首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
不同营养条件下原始小球藻对蒽的富集和降解研究   总被引:12,自引:4,他引:8  
研究了自养与异养条件下原始小球藻对蒽的降解和富集能力 .结果表明 ,自养条件下 ,浓度为1 0mg·L-1的蒽有 48.18%被降解 ,其中 2 8.81%属于自然光降解 ,仅有 19.37%被原始小球藻降解 .而异养条件下的原始小球藻对浓度为 2 .5mg·L-1的蒽降解率达到 33.5 3%,说明异养原始小球藻不仅能耐受高浓度蒽 ,而且表现出比自养原始小球藻更强的蒽降解能力 .两种条件下 ,80 %以上残留的蒽都被富集到藻细胞中 .虽然自养条件下原始小球藻对蒽的生物富集系数达 90 6 4,远大于异养条件下的生物富集系数(1899) ,但异养条件下藻对蒽的绝对富集量 (2 0 2 .2 9μg)远远高于自养条件下的 6 9.6 87μg .  相似文献   

2.
Chlorella protothecoides中国品系(C品系)与美国品系(A品系)在自养培养基中生长正常。在高浓度葡萄糖、低浓度有机氮的异养生长条件下,C品系仍为绿色,细胞生长与繁殖缓慢,指数期生长速率降低,细胞内腺苷酸能荷值(AEC)下降,但细胞仍保留叶绿素;A品系细胞转变成乳黄色,细胞生长与繁殖加快,指数期生长速率是自养细胞的2倍,细胞内腺苷酸能荷值仍保持高水平,向异养条件转换后约24h,细胞内叶绿素基本消失,重新向自养条件转换后细胞内叶绿素又逐渐恢复。AEC值是判别微藻在异养条件下能量代谢与生理状态的良好指标。同一种小球藻不同品系间的上述差异可能与细胞内基因调控的差异相关联。  相似文献   

3.
In high-nutrient low-chlorophyll areas, bacterial degradation of organic matter may be iron-limited. The response of heterotrophic bacteria to Fe addition may be directly controlled by Fe availability and/or indirectly controlled through the effect of enhanced phytoplankton productivity and the subsequent supply of organic matter suitable for bacteria. In the present study, the role of Fe on bacterial carbon degradation was investigated through regrowth experiments by monitoring bacterial response to organic substrates derived from Phaeocystis antarctica cultures set up in <1 nM Fe (LFe) and in Fe-amended (HFe) Antarctic seawater. Results showed an impact of Fe addition on the morphotype dominance (colonies vs. single cells) of P. antarctica and on the quality of Phaeocystis-derived organic matter. Fe addition leaded to a decrease of C/N ratio of Phaeocystis material. The bacterial community composition was modified as observed from denaturing gradient gel electrophoresis (DGGE) profiles in LFe as compared to HFe bioassays. The percentage of active bacteria as well as their specific metabolic activities (ectoenzymatic hydrolysis, growth rates and bacterial growth efficiency) were enhanced in HFe bioassays. As a consequence, the lability of Phaeocystis-derived organic matter was altered, i.e., after seven days more than 90% was degraded in HFe and only 9% (dissolved) and 55% (total) organic carbon were degraded in LFe bioassays. By inducing increased bacterial degradation and preventing the accumulation of dissolved organic carbon, the positive effect of Fe supply on the carbon biological pump may partly be counteracted.  相似文献   

4.
Hydroxylamine, an inhibitor of deoxyribonucleic acids (DNA), ribonucleic acids (RNA) and proteosynthesis interferes with the bleaching effect of streptomycin on growing cells ofEuglena gracilis. The addition of hydroxylamine to a green autotrophic culture ofEuglena gracilis inhibits, depigmentation of the culture by streptomycin. Otherwise, streptomycin alone, without, hydroxylamine, is a powerful bleaching agent and when added to a growing culture ofEuglena gracilis, transforms the green, autotrophic cells to permanently colourless, heterotrophic cells. Phenethyl alcohol, an inhibitor of RNA synthesis, and chloramphenicol, an inhibitor of proteosynthesis, do not block the bleaching effect of streptomycin. It can be concluded from these results that the bleaching effect of streptomycin is related to its interference in the plastid DNA.  相似文献   

