groupers may prefer temporally stable reefs, independent of the local availability of habitat structure. In reefs subject to repeated disturbances, the presence of structurally stable reefs may be critical as refuges for functionally important, long-lived species like groupers.  相似文献   

3.
The aim of this study was to determine the ontogenetic habitat preferences of the narrownose smooth-hound shark, Mustelus schmitti, in Río de la Plata and El Rincón coastal areas. There, canonical correspondence analyses of fishery research survey data showed that M. schmitti ontogenetic stages were differentially affected by depth, temperature and salinity. Neonates and juveniles were more abundant and remain in nearshore waters, suggesting the presence of nursery areas in which food availability and environmental conditions allow a faster growth. Adults M. schmitti presented different environmental associations mainly associated with depth and temperature. During non-reproductive season they were associated with deeper coastal waters. With the arrival of the reproductive season, adults migrate from deep to nearshore waters and show sexual segregation associated with pre- or post-mating behaviors. Hence, the year-round presence of neonates and juveniles and the seasonal occurrence of adults in nearshore waters make this habitat essential to M. schmitti population dynamics since key ontogenetic stages will be vulnerable if a direct impact occurs there.  相似文献   

4.
The spiny damselfish, Acanthochromis polyacanthus, is widely distributed throughout the Indo‐Australian archipelago. However, this species lacks a larval dispersal stage and shows genetic differentiation between populations from closely spaced reefs. To investigate the dispersal strategy of this unique species, we used microsatellite markers to determine genetic relatedness at five dispersal scales: within broods of juveniles, between adults within a collection site (~30 m2), between sites on single reefs, between nearby reefs in a reef cluster, and between reef clusters. We sampled broods of juveniles and adults from seven reefs in the Capricorn‐Bunker and Swain groups of the Great Barrier Reef. We found that extra‐pair mating is rare and juveniles remain with their parents until fledged. Adults from single sites are less related than broods but more related than expected by chance. However, there is no evidence of inbreeding suggesting the existence of assortative mating and/or adult migration. Genetic differences were found between all of the reefs tested except between Heron and Sykes reefs, which are separated only by a 2‐km area of shallow water (less than 10 m). There was a strong correlation between genetic distance, geographical distance and water depth. Apparently, under present‐day conditions spiny damselfish populations are connected only between sites of shallow water, through dispersal of adults over short distances. Assuming that dispersal behaviour has not changed, the broad distribution of A. polyacanthus as a species is likely based on historical colonization patterns when reefs were connected by shallow water at times of lower sea levels.  相似文献   

5.
This study focussed on the demography and ecology of Scolopsis bilineatus at three locations on the Great Barrier Reef: the Lizard Island Group, Orpheus Island and One Tree Island. Scolopsis bilineatus lived for up to 16 years and had four distinct life‐history stages, which varied in their distribution patterns, habitat use and reproductive behaviour. Pre‐maturational sex change occurred whereby all males were derived from immature females, and males grew faster and larger than females. Small females and larger males generally formed pairs, which influenced their spatial distributions at small scales. Distributions of S. bilineatus were influenced by depth and exposure within reefs, particularly for juveniles, and most fish were found in shallow, sheltered habitats. Abundance was influenced by benthic cover, and was higher in areas of high coral cover and low where algae were abundant. Habitat associations were stronger at the microhabitat scale, and shelter sites were important for adults. Ontogenetic changes in microhabitat associations were found: juveniles occupied sand and rubble, and adults occupied shelters such as caves and overhangs. Adults showed site fidelity for shelter sites over a period of 4 days and returned to specific shelter sites repeatedly. These findings illustrate the importance of understanding the spatial ecology and habitat use of coral reef fishes, particularly with reference to size‐based changes within species.  相似文献   

