首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 39 毫秒
1.
Acid phosphatase, alkaline phosphatase, and lactic dehydrogenase activities have been compared in normal human diploid cell strains and in SV40-transformed heteroploid cell lines derived from them. A higher level of acid phosphatase activity was observed in diploid cultures derived from adult lung than in cultures derived from fetal lung of similar passage levels. The alkaline phosphatase activity of normal diploid fibroblasts was significantly higher than that of SV40-transformed cell lines derived from them. Generally, the lactic dehydrogenase activities of all these cell cultures were similar. Human diploid cells in culture “age,” in the sense that their ability to proliferate decreases with time during serial subcultivation. Evaluation of the activities of these three enzymes during the “aging” process showed that, although alkaline phosphatase and lactic dehydrogenase activities were similar in “young” and “senescent” cells, acid phosphatase showed a small but significant increase in the senescent cells.  相似文献   

2.
Alkaline phosphatase, an enzyme secreted byBacillus intermedius S3-19 cells to the medium, was also detected in the cell wall, membrane, and cytoplasm. The relative content of alkaline phosphatase in these cell compartments depended on the culture age and cultivation medium. The vegetative growth ofB. intermedius on 0.3% lactate was characterized by increased activity of extracellular and membrane-bound phosphatases. The increase in lactate concentration to 3% did not affect the activity of membrane-bound phosphatase but led to a decrease in the activity of the extracellular enzyme. Na2HPO4 at a concentration of 0.01 % diminished the activity of membrane-bound and extracellular phosphatases. CoCl2 at a concentration of 0.1 mM released membrane-bound phosphatase into the medium. By the onset of sporulation, phosphatase was predominantly localized in the medium and in the cell wall. As is evident from zymograms, the multiple molecular forms of phosphatase varied depending on its cellular localization and growth phase.  相似文献   

3.
A study has been made of the decay of acid phosphatase (ACP1) in the human red cell using red cell fractions of different mean ages prepared by density gradient centrifugation. Red cells from acid phosphatase type A and type B individuals were used in the study. Acid phosphatase activity of the red cell fractions was determined by two different assay methods. The results obtained were comparable and have been combined. Acid phosphatase type A and type B showed a biphasic decay pattern with a rapid early loss of activity, followed by a more gradual rate of decline. Type A appeared to decay more rapidly than type B in both decay phases. It is proposed that differences in stability between type A and type B in vivo may explain the observed differences in activity between the enzyme types. There was no evidence for the generation of secondary isozymes by acid phosphatase type A or type B during red cell aging.  相似文献   

4.
This study examined the effects of 17-beta-estradiol (E2) on chondrocyte differentiation in vitro. Cells derived from male or female rat costochondral growth zone and resting zone cartilage were used to determine whether the effects of E2 were dependent on the stage of chondrocyte maturation and whether they were sex-specific. [3H]-incorporation, cell number, alkaline phosphatase specific activity, and percent collagen production were used as indicators of differentiation. Alakaline phosphatase specific activity in matrix vesicles and plasma membranes isolated from female chondrocyte cultures was measured to determine which membrane fraction was targeted by the hormone. Specificity of the E2 effects was assessed using 17-alpha-estradiol. The role of fetal bovine serum and phenol red in the culture medium was also addressed. The results demonstrated that E2 decreases cell number and [3H]-incorporation in female chondrocytes, indicating that it promotes differentiation of these cells. Alkaline phosphatase specific activity is stimulated in both growth zone and resting zone cells, but the effect is greater in the less mature resting zone chondrocytes. The increase in enzyme activity is targeted to the matrix vesicles in both cell types, but the fold increase is greater in the growth zone cells. In male chondrocytes, there was a decrease in [3H]-incorporation at high E2 concentrations in resting zone cells at the earliest time point examined (12 hours) and a slight stimulation in alkaline phosphatase activity in growth zone cells at 24 hours. Cells cultured in serum-free medium exhibited a dose-dependent inhibition in alkaline phosphatase activity when cultured with E2, even in the presence of phenol red. E2-stimulation of enzyme activity is seen only in the presence of serum, suggesting that serum factors are also necessary. E2 increased percent collagen production in female cells only; the magnitude of the effect was greatest in the resting zone chondrocyte cultures. The results of this study indicate that the effects of E2 are dependent on time of exposure, presence of serum, and the sex and state of maturation of the chondrocytes. E2-stimulation of alkaline phosphatase specific activity is targeted to matrix vesicles. © 1993 Wiley-Liss, Inc.  相似文献   