5.
The metabolic theory of ecology predicts that temperature affects heterotrophic processes more strongly than autotrophic processes. We hypothesized that this differential temperature response may shift mixotrophic organisms towards more heterotrophic nutrition with rising temperature. The hypothesis was tested in experiments with the mixotrophic chrysophyte Ochromonas sp., grown under autotrophic, mixotrophic and heterotrophic conditions. Our results show that (1) grazing rates on bacterial prey increased more strongly with temperature than photosynthetic electron transport rates, (2) heterotrophic growth rates increased exponentially with temperature over the entire range from 13 to 33 °C, while autotrophic growth rates reached a maximum at intermediate temperatures and (3) chlorophyll contents during mixotrophic growth decreased at high temperature. Hence, the contribution of photosynthesis to mixotrophic growth strongly decreased with temperature. These findings support the hypothesis that mixotrophs become more heterotrophic with rising temperature, which alters their functional role in food webs and the carbon cycle.  相似文献   

6.
Heterotrophic growth of microalgae presents significant economic advantages over the more common autotrophic cultivation. The efficiency of growth and nitrogen, phosphorus, and glucose uptake from synthetic wastewater was compared under heterotrophic, autotrophic, and mixotrophic regimes of Chlorella vulgaris Beij. immobilized in alginate beads, either alone or with the bacterium Azospirillum brasilense. Heterotrophic cultivation of C. vulgaris growing alone was superior to autotrophic cultivation. The added bacteria enhanced growth only under autotrophic and mixotrophic cultivations. Uptake of ammonium by the culture, yield of cells per ammonium unit, and total volumetric productivity of the culture were the highest under heterotrophic conditions when the microalga grew without the bacterium. Uptake of phosphate was higher under autotrophic conditions and similar under the other two regimes. Positive influence of the addition of A. brasilense was found only when light was supplied (autotrophic and mixotrophic), where affinity to phosphate and yield per phosphate unit were the highest under heterotrophic conditions. The pH of the culture was significantly reduced in all regimes where glucose was consumed, similarly in heterotrophic and mixotrophic cultures. It was concluded that the heterotrophic regime, using glucose, is superior to autotrophic and mixotrophic regimes for the uptake of ammonium and phosphate. Addition of A. brasilense positively affects the nutrient uptake only in the two regimes supplied with light.  相似文献   

7.
Summary In recent years, several novel processes for N-removal almost without consumption of organic carbon under oxygen-limited conditions have been discovered, which may be a promising option for low-cost N-removal from ammonia-rich wastewater. In this study, a laboratory scale suspended-sludge reactor was continuously operated under low dissolved oxygen concentration. High N-removal efficiency and subsequently degradation of the reactor were observed. Molecular analysis based on a partial-16S rRNA gene library showed that, at the stage of high efficiency, the biomass was composed of Planctomycete-like bacteria (up to 40%) and heterotrophic organisms (approximately 60%) as well as a few ammonia-oxidizing bacteria and at the stage of degradation, the autotrophic ammonia-oxidizing bacteria were dominant (up to 70%) and Planctomycete-like bacteria were no longer found in the sludge. Three specific Planctomycete-16S rRNA-targeted probes were used for fluorescence in situ hybridization (FISH). The results showed that at the high-efficiency stage, Planctomycete-like bacteria, present at approximately 20% of the total bacteria, lay frequently in the middle of flocs, while the heterotrophic bacteria occurred within the outer layers. This work revealed that the change of the microbial populations is the key reason for reactor deterioration, and the heterotrophic bacteria probably play an important role in sustaining the biomass structure of the sludge.  相似文献   

