首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Angiotensin II (Ang II) is able to induce free radical generation in neutrophils, which is more elevated in neutrophils of patients with hypercholesterolemia (HC). In addition, the signal processing through angiotensin I (Ang I) receptors is altered. In present study, we compared the Ang II-triggered free radical generation of neutrophils obtained from patients with relatively isolated forms of metabolic syndrome (MS) with membrane-bound cholesterol content and membrane fluidity. We determined the enhancement of Ang II-induced superoxide anion and leukotriene C4 (LTC4) generation, membrane fluidity and cell-bound cholesterol content of neutrophils obtained from 12 control subjects, 11 patients with obesity (Ob), 10 patients with type 2 diabetes mellitus (t2-DM) and 12 patients with HC. The alteration of signal processing was studied after preincubation with different inhibiting drugs. Superoxide anion, LTC4 production and membrane rigidity were increased in the following order: control < Ob < t2-DM < HC. Both Ang II-induced superoxide anion and LTC4 generation were decreased in control cells by pertussis toxin and fluvastatin (Flu), whereas in each patient group, mepacrin, verapamil and Flu were effective, suggesting alterations in signal pathways, which may be attributed to isoprenylation. The enhancement of superoxide anion and LTC4 generation correlated significantly with membrane rigidity, independently from the experimental groups and membrane-bound cholesterol content. Membrane rigidity of neutrophils, obtained from patients with MS, plays a role in Ang II-induced free radical generation independent of intracellular cholesterol homeostasis.  相似文献   

2.
SM Kim  YG Kim  KH Jeong  SH Lee  TW Lee  CG Ihm  JY Moon 《PloS one》2012,7(7):e39739
Angiotensin II (Ang II)-induced activation of nicotinamide adenine dinucleotide phosphate (NAD(P)H) oxidase leads to increased production of reactive oxygen species (ROS), an important intracellular second messenger in renal disease. Recent findings suggest that Ang II induces mitochondrial depolarization and further amplifies mitochondrial generation of ROS. We examined the hypothesis that ROS injury mediated by Ang II-induced mitochondrial Nox4 plays a pivotal role in mitochondrial dysfunction in tubular cells and is related to cell survival. In addition, we assessed whether angiotensin (1-7) peptide (Ang-(1-7)) was able to counteract Ang II-induced ROS-mediated cellular injury. Cultured NRK-52E cells were stimulated with 10(-6) M Ang II for 24 h with or without Ang-(1-7) or apocynin. Ang II simulated mitochondrial Nox4 and resulted in the abrupt production of mitochondrial superoxide (O(2) (-)) and hydrogen peroxide (H(2)O(2)). Ang II also induced depolarization of the mitochondrial membrane potential, and cytosolic secretion of cytochrome C and apoptosis-inducing factor (AIF). Ang-(1-7) attenuated Ang II-induced mitochondrial Nox4 expression and apoptosis, and its effect was comparable to that of the NAD(P)H oxidase inhibitor. These findings suggest that Ang II-induced activation of mitochondrial Nox4 is an important endogenous source of ROS, and is related to cell survival. The ACE2-Ang-(1-7)-Mas receptor axis should be investigated further as a novel target of Ang II-mediated ROS injury.  相似文献   

3.
Activation of glomerular mesangial cells (MCs) by angiotensin II (Ang II) leads to extracellular matrix accumulation. Here, we demonstrate that, in MCs, Ang II induces endothelial nitric-oxide synthase (eNOS) uncoupling with enhanced generation of reactive oxygen species (ROS) and decreased production of NO. Ang II promotes a rapid increase in 3-nitrotyrosine formation, and uric acid attenuates Ang II-induced decrease in NO bioavailability, demonstrating that peroxynitrite mediates the effects of Ang II on eNOS dysfunction. Ang II rapidly up-regulates Nox4 protein. Inhibition of Nox4 abolishes the increase in ROS and peroxynitrite generation as well as eNOS uncoupling triggered by Ang II, indicating that Nox4 is upstream of eNOS. This pathway contributes to Ang II-mediated fibronectin accumulation in MCs. Ang II also elicits an increase in mitochondrial abundance of Nox4 protein, and the oxidase contributes to ROS production in mitochondria. Overexpression of mitochondrial manganese superoxide dismutase prevents the stimulatory effects of Ang II on mitochondrial ROS production, loss of NO availability, and MC fibronectin accumulation, whereas manganese superoxide dismutase depletion increases mitochondrial ROS, NO deficiency, and fibronectin synthesis basally and in cells exposed to Ang II. This work provides the first evidence that uncoupled eNOS is responsible for Ang II-induced MC fibronectin accumulation and identifies Nox4 and mitochondrial ROS as mediators of eNOS dysfunction. These data shed light on molecular processes underlying the oxidative signaling cascade engaged by Ang II and identify potential targets for intervention to prevent renal fibrosis.  相似文献   