5.
HeLa plasma membranes from M, G1, and S phase cells were isolated from growing synchronous cell cultures. It was found that the specific activity of plasma membrane alkaline phosphatase was over three times higher in the M phase cell than in the G1 and S phase cell. However, sodium dodecyl sulfate (SDS) polyacrylamide disc gel electrophoresis showed that the S phase plasma membrane contained 5.5 times more alkaline phosphatase protein than did the plasma membrane from mitotic cells, and 11.0 times more than the G1 phase plasma membrane. This would indicate that the high specific activity in mitosis was due to modification of the alkaline phosphatase protein resulting in increased enzymatic activity.  相似文献   

6.
Acid phosphatase activity in human glioma cells (138 MG) and mouse neuroblastoma cells (C 1300) was associated with structures accumulating neutral red and acridine orange. Only neuroblastoma cells gave a significant positive histochemical reaction for alkaline phosphatase. Glioma and neuroblastoma cell homogenates exhibited maximal phosphatase activity at pH 5 as measured by spectrophotometer. The specific activity; μmoles phosphate released per hour/mg protein was 1.1 in glioma and 0.9 in neuroblastoma. At pH 8, glioma cells lacked activity whereas neuroblastoma cells showed another maximum. The acid phosphatase activity of both cell types was strongly inhibited by CuCl2 (0.3 mM) and NaF (10 mM) and moderately by -tartaric acid (10 mM). cGMP (1 mM) stimulated the phosphatase activity of both cell lines. db-cAMP, in serum-free medium, induced characteristic morphological changes of the cells studied. This process was unaffected by CuCl2, c-GMP and -tartaric acid. db-cAMP (1 mM) inhibited proliferation in both glioma and neuroblastoma cells during a 48 h incubation in serum-containing medium. This growth inhibition was associated with an increase in acid phosphatase activity of the glioma but not of the neuroblastoma cells.  相似文献   

7.
The localization of acid phosphatase (EC 3.1.3.2) in aleurone layers of barley (Hordeum vulgare L. cv. Himalaya) grains was studied. Phosphatase (EC 3.1.3.26) activity, assayed with phytic acid as the substrate, is present in the dry grain at low leveis and increases during incubation in H2O at 25°C for three days. When aleurone layers are isolated from imbibed grain and incubated for 18 h in buffer with or without 50 μM gibberellic acid (GA3), the level of extractable phosphatase activity increases two- to threefold, and phosphatase is released into the medium. GA, promotes the release of phosphatase activity: aleurone layers incubated in GA, release twice as much phosphatase as layers incubated in buffer. Nine isoenzymes of phosphatase are found in aleurone layers of barley by non-denaturing polyacrvlamide gel electropho-resis. Six of these forms, isoenzymes 1,2,3,5,6 and 8, can be extracted from dry tissue, and after three days of imbibition in H2O an additional isoenzyme, isoenzyme 9, is found in aleurone extracts. When isolated aleurone layers are incubated for a further 22 h in buffer with or without GA3, isoenzyme 7 is found and yet another form, isoenzyme 4, is found in layers incubated in GA3. Eight isoenzymes are released from aleurone layers into the incubation medium. Isoenzymes 5 and 6 are released in buffer both with and without GA3, even when cycloheximide is present; cycloheximide inhibits the release of the other isoenzymes. Isoenzymes 1-4, 7 and 8, on the other hand, are secreted into the incubation medium only when GA3, is present. Isoenzyme 9 is not released into the incubation medium. Acid phosphatase activity was localized in aleurone tissue using cytochemical, cell fractionation, and enzymatic methods. Cytochemical localization of ATPase (EC 3.6.1.8) in aleurone tissue showed the presence of enzyme activity in cell wall, protein bodies, endoplasmic reticulum, Golgi apparatus, and mitochondria. Analysis of organelle fractions isolated by density gradient centrifugation showed that the activity of acid phosphatase isoenzymes 1, 2 and 3 was prominently associated with the phytin globoid of protein bodies, and analysis of the activity released from the cell wall by enzymatic digestion showed that it was almost exclusively isoenzymes 5 and 6.  相似文献   