6.
This study aimed to investigate the spatial structure of nocturnal fish communities at settlement on coral reefs in Moorea Island lagoon, French Polynesia; and the temporal consistency of habitat selection between winter (April to June 2001) and summer (November 2001). The Moorea lagoon was divided into 12 habitat zones (i.e., coral reef zones), which were distinct in terms of depth, wave exposure, and substratum composition. Nocturnal visual censuses among the 12 habitats found that the recently settled juveniles of 25 species recorded were dispatched among three communities spatially distributed according to the distance from the reef crest (reef crest, barrier reef, and fringing reef communities). This spatial communities structure of nocturnal juveniles was consistent in both winter and summer and would be explained primarily by a current gradient in Moorea lagoon (current speed was high near the reef crest and decreased towards the beach) and by the topographic characteristics of reef zones. Among the 25 species, 13 were recorded in both winter and summer. A comparison of the spatial distribution between summer and winter for 13 species that occurred during both seasons found that only 4 differed between the two seasons. For these species, habitat selection would be organized primarily by some stochastic processes such as inter- and intraspecific competition, predation, and food availability. Overall, the present study allowed us to highlight that most nocturnal coral reef fish juveniles at Moorea Island exhibited striking patterns in their distribution and current and topographic characteristics of reef zones might exert considerable influence on the distribution of fishes.  相似文献   

7.
Shallow subtidal areas of rocky reefs in central and southern New South Wales may best be described as a mosaic of habitats, the distributions of which are seemingly related to depth, wave exposure and a number of biological processes, particularly herbivory. The Fringe habitat is generally found only in the most shallow waters. Forests of the laminarian alga Ecklonia radiata are often found at intermediate depths. In deeper, or more sheltered water, sponges, ascidians and red algae are more abundant and the abundances of sea urchins and other invertebrate grazers decline. Overlying this broad-brush pattern are patches of crustose coralline algae (the Barrens habitat), the distributions of which are not clearly related to depth. Invertebrate herbivores, and sea urchins in particular, are abundant in the Barrens habitat. The Barrens habitat was most represented at the more southern locations. At the two most northern locations, reefs were shorter in length and dominated by ascidians (Pyura species).  相似文献   

8.
G. M. Wellington 《Oecologia》1992,90(4):500-508
Summary On many Caribbean fringing coral reefs, two closely related and ecologically similar damselfishes, the beaugregory (Stegastes leucostictus Müller and Troschel) and the cocoa damselfish (S. variabilis Castelnau), occupy nonoverlapping vertical distributions. In St. Croix (USVI), beaugregory are very abundant in shallow water back reef habitats (1–2 m depth) while cocoa damselfish are restricted to the base of the forereef (10–15 m depth).In this study, the roles of habitat selection at settlement and juvenile persistence were investigated to determine their influence on this pattern of zonation. Settlement events observed at intervals over a two-year period revealed that habitat selection occurred at settlement and was confined to habitats occupied by adults. In addition, differences in juvenile persistence (due to mortality and/or emigration) were found when species were translocated between depths. Over a period of 100-days, juvenile beaugregory moved from 1 m to 12 m depth suffered four-fold greater losses at the deeper sites than shallow water controls, while translocated cocoa damselfish suffered twice as many losses in shallow water than controls at 12 m depth. Despite these differences in persistence, growth rates of the two species were similar and independent of depth. These results indicate that preferential habitat selection at settlement, perhaps an evolutionary response to differential juvenile mortality, may play a deciding role in determining distributions of ecologically similar species of coral reef fishes.  相似文献   

9.
An analysis of the diet of 0+ perch, smelt and roach caught at night of the pelagial of a mesotrophic lake showed that their food was composed mainly of herbivorous and predatory cladocerans, copepods and Chaoborus larvae during summer, and of herbivorous cladocerans and copepods during October. An analysis of habitat use by juveniles revealed separation among the species: roach occurred in the upper, perch and smelt in the deeper water layers. Food and habitat were alternatively partitioned among the juveniles. In early summer the lowest food overlap between perch and smelt coincided with high habitat overlap. In October high food overlap between perch and smelt corresponded with low habitat overlap. Smelt and roach fry used common food resources throughout the season, but they were segregated in habitat.  相似文献   