4.
Angiotensin II (Ang II)-mediated modification of the redox milieu of vascular smooth muscle cells (VSMCs) has been implicated in several pathophysiological processes, including cell proliferation, migration and differentiation. In this study, we demonstrate that the peroxisome proliferator-activated receptor (PPAR) δ counteracts Ang II-induced production of reactive oxygen species (ROS) in VSMCs. Activation of PPARδ by GW501516, a specific ligand for PPARδ, significantly reduced Ang II-induced ROS generation in VSMCs. This effect was, however, reversed in the presence of small interfering (si)RNA against PPARδ. The marked increase in ROS levels induced by Ang II was also eliminated by the inhibition of phosphatidylinositol 3-kinase (PI3K) but not of protein kinase C, suggesting the involvement of the PI3K/Akt signalling pathway in this process. Accordingly, ablation of Akt with siRNA further enhanced the inhibitory effects of GW501516 in Ang II-induced superoxide production. Ligand-activated PPARδ also blocked Ang II-induced translocation of Rac1 to the cell membrane, inhibiting the activation of NADPH oxidases and consequently ROS generation. These results indicate that ligand-activated PPARδ plays an important role in the cellular response to oxidative stress by decreasing ROS generated by Ang II in vascular cells.  相似文献   

5.
《Free radical research》2013,47(7):912-919
Abstract

Angiotensin II (Ang II)-mediated modification of the redox milieu of vascular smooth muscle cells (VSMCs) has been implicated in several pathophysiological processes, including cell proliferation, migration and differentiation. In this study, we demonstrate that the peroxisome proliferator-activated receptor (PPAR) δ counteracts Ang II-induced production of reactive oxygen species (ROS) in VSMCs. Activation of PPARδ by GW501516, a specific ligand for PPARδ, significantly reduced Ang II-induced ROS generation in VSMCs. This effect was, however, reversed in the presence of small interfering (si)RNA against PPARδ. The marked increase in ROS levels induced by Ang II was also eliminated by the inhibition of phosphatidylinositol 3-kinase (PI3K) but not of protein kinase C, suggesting the involvement of the PI3K/Akt signalling pathway in this process. Accordingly, ablation of Akt with siRNA further enhanced the inhibitory effects of GW501516 in Ang II-induced superoxide production. Ligand-activated PPARδ also blocked Ang II-induced translocation of Rac1 to the cell membrane, inhibiting the activation of NADPH oxidases and consequently ROS generation. These results indicate that ligand-activated PPARδ plays an important role in the cellular response to oxidative stress by decreasing ROS generated by Ang II in vascular cells.  相似文献   

6.
To determine the effect of cholesterol incorporation on the ability of neutrophils to generate superoxide radicals and nitric oxide-like vasorelaxant material, isolated human neutrophils were incubated with cholesterol-rich liposomes, which increased total cholesterol content by 141% and esterified cholesterol content by 523%. Cholesterol loading resulted in 5 to 7 fold increase in cytosolic calcium in resting as well as in PMA or f-MLP-stimulated cells, but a marked (P less than 0.01) reduction in both PMA- and f-MLP-stimulated superoxide radical generation by these cells. Nitric oxide-like activity measured as relaxation of rat aortic rings was more pronounced (P less than 0.02) in cholesterol-rich than in cholesterol-poor cells. The greater relaxation of aortic rings in response to cholesterol-rich neutrophils was observed in rings with or without intact endothelium, and was potentiated by superoxide dismutase and inhibited by oxyhemoglobin as well as L-NMMA, thus suggesting that the vasorelaxant material was nitric oxide. The greater generation of nitric oxide by cholesterol-rich neutrophils occurs perhaps in response to increased cytosolic calcium.  相似文献   

7.
A biological membrane is shown to undergo lipid-phase transition leading to increased membrane fluidity when exposed to extraneously generated superoxide anion radical. This phase-transition is several folds higher in magnitude when compared to the temperature-induced fluidity change at the transition temperatures. This finding could have significant importance since an altered membrane configuration may involve aspects of biochemistry, biophysics or physiology.  相似文献   