8.
Summary A colorless mutant of Euglena gracilis shows a cireadian rhythmic mobility in darkness just as mixotrophic and autotrophic green forms do.Therefore the obligatory heterotrophic form is very suitable for testing to what extent the rhythmic behavior of the mixotrophic cells, in contrast to that of the autotrophic cells, is independent of photosynthesis.Like the green cells, the colorless cells are synchronized by a single transient from light to dark. About 12 hours after the beginning of the darkness the rhythmic mobility of the colorless cells attains the first maximum, whereas the green forms both show their first maximum 18 hours after the end of the light period, which is much more advantageous for a photosynthesizing organism.The free running period seems to be dependent on the temperature during anaerobic glycolysis and independent of temperature during respiration, just as it has been recently found out in the case of green forms. The type of energy supply changes with the age of the cultures.Respiration has no significance as energy source for the rhythm which continues under pure glycolytic conditions.A sudden increase of the constant temperature does not shift the phase. The same is true in the case of mixotrophic cells but not in the case of autotrophic cells. However, the rhythm is often first suppressed for several days.A lowering of the temperature is followed by two or three transients with about half the frequency, but it does not influence the phase as far as it can be extrapolated. The same has been shown to be true in the case of mixotrophic cells.The rhythmic behavior of the heterotrophic cells is very similar to that of the mixotrophic ones. However, the heterotrophic cells are very sensitive to changes in temperature, which are more compensated for in the mixotrophic cells, apparently by photosynthesis.  相似文献   

9.
H. J. Steinbiß  K. Zetsche 《Planta》1986,167(4):575-581
In the unicellular green alga Chlorogonium elongatum, the synthesis of the plastid enzyme ribulose bisphosphate carboxylase/oxygenase (RuBPCase) and its mRNAs is under the control of light and acetate. Acetate is the sole metabolizable organic carbon source for this organism. Light greatly promotes the synthesis of RuBPCase and the increase in the concentration of the mRNAs of both subunits of the enzyme while acetate has a strong inhibitory effect on this process. There is a good agreement between RuBPCase synthesis and the amount of translateable RuBPCase mRNA present in cells which are cultured under different conditions (autotrophic, heterotrophic, mixotrophic). During the transition period after transfer of the cells from heterotrophic to autotrophic growth conditions the amounts of the large and small subunits of the enzyme increase well coordinated. In contrast to the protein subunits the two subunit-mRNAs accumulate with different kinetics.Abbreviations LSU large subunit of RuBPCase - poly(A)- RNA - poly(A)+RNA non-, poly-adenylated RNA - RuBPCase ribulose-1,5-bisphosphate carboxylase/oxygenase EC 4.1.1.39 - SSU small subunit of RuBPCase  相似文献   

10.
Substrates and nutrients are often added to contaminated soil or groundwater to enhance bioremediation. Nevertheless, this practice may be counterproductive in some cases where nutrient addition might relieve selective pressure for pollutant biodegradation. Batch experiments with a homoacetogenic pure culture of Acetobacterium paludosum showed that anaerobic RDX degradation is the fastest when auxiliary growth substrates (yeast extract plus fructose) and nitrogen sources (ammonium) are not added. This bacterium degraded RDX faster under autotrophic (H2-fed) than under heterotrophic conditions, even though heterotrophic growth was faster. The inhibitory effect of ammonium is postulated to be due to the repression of enzymes that initiate RDX degradation by reducing its nitro groups, based on the known fact that ammonia represses nitrate and nitrite reductases. This observation suggests that the absence of easily assimilated nitrogen sources, such as ammonium, enhances RDX degradation. Although specific end products of RDX degradation were not determined, the production of nitrous oxide (N2O) suggests that A. paludosum cleaved the triazine ring.  相似文献   

11.
Nostoc flagelliforme is a terrestrial cyanobacterium with high economic value. Dissociated cells separated from a natural colony of N. flagelliforme were cultivated for 7 days under either phototrophic, mixotrophic or heterotrophic culture conditions. The highest biomass, 1.67 g L−1 cell concentration, was obtained under mixotrophic culture, representing 4.98 and 2.28 times the biomass obtained in phototrophic and heterotrophic cultures, respectively. The biomass in mixotrophic culture was not the sum as that in photoautotrophic and heterotrophic cultures. During the first 4 days of culture, the cell concentration in mixotrophic culture was lower than the sum of those in photoautotrophic and heterotrophic cultures. However, from the 5th day, the cell concentration in mixotrophic culture surpassed the sum of those obtained from the other two trophic modes. Although the inhibitor of photosynthetic electron transport DCMU [3-(3,4-dichlorophenyl)-1,1-dimethylurea] efficiently inhibited autotrophic growth of N. flagelliforme cells, under mixotrophic culture they could grow by using glucose. The addition of glucose changed the response of N.flagelliforme cells to light. The maximal photosynthetic rate, dark respiration rate and light compensation point in mixotrophic culture were higher than those in photoautotrophic cultures. These results suggest that photoautotrophic (photosynthesis) and heterotrophic (oxidative metabolism of glucose) growth interact in mixotrophic growth of N. flagelliforme cells.  相似文献   