8.
Synthase phosphatase, phosphorylase phosphatase and histone phosphatase in rat liver were measured using as substrate purified liver synthase D, phosphorylase a and 32P-labelled phosphorylated f1 histone, respectively. The three phosphatase enzymes had different sedimentation characteristics. Both synthase phosphatase and phosphorylase phosphatase were found to sediment with the microsomal fraction under our experimental conditions. Only 10% of histone phosphatase was in this fraction; the majority was in the cytosol. No change in histone phosphatase was observed in the adrenalectomized fasted rat whereas synthase phosphatase and phosphorylase phosphatase activities were decreased 5–10-fold. Fractionation of liver extract with ethanol produced a dissociation of the three phosphatase activities. When a partially purified fraction was put on a DEAE-cellulose column, synthase phosphatase and phosphorylase phosphatase both exhibited broad elution profiles but their activity peaks did not coincide. Histone phosphatase eluted as a single discrete peak. When the supernatant of CaCl2-treated microsomal fraction was put on a Sepharose 4B column, the majority of synthase phosphatase was found to elute with the larger molecular weight proteins whereas the majority of phosphorylase phosphatase eluted with the smaller species. Histone phosphatase migrated as a single peak and was of intermediate size. Synthase phosphatase was inhibited by phosphorylase a (Ki < 1 unit/ml) and phosphorylase phosphatase by synthase D (K1 ≈ units/ml). The inhibition of synthase phosphatase by phosphorylase a was kinetically non-competitive with substrate. Histone phosphatase activity was not inhibited by synthase D or by phosphorylase a. The above results suggest that different proteins are involved in the dephosphorylation of synthase D, phosphorylase a and histone in the cell.  相似文献   

9.
We have examined the increase in alkaline phosphatase activity in the cyanobacterium Anacystis nidulans R2 upon phosphate deprivation. Much of the activity is released into the medium when A. nidulans is osmotically shocked, indicating that the enzyme is located either in the periplasmic space or is loosely bound to the cell wall. The polypeptide associated with phosphatase activity has been identified as a single species of Mr 160,000. Several lines of evidence demonstrate that this polypeptide is responsible for alkaline phosphatase activity: (a) It is absent when cells are grown in the presence of phosphate and specifically accumulates during phosphate deprivation. (b) It is the major periplasmic polypeptide extracted by osmotic shock. (c) It represents over 90% of the protein in a fraction of periplasmic polypeptides enriched for phosphatase activity. (d) Antibodies raised against the purified species of Mr 160,000 inhibit phosphatase activity by approximately 70%.  相似文献   

10.
Summary Choline, betaine and N,N-dimethylglycine as the sole carbon and nitrogen source induced a periplasmic acid phosphatase activity in Pseudomonas aeruginosa. This enzyme produced the highest rates of hydrolysis in phosphorylcholine and phosphorylethanolamine among the various phosphoric esters tested. At saturating concentrations of Mg2+, the Km values were 0.2 and 0.7 mM for phosphorylcholine and phosphorylethanolamine respectively. At high concentrations both compounds were inhibitors of the enzyme activity. The K inf1 sups values for phosphorylcholine and phosphorylethanolamine were 1.0 and 3.0 mM respectively. The higher catalytic efficiency was that of phosphorylcholine. Considering these results it is possible to suggest that the Pseudomonas aeruginosa acid phosphatase is a phosphorylcholine phosphatase. The existence of this activity which is induced jointly with phospholipase C by different choline metabolites, in a high phosphate medium, suggests that the attack of Pseudomonas aeruginosa on the cell host may also be produced under conditions of high phosphate concentrations, when the alkaline phosphatase is absent.  相似文献   