10.
The ideal free distribution (IFD) predicts that organisms will disperse to sites that maximize their fitness based on availability of resources. Habitat heterogeneity underlies resource variation and influences spatial variation in demography and the distribution of populations. We relate nest site productivity at multiple scales measured over a decade to habitat quality in a box-nesting population of Forpus passerinus (green-rumped parrotlets) in Venezuela to examine critical IFD assumptions. Variation in reproductive success at the local population and neighborhood scales had a much larger influence on productivity (fledglings per nest box per year) than nest site or female identity. Habitat features were reliable cues of nest site quality. Nest sites with less vegetative cover produced greater numbers of fledglings than sites with more cover. However, there was also a competitive cost to nesting in high-quality, low-vegetative cover nest boxes, as these sites experienced the most infanticide events. In the lowland local population, water depth and cover surrounding nest sites were related with F. passerinus productivity. Low vegetative cover and deeper water were associated with lower predation rates, suggesting that predation could be a primary factor driving habitat selection patterns. Parrotlets also demonstrated directional dispersal. Pairs that changed nest sites were more likely to disperse from poor-quality nest sites to high-quality nest sites rather than vice versa, and juveniles were more likely to disperse to, or remain in, the more productive of the two local populations. Parrotlets exhibited three characteristics fundamental to the IFD: habitat heterogeneity within and between local populations, reliable habitat cues to productivity, and active dispersal to sites of higher fitness.  相似文献   

11.
1. The importance of native freshwater mussels for ecosystem processes depends on their density, size distribution and activity. In lakes, many of the factors that affect mussels (fish hosts, habitat, food) could be directly or indirectly related to wind‐driven physical processes. 2. We tested whether the abundance and size of Elliptio complanata in the shallow, nearshore areas of a medium‐sized lake were related to site exposure, substratum type and fish distribution. To disentangle some of the correlated variables known to affect mussel distribution, we used paired exposed and sheltered sampling sites along the 7‐km fetch of the lake basin. 3. The distribution of sediment characteristics in nearshore areas was highly predictable. The mean depth of accumulated soft sediments decreased with increasing fetch at wind‐exposed sites, but increased with increasing fetch at sheltered sites. Sediments were deeper along the main shoreline than around islands. Deeper sediments tended to be finer and higher in silt content and organic fraction. 4. The density and proportion of juvenile mussels along the main shoreline varied in a unimodal way with sediment depth. These results suggest that wind‐driven physical forces affect the transport of young juveniles to sediment depositional areas and create sediment conditions that influence their growth and survival. In contrast, the proportion of juvenile mussels around islands was not related to sediment characteristics, but decreased with remoteness of the island, suggesting that the distribution of juvenile mussels may be limited by fish movements. These results are tentative since they do not include buried juvenile mussels. 5. We also found a unimodal relationship between total mussel density (juveniles and adults) and sediment depth but, in contrast to the relationship for juveniles only, it applied to all sites with soft sediments, including islands. We conclude that factors related to sediment depth affect the growth and survival of adult mussels around islands and that these factors are strong enough to modify the pattern of distribution established via dispersal during earlier life stages. 6. The mean shell length of adults at different sites within the lake basin ranged from 60 to 85 mm. Mussel shell length decreased with increasing fetch at sites exposed to the prevalent winds, but was relatively constant on the sheltered side of peninsulas and islands. The size of unionid mussels in different parts of the lake seems to be determined both by their exposure to physical forces and by sediments. 7. The local distribution of E. complanata is determined, directly and indirectly, by wind‐driven forces. These processes are likely to be important for other benthic organisms affected by similar habitat conditions (e.g. sediment characteristics, physical disturbance).  相似文献   

