首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Background and Aims: The aims of this study were to set up proliferation conditionsfor hairy roots of Coffea arabica regenerated after transformationby Agrobacterium rhizogenes strain A4-RS, and to carry out themorphological and molecular characterization of hairy root clonesmaintained over the long term. Methods: Auxin supply, light conditions and sucrose concentration weremodified with the aim of establishing efficient root proliferationconditions. The morphological variability among 62 establishedhairy root clones was phenotyped by scanning the roots and analysingthe images using ‘whinRHIZO’ software procedures.PCR analysis of integration in transformed root cells of roland aux oncogenes from the T-DNA of the Ri plasmid was usedto study the molecular variability among clones. Key Results: Auxin supply was necessary to obtain and stimulate growth andbranching, and IBA applied at 0·5 µM was the mostefficient auxin. Significant differences were shown among the62 clones for total root length and for the percentage of fineroots. These variables were stable across subcultures and couldhence be used for efficient characterization of hairy root clones.The majority of hairy root clones (86 %) exhibited non-significantphenotype differences with non-transformed roots. Eight cloneswere significantly different from the non-transformed controlsin that they possessed a low proportion of fine roots. Two otherhairy root clones grew significantly faster than the other clones.The PCR analysis revealed a low variability in the integrationof rol and aux oncogenes in transformed root cells. The TR-DNAwas never integrated as aux1 and aux2 genes were not found,although rolB and rolC genes from the TL-DNA were always present. Conclusions: The discovery of low morphological variability among coffeehairy roots together with the identification of morphologicalvariables allowing easy identification of phenotypically alteredclones represent two important results. They make hairy rootsa possible, and efficient, tool for functional-genomic studiesof coffee root genes.  相似文献   

2.
When grown in a nutrient solution containing combined nitrogen(NH4NO3), Lotus pedunculatus and L. tenuis seedlings inoculatedwith a fast-growing strain of Rhizoblum (NZP2037) did neitherdevelop root nodules nor develop flavolans in their roots. Incontrast, the roots of nodulated seedlings growing in a nitrogen-freenutrient solution contained flavolans. Flavolan synthesis coincidedwith root nodule development on these plants. When added as a single dose, high concentrations of NH4NO3 (5and 10 mg N per plant) stimulated the growth of L. pedunculatusplants but suppressed nodulation and nitrogen fixation. In contrastthe continued supply of a low concentration of NH4NO3 (1?0 mgN d–1 per plant) stimulated nitrogen fixation by up to500%. This large increase in nitrogen fixation was associatedwith a large increase in nodule fresh weight per plant, a doublingof nodule nitrogenase activity, and a lowering of the flavolancontent of the plant roots. The close relationship between nitrogendeficiency, nodule development, and flavolan synthesis in L.pedunculatus meant that it was not possible (by nitrogen pretreatmentof plants) to alter the ineffective nodule response of a Rhizobiumstrain (NZP2213) sensitive to the flavolan present in the rootsof this plant.  相似文献   

3.
Established, nodulated white clover plants were transferredto eight tanks of a flowing culture apparatus with solutiontemperatures of 5, 11, 17, and 25 ?C (two tanks per temperature).Shoot temperature and light environment were common to all plants.After 7 d, (10 mmol m–3) was continuouslysupplied to one tank at each temperature while in the remainingfour tanks (one at each temperature) the plants were completelydependent on nodule N2-fixation. Plants were randomly selected at intervals during the following14 d period in order to measure root and nodule respirationand acetylene reduction activity (ARA) in a flow-through systemset at the adapted root temperature. Additional plants wereassayed for in vitro nitrate reductase activity in leaves, roots,and nodules. Apparent nitrogenase activity (ARA) and respiration associatedwith it were each markedly affected by temperature in two ways;(1) Activity per unit weight of nodule was reduced at lowertemperatures; (2) Development of the plant, and thus also nodulemass, was restricted at lower temperatures which, in turn, restrictedtotal nodule activity per plant. The presence of nitrate significantly reduced ARA of nodules,particularly at higher temperatures. However, significant discrepancieswere found when N2-fixation rates, estimated from the acetylenereduction assay, were compared with N2-fixation rates calculatedfrom curves fitted to N accumulation data (minus the rate of uptake in the case of nitrate-treated plants). Carbon use efficiency (CO2 respired per C2H4 produced) was notsignificantly affected by temperature or the presence of nitrate. Nitrate reductase activity (NRA) developed in all plant partsat the three highest temperatures, but not at 5 ?C. We calculatethat leaf NRA may account for 82, 75, and 68% of total nitratereduction at 11, 17, and 25 ?C respectively. Key words: Trifolium repens, white clover, N2 fixation, root temperature, acetylene reduction assay, nitrate, nitrate reductase  相似文献   