11.
Alkaline phosphatese activity of HeLa cells is increased from 3- to 8-fold during growth in medium with certain aliphatic monocarboxylates. The four-carbon fatty acid salt, sodium butyrate, is the most effective “inducer” with propionate (C3), pentanoate (C5) and hexanoate (C6) having lesser effects. Other straight-chain aliphatic monocarboxylates, branched-chain analogues of inducers, hydroxylated derivatives, and metabolytes structurally related to butyrate are ineffective in mediating an increase in enzyme activity, indicating stringent structural requirements for inducers. The kinetics of increase in alkaline phosphatase activity in HeLa cells shows a 20–30 h lag period after adding the aliphatic acid followed by a rapid linear increase of enzyme activity. Protein synthesis is required for “induction”. The isozyme of HeLa alkaline phosphatase induced by monocarboxylates is the carcinoplacental form of the enzyme as determined by stereospecific inhibition by the l-enantiomorphs of phenylalanine and tryptophan, heat stability, and immunoreactivity with antibody against the human placental enzyme.Monocarboxylates that mediate increased alkaline phosphatase activity inhibit HeLa cell multiplication. Inhibition of HeLa cell growth may be necessary for induction and this hypothesis is supported by the findings that three different inhibitors of DNA synthesis, i.e. hydroxyurea, 1-β-d-arabinfuranosyl cytosine and methotrexate, also increase alkaline phosphatase activity. These inhibitors are synergistic with butyrate in causing HeLa cells to assume a more spindle-like shape and in producing an up-to 25-fold increase of enzyme activity. Studies on the modulation of carcinoplacental alkaline phosphatase by monocarboxylates commonly used as antimicrobial food additives and by anti-neoplastic agents may provide methods to evoke “tumor markers” of human occult malignancies. These drug-induced elevations of fetal isozyme activity may further our understanding of gene expression in human cells.  相似文献   

12.
Prostaglandins have been implicated in the process of uterine decidualization , but sites of action are uncertain. Since one of the earliest changes in endometrial stroma following induction of decidualization is an increase in alkaline phosphataseactivity, we have investigated the effects of PGs on stromal cell alkaline phosphatase activity . Immature rats were pretreated with hormones to sensitize their uteri for the decidual cell reaction. Endometrial stromal cells were isolated and cultured for up to 4 days with PGE2 (0–10 μg/ml) or PGF2 (0–10 μg/ml) Analysis of variance revealed a highly significant interaction between day of culture and concentration of PGE2 in medium (P<0.01). Stromal cell alkaline phosphatase activity decreased significantly with increasing culture duration (P<0.01). In the presence of PGE2, alkaline phosphatase activity was significantly higher (P<0.01) regardless of day of culture. In contrast, PGF had only a small and inconsistent effect. These data indicate that PGs, and in particular PGE2, can act directly upon stromal cells.  相似文献   

13.
Protein phosphatase activities in developing Dictyostelium discoideum cells were investigated. Substrates were prepared by phosphorylation of histone H2b and kemptide (Leu-Arg-Arg-Ala-Ser-Leu-Gly) using cAMP-dependent protein kinase. Two histone phosphatase activities (Mr 170 000 and 520 000) and one kemptide phosphatase activity (Mr 230 000) were found in the cytosolic cell fraction. Histone phosphatase was also present in the particulate fraction, kemptide phosphatase was not. All phosphatase activities were present throughout development. No differences in protein phosphatase activities were found in prespore and prestalk cells. A heat-stable factor which inhibits the particulate and both soluble histone phosphatase activities was isolated.  相似文献   