8.
Angiotensin II and endothelin-1 (ET) are two hormones involved in cardiovascular diseases and well known for their capacity to induce free radical generation in vascular and cardiac tissues. In addition to its prooxidative effect, angiotensin II can increase the synthesis of ET-1 in vascular smooth muscle cells (VSMC). Our objective was to determine whether the ET-1 synthesis in VSMC is involved in angiotensin II-induced superoxide anion production in rats. Our results show that treatments of isolated VSMC with angiotensin II and ET increased superoxide. However, this increase occurred in a bimodal fashion for angiotensin II with a fast transient production (10 min) and a late sustained production (6 h), while ET-1 induced superoxide formation after a delay of 6 h. LU302872 and BQ-123, a nonselective and a selective ETA receptor antagonists, respectively, prevented angiotensin II-induced superoxide anion production only during the late phase. In contrast, BQ-3020, a selective ETB receptor antagonist, had no effect. In vivo, LU302872 reduced the aortic superoxide production induced by angiotensin II administered for 12 days. In conclusion, our results suggest that the superoxide generation induced by chronic angiotensin II infusion may be mediated by ET-1 acting on ETA receptors in VSMC in vitro. Furthermore, this effect appears to contribute to the excess superoxide production during the chronic activation of the renin-angiotensin system in vivo.  相似文献   

9.
Tumor necrosis factor provokes superoxide anion generation from neutrophils   总被引:31,自引:0,他引:31  
We report that tumor necrosis factor (TNF) provokes superoxide anion generation from human neutrophils. Superoxide anion generation was provoked at TNF concentration of 1 X 10(-11) M and maximal generation was attained at TNF concentration of 1 X 10(-9) M. We also show that movements of intracellular calcium may mediate the TNF-stimulated superoxide anion generation because 8-(diethylamino) octyl 3,4,5-trimethoxybenzoate hydrochloride--but not extracellular EGTA--inhibited the generation of superoxide anion. These results suggest that TNF may mediate some mechanisms of host defense by provoking superoxide anion generation from neutrophils.  相似文献   

10.
11.
The mechanism of angiotensin II (Ang II)-induced superoxide production was investigated with HEK293 or Chinese hamster ovary cells reconstituted with the angiotensin type 1 receptor (AT(1)R) and NADPH oxidase (either Nox1 or Nox2) along with a pair of adaptor subunits (either NOXO1 with NOXA1 or p47(phox) with p67(phox)). Ang II enhanced the activity of both Nox1 and Nox2 supported by either adaptor pair, with more effective activation of Nox1 in the presence of NOXO1 and NOXA1 and of Nox2 in the presence of p47(phox) and p67(phox). Expression of several AT(1)R mutants showed that interaction of the receptor with G proteins but not that with beta-arrestin or with other proteins (Jak2, phospholipase C-gamma1, SH2 domain-containing phosphatase 2) that bind to the COOH-terminal region of AT(1)R, was necessary for Ang II-induced superoxide production. The effects of constitutively active alpha subunits of G proteins and of various pharmacological agents implicated signaling by a pathway comprising AT(1)R, Galpha(q/11), phospholipase C-beta, and protein kinase C as largely, but not exclusively, responsible for Ang II-induced activation of Nox1 and Nox2 in the reconstituted cells. A contribution of Galpha(12/13), phospholipase D, and phosphatidyl-inositol 3-kinase to Ang II-induced superoxide generation was also suggested, whereas Src and the epidermal growth factor receptor did not appear to participate in this effect of Ang II. In reconstituted cells stimulated with Ang II, Nox2 exhibited a more sensitive response than Nox1 to the perturbation of protein kinase C, phosphatidylinositol 3-kinase, or the small GTPase Rac1.  相似文献   