12.
Growth of Chlorella vulgaris and its lipid production were investigated under autotrophic, heterotrophic, and mixotrophic conditions. Cheap agricultural waste molasses and corn steep liquor from industries were used as carbon and nitrogen sources, respectively. Chlorella vulgaris grew remarkably under this agricultural waste medium, which resulted in a reduction in the final cost of the biodiesel production. Maximum dry weight of 2.62 g L?1 was obtained in mixotrophic growth with the highest lipid concentration of 0.86 g L?1. These biomass and lipid concentrations were, respectively, 140% and 170% higher than autotrophic growth and 300% and 1200% higher than heterotrophic growth. In mixotrophic growth, independent or simultaneous occurrence of autotrophic and heterotrophic metabolisms was investigated. The growth of the microalgae was observed to take place first heterotrophically to a minimum substrate concentration with a little fraction in growth under autotrophic metabolism, and then the cells grew more autotrophically. It was found that mixotrophic growth was not a simple combination of heterotrophic and autotrophic growth.  相似文献   

13.
This study examined a new method of mitigating harmful algal blooms (HABs) by combining biosurfactant sophorolipid and yellow clay. To investigate the effects and practicability of this HAB mitigation method, field experiments were carried out during a Cochlodinium bloom near Miruk Island, South Korea, in August 2002. Field experiments examined the effects of sophorolipid and yellow clay on Cochlodinium bloom mitigation and on marine plankton such as bacteriaplankton, heterotrophic protists, and zooplankton. A mixture of 5 mg l−1 sophorolipid and 1 g l−1 yellow clay was sprayed directly on the sea surface and its effect was compared with that of 10 g l−1 of yellow clay applied under similar conditions. The sophorolipid–yellow clay mixture more efficiently mitigated the Cochlodinium bloom (95% removal efficiency after 30 min) than yellow clay alone (79% after 30 min). Further, no variation in bacterial abundance occurred 30 min after spraying the sophorolipid–yellow clay mixture. After 30 min, heterotrophic protist abundance at the surface decreased 21 and 41%, respectively, following the sophorolipid–yellow clay mixture and yellow clay treatments. Zooplankton decreased by 38% 15 min after spraying the mixture and 67% 30 min after spraying the yellow clay. These results indicate that the mixture of sophorolipid and yellow clay had a less adverse effect on bacteriaplankton, heterotrophic protists, and zooplankton than the yellow clay, suggesting that the sophorolipid–yellow clay mixture can mitigate HABs efficiently with fewer negative effects on the pelagic ecosystem.  相似文献   

14.
Summary Different encapsulation matrices were screened to encapsulate cells ofPseudomonas putida for degradation of inorganic cyanides. Degradation of NaCN by free cells and cells immobilized in agar, alginate or carrageenan matrices was studied. The rate of NaCN degradation was monitored for 120 h by measuring pH, bacterial growth, dissolved and gaseous NH3 and gaseous CO2. Alginate-immobilized cells degraded NaCN more efficiently than free cells or agar- or carrageenan-immobilized cells.  相似文献   

15.
  • 1 Picoplankton community production (0.2–2μm) was investigated over 3 months, June-September 1991, in Llyn Padarn, a mesotrophic upland lake in north Wales.
  • 2 The picoplankton was differentiated into autotrophic algae (<1–3μm) and heterotrophic bacteria (<0.2–1 μm) using differential filtration through a 1 μm pore size Nuclepore filter.
  • 3 Efficient separation of these distinct metabolic constituents of picoplankton was obtained. A good correlation (r= 0.81, P < 0.001) was found between physical separation of bacterial and picoalgal cells from fluorescence microscopy and the distribution of heterotrophic metabolic activity between different cell size fractions measured by uptake of 14C-glucose.
  • 4 Picoplankton community production was differentiated into the ‘absolute’ autotrophic production by picoalgae, corrected for overestimation due to retention of bacteria with the picoalgae, and the heterotrophic component, bacterial uptake of ‘extracellular organic carbon’ (EOC), derived from the entire phytoplankton community.
  • 5 The heterotrophic contribution to picoplankton community production ranged from 88 to 1%, mean value 55% of total. Autotrophic picoplankton production was dominant in June and July, but in August and September heterotrophic uptake of EOC was the major input to picoplankton community production.
  • 6 During the 3 months, the mean contributions to plankton production were autotrophic picoplankton 10.3%, heterotrophic bacterial uptake of EOC 9.7%, EOC in lake water 11.6% and phytoplankton (>3μm) 68.3%.
  • 7 Bacteria accounted for about half the picopfankton community production via uptake of EOC. Thus although autotrophic picoplankton were ubiquitous, it is likely that their contribution via primary production to the carbon balance of planktonic environments has been overestimated in previous studies.
  相似文献   