14.
Summary Tartrate-resistant acid phosphatase is an inducible marker of cell differentiation and activation expressed by specialized cells of macrophage lineage and some activated lymphocytes. Clinically, this phosphatase is a diagnostic marker for hairy cell leukaemia and osteoclast activity. The cDNA for this enzyme has been cloned from a placental expression library, yet the cell(s) expressing the enzyme protein has not been determined with certainty. Our laboratories have developed a monoclonal antibody, 9C5, suitable for immunohistochemical localization of tartrate-resistant acid phosphatase in paraffin sections. The purpose of this study was to use antibody 9C5 to identify cells expressing tartrate-resistant acid phosphatase in sections of paraffin-embedded, normal, full-term placenta and to determine if those cells expressed other macrophage markers including CD68(PG-M1 antibody), LN5, lysozyme 1-antitrypsin and 1-antichymotrypsin. Histochemical localization of activity in frozen sections was compared with immunohistochemical localization in paraffin sections of the same tissue specimens. The activity and antigenicity of this enzyme were detected in decidual cells, syncytiotrophoblast, and some macrophages distributed throughout maternal and embryonic tissues, but not in neutrophils. Unlike other tissues previously examined, placenta contains significant numbers of the phosphate-positive cells that are not of macrophage origin.  相似文献   

15.
Summary Treatment of human red cell membranes with pure phospholipase A2 results in a progressive inactivation of both Ca2+-dependent and (Ca2++K+)-dependent ATPase and phosphatase activities. When phospholipase C replaces phospholipase A2, Ca2+-dependent ATPase activity and Ca2+-dependent phosphorylation of red cell membranes are lost, while Ca2+-dependent phosphatase activity is enhanced and its apparent affinity for Ca2+ is increased about 20-fold. Activation of Ca2+-dependent phosphatase following phospholipase C treatment was not observed in sarcoplasmic reticulum preparation. Phospholipase C increases the sensitivity of the phosphatase to N-ethylmaleimide but has little effect on the kinetic parameters relating the phosphatase activity to substrate and cofactors, suggesting that no extensive structural disarrangement of the Ca2+-ATPase system has occurred after incubation with phospholipase C.  相似文献   

16.
A series of imidazole flavonoids as new type of protein tyrosine phosphatase inhibitors were synthesized and characterized. Most of them gave potent protein phosphatase 1B (PTP1B) inhibitory activities. Especially, compound 11a could effectively inhibit PTP1B with an IC50 value of 0.63 μM accompanied with high selectivity ratio (9.5-fold) over T-cell protein tyrosine phosphatase (TCPTP). This compound is cell permeable with relatively low cytotoxicity. The high binding affinity and selectivity was disclosed by molecular modeling and dynamics studies. The structural features essential for activity were confirmed by quantum chemical studies.  相似文献   

17.
Summary Synthase phosphatase, phosphorylase phosphatase and histone phosphatase activity in a leukocyte homogenate were found to have different sedimentation charcteristics: both synthase phosphatase and phosphorylase phosphatase activity are associated with the microsomal fraction, while the majority of histone phosphatase activity (75–85%) was found in the cytosol. Synthase phosphatase, phosphorylase phosphatase and histone phosphatase activities accompanying the microsomal fraction are readily solubilized by 0.3% Triton X-100.When the solubilized microsomal enzymes were chromatographed on Sephadex G-200, the majority of synthase phosphatase, phosphorylase phosphatase and histone phosphatase activity migrated in single peaks corresponding to apparent molecular weights of 380 000, 250 000 and 68 000, respectively. A minor peak of 30 000, which had phosphatase activity against all three substrates was also obtained.Ethanol treatment resulted in solubilization and dissociation of the three phosphatase activities. It was found that although ethanol treatment resulted in a 4-fold increase of phosphorylase phosphatase activity, histone phosphatase activity was decreased (by 60%), while synthase phosphatase activity remained stable. Similar results were obtained when ethanol treatment was performed on the 17 000 × g supernatant.Chromatography of the ethanol-treated microsomes (or homogenate) on Sephadex G-200 showed that the phosphatase activity towards synthase D, phosphorylase a and phosphohistone coincided a Mr 30 000 species. Heat treatment of the Mr 30 000 peak resulted in dissociation of synthase phosphatase and phosphorylase phosphatase activity.Synthase phosphatase was inhibited by phosphorylase a in a kinetically non-competitive manner while histone phosphatase activity was notinhibited by synthase D (8.5 unit/ ml) orby phosphorylase a(12 unit/ ml).  相似文献   