12.
Shallow estuarine habitats, including vegetated marsh edge (VME), oyster reefs (oyster), and nonvegetated soft bottom (NVB), provide important functions for estuarine resident and estuarine-dependent species. A paucity of information exists concerning relative nursery value of these habitats for juvenile fishes and invertebrates. In Grand Bay, MS and Weeks Bay, AL, National Estuarine Research Reserves (NERR), this study evaluated the potential of the three habitats to serve as nurseries by quantifying habitat-specific density, size, growth, and survival of juvenile white shrimp Litopenaeus setiferus. Drop sampling in Oct 2003 and Jul 2004 indicated that white shrimp density was significantly greater in oyster and VME when compared with adjacent NVB. No significant difference occurred in density between oyster and VME. Significantly larger shrimp were collected in NVB, intermediate-sized shrimp were collected in oyster, and smaller shrimp were collected in VME. Using field enclosures to study growth of juvenile white shrimp we found significantly higher growth in oyster when compared with NVB and VME. Predator mesocosm experiments indicated that when blue crabs were used as predators, white shrimp juveniles experienced significantly higher survival rates in VME and NVB when compared with oyster. Our study suggests that juvenile white shrimp may select for oyster over NVB because of higher food availability and not necessarily for refuge needs from predation by blue crabs. In addition, juvenile habitat needs may shift with individual growth, indicating that the relative nursery value of a habitat is not inclusive for all juvenile sizes. Similar to VME, oyster provides an important function in the juvenile stages of white shrimp and should be examined further as a potential nursery habitat.  相似文献   

13.
Despite the ubiquity of micropredators and parasites on coral reefs, their effects on the survival and growth of juvenile fishes are virtually unstudied. Caging and laboratory experiments were used to investigate whether reef based micropredators fed on recently metamorphosed damselfish, the time of day that micropredation occurred, and whether micropredation affected fish growth and survival. Caged juveniles of the damselfish, Pomacentrus moluccensis, were held on the reef over four consecutive time periods. Micropredators (gnathiid and cirolanid isopods) were found associated with caged fish at night only, and cirolanids were observed attacking and killing some caged fish. In order to test the effect of micropredation on growth and survival without the influence of predatory fishes, groups of five P. moluccensis were caged for 2 weeks in one of three treatments: micropredators excluded, mesh control, or micropredators present. There were no significant differences in survival among the treatments, but fish were larger in cages with fewer survivors suggesting that competition for food was intense. Fish exposed to micropredators were larger than fish in the other two treatments, however, micropredator exclusion also excluded plankton; thus, differences in food availability among treatments during crepuscular periods likely confounded the treatment effect on fish growth. A laboratory growth experiment was performed to better control food availability and minimise handling stress, using a validated host-micropredator model. Individual juvenile damselfish, Dischistodus perspicillatus, were exposed to 0, 1 or 2 micropredators (Gnathia falcipenis) each evening and fed equally for 8 days. Mortalities only occurred in fish exposed to micropredators on the first evening of the experiment, and fish exposed to two micropredators each evening were significantly smaller than unexposed fish. These results suggest that repeated gnathiid infections can reduce fish growth in the first week after settlement. Consequently, micropredation may affect the ecology of damselfish after settling on coral reefs.  相似文献   

14.
Age‐based analysis of the stoplight parrotfish Sparisoma viride was used to examine whether observed differences in their abundance and size structure among reefs in a cross‐shelf portion of the upper Florida Keys could be explained by variation in demographic rates. Annual and daily sagittal otolith increments were enumerated for 176 individuals collected from replicates of reefs in two strata, inshore and offshore reefs (2–6 m depth). von Bertalanffy growth functions fitted to size‐at‐age plots for each site were similar between reefs within each stratum (inshore and offshore), but differed between strata. Sparisoma viride on offshore reefs attained greater average standard length (LS) at age, greater mean asymptotic size and were longer lived than fish from inshore reefs. Fish on inshore reefs attained only half the maximum age observed on offshore reefs (4 v. 8 years, respectively). No terminal phase fish >4 years of age were found on either reef type. Estimates of mortality rates from age‐frequency data of collected fish revealed higher mortality on inshore reefs. Demographic variables obtained in this study were similar to published values for S. viride from Caribbean reefs but differed significantly from published values from reefs at a similar latitude (Bahamas), reflecting high demographic plasticity on both local and regional scales.  相似文献   