16.
Strain H117 was isolated from the Tang Yu reservoir. Based on the phylogenetic characteristics, strain H117, which was identified as Pseudomonas sp. strain H117, had the capability to utilize bicarbonate and sodium acetate as a carbon source under anaerobic conditions. Furthermore, the strain could grow on both autotrophic and heterotrophic media, and could perform both autotrophic and heterotrophic denitrification in the medium. Response surface methodology analysis demonstrated that the maximum degradation ratio of nitrate-occurred under the following conditions in the autotrophic medium: initial pH of 6.00, C/N ratio of 4.68 and temperature of 31.33°C. The maximum degradation ratio of nitrate occurred under the following conditions in the heterotrophic medium: initial pH of 6.16, C/N ratio of 8.23 and temperature of 28.48°C. Finally, the denitrification performance of strain H117 was evaluated under the optimum conditions. These results suggest that strain H117 has potential applications for the bioremediation of polluted groundwater.  相似文献   

17.
18.
The role of cytokinins in the differentiation of the photosynthetic apparatus in micropropagated plants and their effect on the plant’s ability to transition from a heterotrophic to an autotrophic condition during acclimatization was investigated. Annona glabra L. shoots were cultured on woody plant medium supplemented with sucrose and different cytokinins to evaluate leaf tissue for chloroplast development, chloroplast numbers, photosynthetic pigmentation, total photosynthetic potential, and soluble sugar content. Plants were transferred to the rooting medium in the presence or absence of sucrose and then acclimatized. Kinetin and benzyladenine (BAP) stimulated chloroplast differentiation. Inclusion of zeatin in the medium induced the formation of greater numbers of chloroplasts in the leaves, while plants cultivated in the presence of only kinetin and BAP demonstrated greater chlorophyll a and carotenoid content. The use of kinetin and BAP during in vitro culture promoted accumulation of dry matter during the acclimatization phase, especially in plants rooted under autotrophic conditions (without sucrose). Kinetin and BAP promoted development of more leaf area and greater plant survival rates in plant acclimatization on both autotrophic and heterotrophic media. The inhibitory effects of thidiazuron on the differentiation of chloroplasts, accumulation of chlorophyll a, and photosynthetic potential were examined.  相似文献   

19.
Mason  Julie  Kelly  Don P. 《Archives of microbiology》1988,149(4):317-323
Thiobacillus acidophilus can grow in batch and chemostat culture as a heterotroph on glucose, a chemolithoautotroph on tetrathionate and CO2, or as a mixotroph. Mixotrophically it obtains energy from the simultaneous oxidation of tetrathionate and glucose, and carbon from both glucose and CO2. Mixotrophic cultures contain lower activities of ribulose 1,5-bisphosphate carboxylase and exhibit lower specific rates of tetrathionate oxidation than do autotrophic cultures. Mixotrophic cultures with low concentrations of glucose have growth rates that are intermediate between slow autotrophic growth and fast heterotrophic growth. Slightly more glucose-carbon is assimilated by mixotrophic cultures than by heterotrophic ones provided with the same concentrations of glucose. Mixotrophic yield in the chemostat is also slightly greater than predicted from autotrophic and heterotrophic yields. These observations indicate that there is preferential assimilation of glucose, at the expense of energy from tetrathionate oxidation, during mixotrophy, resulting in an overall energy saving that produces enhanced growth yield. These observations are relevant to understanding the regulatory behaviour of T. acidophilus in its acidic, mineral-leaching habitats.  相似文献   

20.
A method is described to measure in situ lotic benthic community metabolism partitioned into autotrophic, heterotrophic, bacterial and inorganic components of oxidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号