12.
Adenosine specifically inhibits superoxide anion generation by N-formyl-methionyl-leucyl-phenylalanine-stimulated neutrophils without affecting either degranulation or "aggregation." We present data that also supports the hypothesis that adenosine engages a specific cell surface receptor to mediate inhibition of stimulated neutrophils. Theophylline (10 and 100 mu M), a competitive antagonist at adenosine receptors, reversed the effects of adenosine (0.1 mu M) on superoxide anion generation by stimulated neutrophils. The adenosine analogue 5'N-ethylcarboxamidoadenosine (NECA) was a more potent inhibitor of superoxide anion generation than either N6-phenylisopropyladenosine (PIA) or adenosine, an order of potency consistent with that previously demonstrated for adenosine A2 receptors. 2-Chloroadenosine inhibited superoxide anion generation at concentrations similar to NECA. [3H]-NECA and [3H]-2-chloroadenosine bound to a single receptor on intact neutrophils. The characteristics of the receptors for [3H]-NECA and [3H]-2-chloroadenosine were similar (Kd = 0.22 and 0.23 mu M, respectively; number of binding sites = 9.31 and 11.1 X 10(3) sites/cell, respectively). NECA, 2-chloroadenosine, adenosine, and PIA inhibited binding of [3H]-NECA with a rank order similar to that for inhibition of superoxide anion generation (NECA = 2-chloroadenosine greater than adenosine greater than PIA). There was 50% inhibition of superoxide anion generation by NECA at approximately 20% receptor occupancy. Adenosine, derived from damaged tissues, may serve as a specific, endogenous modulator of superoxide anion generation by activated neutrophils through interaction at this newly described receptor on human neutrophils.  相似文献   

13.
Previously, we found that high intraluminal pressure leads to production of reactive oxygen species (ROS) and also upregulates several components of the renin-angiotensin system in the wall of small arteries. We hypothesized that acute exposure of arterioles to high intraluminal pressure in vitro via increasing ROS production enhances the functional availability of type 1 angiotensin II (Ang II) receptors (AT1 receptors), resulting in sustained constrictions. In arterioles ( approximately 180 mum) isolated from rat skeletal muscle, Ang II elicited dose-dependent constrictions, which decreased significantly by the second application [maximum (max.): from 59% +/- 4% to 26% +/- 5% at 10(-8) M; P < 0.05] in the presence of 80 mmHg of intraluminal pressure. In contrast, if the arterioles were exposed to high intraluminal pressure (160 mmHg for 30 min), Ang II-induced constrictions remained substantial on the second application (max.: 51% +/- 3% at 10(-8) M). In the presence of Tiron and polyethylene glycol (PEG)-catalase, known to reduce the level of superoxide anion and hydrogen peroxide (H(2)O(2)), second applications of Ang II evoked similarly reduced constrictions, even after high-pressure exposure (29% +/- 4% at 10(-8) M). Furthermore, when arterioles were exposed to H(2)O(2) (for 30 min, 10(-7) M, at normal 80 mmHg pressure), Ang II-induced constrictions remained substantial on second applications (59% +/- 5% at 10(-8) M). These findings suggest that high pressure, likely via inducing H(2)O(2) production, increases the functional availability of AT1 receptors and thus enhances Ang II-induced arteriolar constrictions. We propose that in hypertension-regardless of etiology-high intraluminal pressure, via oxidative stress, enhances the functional availability of AT1 receptors augmenting Ang II-induced constrictions.  相似文献   

14.
The role of docosahexaenoic acid (DHA) in the fluidity of the annular lipid regions and their associated membrane-bound proteins is still not as well understood as that in the global (bulk) lipid regions. We therefore studied the effects of dietary DHA on the relationship between annular and global lipid fluidity and membrane-bound enzymes such as 5'-nucleotidase and Mg(2)+-ATPase in the rat bile canalicular membrane. Dietary DHA caused significant increases in 5'-nucleotidase and Mg(2)+-ATPase activity and in global and annular lipid fluidity, a higher increase in fluidity in the annular lipids than the global lipids, and a decrease in the cholesterol-to-phospholipid molar ratio in the canalicular membrane. Plasma total cholesterol and LDL cholesterol decreased, and fecal cholesterol increased in the DHA-fed rats. No changes were observed in oxidative markers, but glutathione peroxidase increased in the liver with DHA feeding. Annular lipid fluidity, but not global lipid fluidity, correlated remarkably well with DHA, synchronously with the activities of 5'-nucleotidase and Mg(2)+-ATPase. The data indicate that the DHA-induced increase in annular lipid fluidity is responsible for the increases observed in the enzyme activity. We therefore concluded that the increased activity of membrane-bound enzymes and transporters induced by DHA and the concomitant increase in annular lipid fluidity comprise one of the mechanisms involved in DHA-induced clearance of plasma cholesterol.  相似文献   