15.
Food selection by foragers is sensitive to the availability of resources, which may vary along geographical gradients. Hence, selectivity of food types by foragers is expected to track these resource gradients. Here we addressed this hypothesis and asked if foraging decisions of seed-eating ants differ along a geographic gradient of habitat productivity. The study was carried out for two years at five sites along a natural climatic gradient, ranging from arid to Mediterranean, where plant productivity varies six-fold across a short geographic distance of 250 km. We found that in ant colonies of the genus Messor, collective foraging decisions differed along the gradient. Specifically, at the high-productivity sites, a stronger association was found between plant seed availability and selectivity, suggesting that colonies respond more accurately to within-patch variation in food amounts. In contrast, colonies in low-productivity sites foraged in patches with higher concentration of seeds, suggesting that they respond more accurately to among-patch variation in food amounts. Moreover, at the high-productivity sites, colonies were more discriminating in their choice of food and preferred bigger seeds, while in the low-productivity sites, where smaller seeds were relatively more abundant, food collection depended mostly on seed availability. An experiment with artificial seed patches performed along the same climatic gradient, revealed no difference in food selectivity across sites when food type and availability were similar, and a general preference for bigger over medium-sized seeds. Overall, our findings suggest that resource availability is an important factor explaining food choice along a climatic gradient and imply that in low-productivity regions small-seeded species incur high predation pressure, whereas in high-productivity regions, large-seeded species suffer higher predation. This could have important consequences for plant species composition, particularly at the face of climate change, which could dramatically alter the foraging decisions of granivores.  相似文献   

16.
1.  In a 1-month outdoor stream channel experiment, we investigated the relative importance of habitat complexity (i.e. cobbled area) and the presence of adult signal crayfish ( Pacifastacus leniusculus ) males on the survival and growth of juveniles.
2.  In treatments with high habitat complexity, more juveniles survived, more were newly moulted and they had a higher specific growth rate (SGR) at the end of the experiment than juveniles in treatments with low habitat complexity. The presence of adult males did not affect survival, moulting stage or growth of the juveniles.
3.  The presence of adult males decreased juvenile activity during night. Juveniles in treatments with low habitat complexity were more active than juveniles in high habitat complexity during both day and night.
4.  There was no difference in total invertebrate biomass between treatments. However, some invertebrate taxa, such as Chironomidae larvae, were affected by habitat complexity or the presence of adult crayfish. Juvenile crayfish in all channels had consumed detritus, algae and Chironomidae larvae and there were no differences in gut contents or stable isotope signals (carbon and nitrogen) between treatments, indicating a similar diet among the juveniles across treatments. However, the biomass of chironomids was significantly higher in channels with adult crayfish present, indicating a decreased consumption of chironomids by juveniles in the presence of adults.
5.  Our results suggest that the recruitment of juvenile crayfish is mostly affected by habitat complexity. The competition for food and shelter and aggressive interactions between the juveniles were most pronounced in low habitat complexity, indicating that habitats with a good access to shelter will enhance recruitment of juvenile crayfish in streams.  相似文献   

17.
Linkages between estuarine nursery areas and coastal reefs are thought to be important for sustaining populations of some reef fishes. Patterns of abundance and size structure in the blue groper, Achoerodus viridis (Pisces: Labridae), were documented at sites extending from sheltered reefs and seagrass, Zostera capricorni, habitats, in shallows of estuaries, to adjacent exposed reefs in New South Wales, Australia. Numbers of juvenile fish (< 200 mm SL) decreased from shallow to deep areas of reef within a site and from inner to outer estuarine sites within two estuaries. Increased numbers of large fish (> 400 mm SL) were found on the more exposed coastal reefs. These patterns were consistent over the 21/2 year study (May 1991–December 1993). Recruits were found in both seagrass and rocky reef habitat, and showed similar patterns of abundance to juveniles. Recruitment of A. viridis to seagrass habitat occurred in distinct seasonal pulses each year; peak recruitment occurred in September and October of each year. Patterns of abundance and size structure were consistent with a model of estuarine recruitment and movement to the open coast, but alternatives, such as differential mortality, could not be discounted.  相似文献   