18.
Several integral membrane proteins exhibiting undecaprenyl-pyrophosphate (C55-PP) phosphatase activity were previously identified in Escherichia coli that belonged to two distinct protein families: the BacA protein, which accounts for 75% of the C55-PP phosphatase activity detected in E. coli cell membranes, and three members of the PAP2 phosphatidic acid phosphatase family, namely PgpB, YbjG and LpxT. This dephosphorylation step is required to provide the C55-P carrier lipid which plays a central role in the biosynthesis of various cell wall polymers. We here report detailed investigations of the biochemical properties and membrane topology of the BacA protein. Optimal activity conditions were determined and a narrow-range substrate specificity with a clear preference for C55-PP was observed for this enzyme. Alignments of BacA protein sequences revealed two particularly well-conserved regions and several invariant residues whose role in enzyme activity was questioned by using a site-directed mutagenesis approach and complementary in vitro and in vivo activity assays. Three essential residues Glu21, Ser27, and Arg174 were identified, allowing us to propose a catalytic mechanism for this enzyme. The membrane topology of the BacA protein determined here experimentally did not validate previous program-based predicted models. It comprises seven transmembrane segments and contains in particular two large periplasmic loops carrying the highly-conserved active site residues. Our data thus provide evidence that all the different E. coli C55-PP phosphatases identified to date (BacA and PAP2) catalyze the dephosphorylation of C55-PP molecules on the same (outer) side of the plasma membrane.  相似文献   

19.
The tumor suppressor INPP4B is an important regulator of phosphatidyl-inositol signaling in the cell. Reduced INPP4B expression is associated with poor outcomes for breast, prostate, and ovarian cancer patients. INPP4B contains a CX5R catalytic motif characteristic of dual-specificity phosphatases, such as PTEN. Lipid phosphatase activity of INPP4B has previously been described. In this report we show that INPP4B can dephosphorylate para-nitrophenyl phosphate (pNPP) and 6,8-difluoro-4-methylumbelliferyl (DiFMUP), synthetic phosphotyrosine analogs, suggesting that INPP4B has protein tyrosine phosphatase (PTP) activity. Using mutagenesis, we examined the functional role of specific amino acids within the INPP4B C842KSAKDR catalytic site. The K843M mutant displayed increased pNPP hydrolysis, the K846M mutant lost lipid phosphatase activity with no effect on PTP activity, and the D847E substitution ablated PTP activity and significantly reduced lipid phosphatase activity. Further, we show that INPP4B but not PTEN is able to reduce tyrosine phosphorylation of Akt1 and both the lipid and PTP activity of INPP4B likely contribute to the reduction of Akt1 phosphorylation. Taken together our data identified key residues in the INPP4B catalytic domain associated with lipid and protein phosphatase activities and found a robust downstream target regulated by INPP4B but not PTEN.  相似文献   

20.
Bisphosphoglycerate synthase from horse red cells has been purified to apparent homogeneity by a simple and efficient new procedure incorporating chromatography on a column of Sepharose 4B derivatized with blue dextran. The enzyme is similar to the human red cell synthase in subunit size. It is phosphorylated by either glycerate-1,3-P2 or glycerate-2,3-P2 to form a phosphoenzyme with the acid-lability of a histidyl phosphate. In addition to the synthase activity (glycerate-1,3-P2 → glycerate-2,3-P2), kcat 12.5 s?1, the enzyme has bisphosphoglycerate phosphatase activity in the presence of glycolate-2-P (glycerate-2,3-P2 → glycerate-P + Pi), kcat 2.6 s?1 and phosphoglycerate mutase activity (3-PGA ? 2-PGA), kcat 1.7 s?1. The energy of activation for the synthase reaction is 9.38 kcal/mol. Lineweaver-Burk plots of the kinetic data are parallel lines. In contrast intersecting patterns were obtained from similar experiments done with the human red cell enzyme. Further investigation is required to explain these differences. This enzyme may function as both synthase and phosphatase for bisphosphoglycerate in the red blood cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号