15.
Activation of glomerular mesangial cells (MCs) by angiotensin II (Ang II) leads to hypertrophy and extracellular matrix accumulation. Here, we demonstrate that, in MCs, Ang II induces an increase in PDK-1 (3-phosphoinositide-dependent protein kinase-1) kinase activity that required its phosphorylation on tyrosine 9 and 373/376. Introduction into the cells of PDK-1, mutated on these tyrosine residues or kinase-inactive, attenuates Ang II-induced hypertrophy and fibronectin accumulation. Ang II-mediated PDK-1 activation and tyrosine phosphorylation (total and on residues 9 and 373/376) are inhibited in cells transfected with small interfering RNA for Src, indicating that Src is upstream of PDK-1. In cells expressing oxidation-resistant Src mutant C487A, Ang II-induced hypertrophy and fibronectin expression are prevented, suggesting that the pathway is redox-sensitive. Ang II also up-regulates Nox4 protein, and siNox4 abrogates the Ang II-induced increase in intracellular reactive oxygen species (ROS) generation. Small interfering RNA for Nox4 also inhibits Ang II-induced activation of Src and PDK-1 tyrosine phosphorylation (total and on residues 9 and 373/376), demonstrating that Nox4 functions upstream of Src and PDK-1. Importantly, inhibition of Nox4, Src, or PDK-1 prevents the stimulatory effect of Ang II on fibronectin accumulation and cell hypertrophy. This work provides the first evidence that Nox4-derived ROS are responsible for Ang II-induced PDK-1 tyrosine phosphorylation and activation through stimulation of Src. Importantly, this pathway contributes to Ang II-induced MC hypertrophy and fibronectin accumulation. These data shed light on molecular processes underlying the oxidative signaling cascade engaged by Ang II and identify potential targets for intervention to prevent renal hypertrophy and fibrosis.  相似文献   

16.
Using the electron spin resonance/spin trapping system, 4-pyridyl 1-oxide N-tert-butylnitrone (4-POBN)/ethanol, hydroxyl radical was detected as the alpha-hydroxyethyl spin trapped adduct of 4-POBN, 4-POBN-CH(CH3)OH, from phorbol 12-myristate 13-acetate-stimulated human neutrophils and monocytes without the addition of supplemental iron. 4-POBN-CH(CH3)OH was stable in the presence of a neutrophil-derived superoxide flux. Hydroxyl radical formation was inhibited by treatment with superoxide dismutase, catalase, and azide. Treatment with a series of transition metal chelators did not appreciably alter 4-POBN-CH(CH3)OH, which suggested that hydroxyl radical generation was mediated by a mechanism independent of the transition metal-catalyzed Haber-Weiss reaction. Kinetic differences between transition metal-dependent and -independent mechanisms of hydroxyl radical generation by stimulated neutrophils were demonstrated by a greater rate of 4-POBN-CH(CH3)-OH accumulation in the presence of supplemental iron. Detection of hydroxyl radical from stimulated monocyte-derived macrophages, which lack myeloperoxidase, required the addition of supplemental iron. The addition of purified myeloperoxidase to an enzymatic superoxide generating system resulted in the detection of hydroxyl radical that was dependent upon the presence of chloride and was inhibited by superoxide dismutase, catalase, and azide. These findings implicated the reaction of hypochlorous acid and superoxide to produce hydroxyl radical. 4-POBN-CH(CH3)OH was not observed upon stimulation of myeloperoxidase-deficient neutrophils, whereas addition of myeloperoxidase to the reaction mixture resulted in the detection of hydroxyl radical. These results support the ability of human neutrophils and monocytes to generate hydroxyl radical through a myeloperoxidase-dependent mechanism.  相似文献   

17.
The aim of this work was to assess the relative contributions of lipid peroxidation and cholesterol content to the increase in membrane rigidity observed during senescence. Membrane fluidity was manipulated through exposure to peroxidized or cholesterol-loaded liposomes. Small unilamella liposomes were prepared and either peroxidized by Fe++-ADP-ascorbic acid or loaded with cholesterol. After incorporation of the liposomes into rat liver microsomal membranes, membrane fluidity was quantitated by measuring changes in polarization. Membranes exhibited a greater sensitivity to peroxidation than cholesterol in that incorporation of peroxidized liposomes induced microsomal membrane rigidity substantially more than did cholesterol-loaded liposomes. Thus it is proposed, based on data from the present and earlier studies, that membrane fluidity can be modulated readily by lipid peroxidation of membrane phospholipids, irrespective of the influences of cholesterol. These results support the proposal that alterations of lipid structure are more potent and effective than compositional changes in cholesterol in inducing age-related increases in membrane rigidity.  相似文献   