18.
A presumed value of shallow-habitat enhanced pelagic productivity derives from the principle that in nutrient-rich aquatic systems phytoplankton growth rate is controlled by light availability, which varies inversely with habitat depth. We measured a set of biological indicators across the gradient of habitat depth within the Sacramento–San Joaquin River Delta (California) to test the hypothesis that plankton biomass, production, and pelagic energy flow also vary systematically with habitat depth. Results showed that phytoplankton biomass and production were only weakly related to phytoplankton growth rates whereas other processes (transport, consumption) were important controls. Distribution of the invasive clam Corbicula fluminea was patchy, and heavily colonized habitats all supported low phytoplankton biomass and production and functioned as food sinks. Surplus primary production in shallow, uncolonized habitats provided potential subsidies to neighboring recipient habitats. Zooplankton in deeper habitats, where grazing exceeded phytoplankton production, were likely supported by significant fluxes of phytoplankton biomass from connected donor habitats. Our results provide three important lessons for ecosystem science: (a) in the absence of process measurements, derived indices provide valuable information to improve our mechanistic understanding of ecosystem function and to benefit adaptive management strategies; (b) the benefits of some ecosystem functions are displaced by water movements, so the value of individual habitat types can only be revealed through a regional perspective that includes connectedness among habitats; and (c) invasive species can act as overriding controls of habitat function, adding to the uncertainty of management outcomes.  相似文献   

19.
To test whether commercially exploited fishes could regulate populations of crown-of-thorns starfish, laboratory reared juvenile Acanthaster planci were planced on small habitat units in an area of a lagoon where a number of species of fish that feed on benthic invertebrates occurred. Predators were excluded from half the units using wire mesh. In 35 days, losses were low and there was no statistically significant difference between caged and uncaged units. A difference in mortality rate of 1% of individuals per day would have been detected with >85% probability.However, the observed mean difference, the maximum estimate of predatory mortality, was 0.13% of starfish per day. It thus seems unlikely that predation by any large fishes was important in the population dynamics of juvenile A. planci at that site at the time of this experiment. Juvenile starfish were presented to lethrinids in the field at two reefs. Thirteen percent of juvenile A. planci presented at one reef were eaten, but in no presentation did lethrinids eat all the available starfish and those that were eaten were often mouthed and rejected by several fish before being swallowed. No juveniles were taken in a smaller number of trials at the second reef. These results do not favour the hypothesis that predation on juveniles by large fish is important in the population dynamics of A. planci but experiments at more sites will be required before this conclusion can be generalized.  相似文献   

20.
Ecosystems are intricately linked by the flow of organisms across their boundaries, and such connectivity can be essential to the structure and function of the linked ecosystems. For example, many coral reef fish populations are maintained by the movement of individuals from spatially segregated juvenile habitats (i.e., nurseries, such as mangroves and seagrass beds) to areas preferred by adults. It is presumed that nursery habitats provide for faster growth (higher food availability) and/or low predation risk for juveniles, but empirical data supporting this hypothesis is surprisingly lacking for coral reef fishes. Here, we investigate potential mechanisms (growth, predation risk, and reproductive investment) that give rise to the distribution patterns of a common Caribbean reef fish species, Haemulon flavolineatum (French grunt). Adults were primarily found on coral reefs, whereas juvenile fish only occurred in non-reef habitats. Contrary to our initial expectations, analysis of length-at-age revealed that growth rates were highest on coral reefs and not within nursery habitats. Survival rates in tethering trials were 0% for small juvenile fish transplanted to coral reefs and 24-47% in the nurseries. As fish grew, survival rates on coral reefs approached those in non-reef habitats (56 vs. 77-100%, respectively). As such, predation seems to be the primary factor driving across-ecosystem distributions of this fish, and thus the primary reason why mangrove and seagrass habitats function as nursery habitat. Identifying the mechanisms that lead to such distributions is critical to develop appropriate conservation initiatives, identify essential fish habitat, and predict impacts associated with environmental change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号