18.
Pholasin, the photoprotein of the common piddock Pholas dactylus, emits an intense luminescence upon oxidation. The contribution of superoxide anion radicals and myeloperoxidase (MPO) to Pholasin luminescence in stimulated neutrophils was investigated. Data on Pholasin luminescence were compared with results of superoxide anion radical generation detected by the cytochrome c test as well as with the release of elastase and MPO. In N-formyl-methionyl-leucyl-phenylalanine (fMLP) stimulated neutrophils, most of the luminescence is caused by superoxide anion radicals, whereas MPO shows only a small effect as shown by coincubation with superoxide dismutase (SOD) as well as potassium cyanide (KCN), an inhibitor of MPO. However, both, O2- and MPO contribute to light emission in fMLP/cytochalasin B and phorbol myristoyl acetate (PMA) stimulated cells. Thus, the kinetics of O2- generation and MPO release can be very well detected by Pholasin luminescence in stimulated neutrophils.

Degranulation of azurophilic granules was assessed using an ELISA test kit for released MPO or detection of elastase activity with MeO-Suc-Ala-Ala-Pro-Val-p-nitroanilide in the supernatant of stimulated cells. Both approaches revealed concurrently similar results concerning the amount and kinetics of enzyme release with data of Pholasin luminescence. Both, cytochrome c measurements and Pholasin luminescence indicate that fMLP/cytochalasin B and PMA stimulated neutrophils produce more O2- than fMLP stimulated cells. Thus, Pholasin luminescence can be used to detect, sensitively and specifically, O2- production and MPO release from stimulated neutrophils.  相似文献   

19.
Cardiomyocyte apoptosis has an important role in the transition from compensatory cardiac remodeling to heart failure. All-trans retinoic acid (RA), a bioactive vitamin A derivative, prevents stretch- and angiotensin II (Ang II)-induced cardiac hypertrophy. However, the anti-apoptotic potential of RA in the heart remains unexplored. Here, we demonstrate that stretch- and Ang II-induced apoptosis is prevented by RA in neonatal cardiomyocytes. RA improved mitochondrial function by inhibiting the stretch- and Ang II-induced reduction in mitochondrial membrane potential, cytochrome c release and by increasing the Bcl2/Bax ratio. RA inhibited stretch- and Ang II-induced intracellular reactive oxygen species (ROS) generation and upregulated the SOD2 level. Hydrogen peroxide-induced increases in the number of TUNEL-positive cells and percentage of Annexin V positive cells, were dose-dependently inhibited by RA. The thiol antioxidant, N-acetyl cysteine (NAC), completely inhibited stretch- and Ang II-induced apoptosis. Using diazoxide (mitochondrial ATP-sensitive K(+) channel opener) and SDS (NADPH oxidase activator), we confirmed that RA suppressed both mitochondrial- and NADPH oxidase-derived ROS. We also observed that both RAR and RXR were involved in preventing Ang II- and stretch-induced ROS production and apoptosis, by using selective retinoid receptor agonists and antagonists. Our data provide the first evidence that RA prevents Ang II and stretch induced apoptosis, by inhibiting ROS generation and increasing the anti-oxidant defense system, suggesting that RA-mediated signaling may provide a new therapeutic target for the prevention of the cardiac remodeling process.  相似文献   

20.
Exogenous diacylglycerols stimulate neutrophil superoxide anion production, suggesting that endogenous diacylglycerols may function as second messengers for this biological response. We have measured the diacylglycerol mass in human neutrophils stimulated by fMet-Leu-Phe, ionomycin, and concanavalin A and have correlated the kinetics and magnitude of the diacylglycerol response with those for superoxide anion production. For each stimulus, no increase in diacylglycerol mass was detected prior to the onset of superoxide anion generation. However, large sustained increases in diacylglycerol concentration (260-2000% of basal levels) occurred in parallel with the rise in superoxide anion. The cessation or continuation of diacylglycerol accumulation and superoxide anion production also correlated. The diacylglycerol response was proportional to the stimulus concentration and correlated with the concentration dependence for superoxide anion. Pretreatment of neutrophils with cytochalasin B enhanced both superoxide anion and diacylglycerol responses with all three stimuli. These data support the hypothesis that diacylglycerol functions as a modulator of superoxide anion generation causing a sustained or augmented respiratory burst.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号