4.
Indirect evidence suggests that legumes can adjust rapidly theresistance of their root nodules to O2 diffusion. Here we describeexperiments using O2 specific micro-electrodes and dark fieldmicroscopy to study directly the operation of this diffusionbarrier. The O2 concentration sensed by the electrode decreasedsharply in the region of the inner cortex and was less than1.0 mmol m–3 throughout the infected tissue in nodulesof both pea (Pisum sativum) and french bean (Phaseolus vulgaris).In a number of experiments the ambient O2 concentration wasincreased to 40% while the electrode tip was just inside theinner cortex. In 13 out of 21 cases the O2 concentration atthis position either remained low and unchanged or increasedirreversibly to near ambient values. In the remaining casesthe O2 concentration increased after 1 to 2.5 min and then decreasedto its former value. These results are ascribed to an increasein resistance of the barrier in response to increased O2 fluxinto the nodule. It was shown microscopically that air spacesboth at the boundary between the infected zone and the innercortex, and within the infected zone started to disappear 3min after nodules were exposed to high ambient O2 concentrationsand had disappeared completely after 8 min. These spaces werenot changed by exposure of the nodule for 10 min to either N2or air. Key words: Oxygen, root nodules, air spaces  相似文献   

5.
We set out to establish root cultures of a host plant with the aim of obtaining dual cultures of Tuber melanosporum mycorrhiza on transformed roots. Seedlings of Cistus incanus germinated under sterile conditions from seeds collected in the wild were treated with Agrobacterium rhizogenes. Nine hairy roots collected from different seedlings were cultured individually by repeated subculturing. The hairy root clones differed in growth rates and in morphology (branching frequency and distance between side roots). Root growth in a liquid medium exhibited a lag phase of about 2 weeks and an exponential phase lasting about 12 days before the start of the stationary phase. Hairy roots could be kept alive on medium M, a special solid minimal medium (low in Fe2+, BO43-, Ca2+, Cu2+ and Zn2+, very low in PO43- and lacking MoO42-, NH4+ and Co2+), for more than 7 months. T. melanosporum could be grown on the same medium for long periods only by subculturing the fungus with the roots. A mycorrhizal association developed between the roots and the T. melanosporum mycelium within 3 months. The association consisted of elongated roots with a mantle and a Hartig net surrounding two to three layers of cortical cells. Swollen, club-like root tips were discernible 5 months after inoculation. The mycorrhized roots could be subcultured and propagated on medium M and maintain the mycorrhizal association.  相似文献   

6.
Transformed hairy roots were efficiently induced from seedlings of Taraxacum platycarpum by infection with Agrobacterium rhizogenes 15834. Root explants produced transformed roots at a higher frequency (76.5±3.5%) as compared to stem (32.7±4.8%) or cotyledon (16.2±5.7%). Hairy roots exhibited active elongation with high branching of roots on growth regulator-free medium. The competence of plant regeneration from non-transformed adventitious roots and transformed hairy roots was compared. The frequency of adventitious shoot formation from transformed roots was much higher (88.5±9.8%) than that of non-transformed roots (31.7 ±9.5%) on hormone-free medium. Rooting of hairy root-derived adventitious shoots occurred easily on growth regulator-free medium but no rooting was observed on non-transformed shoots. The stable introduction of rol genes into Taraxacum plants was confirmed by PCR and Southern hybridization. Transgenic plantlets showed considerable differences in their morphology when compared to the corresponding wild-type (non-transgenic) plants. Plantlets formed from transformed roots had numerous fibrous roots with abundant lateral branches instead of the thickened taproots in non-transformed plants. The differences observed may reflect the modification of morphological root characters by introduction of rol genes.Communicated by M.R. Davey  相似文献   

7.
There is a coupled decrease in respiration and nitrogenase activityof nodules of many legume symbioses induced by exposure to acetylenein the presence of 21% O2. The respiratory costs of nitrogenaseactivity can be determined directly and distinguished from respiratorycosts for growth and maintenance of roots and nodules, usingthe linear regression of respiration on nitrogenase activity.The regression gradient represents the carbon costs for thetransfer of one pair of electrons by nitrogenase in terms ofmoles CO2 released per mole of ethylene produced. The interceptof the regression is the growth and maintenance respirationof nodules or nodulated roots. Exposure to acetylene at decreasedor increased oxygen concentrations in the range from 10% to70% resulted in a wider range of values for CO2 production andnitrogenase activity that fell on the same regression line asvalues obtained during the acetylene-induced decline at 21%oxygen. Oxygen concentrations below 10% increased significantlythe proportion of anaerobic respiration and produced changesin nitrogenase activity not correlated with CO2 production.Provided that these limits are not exceeded, oxygen-inducedchanges in nodule activity in the presence of acetylene canbe used to measure the efficiency of those symbioses which donot exhibit an acetylene-induced decline at a fixed oxygen concentration. Respiratory cost (moles CO2/mole ethylene) remained relativelyconstant with plant age for detached pea nodules (2.8), attachednodulated roots of lucerne (2.5) and detached nodulated rootsof field bean (4.2). However, for lucerne and field beans theproportion of total root respiration coupled to nitrogenasedeclined with time. A survey of 13 legume species gave values from 2 to 5 molesCO2/mole C2H4 Rhizobium strain and host-dependent variationsin efficiency were found. Key words: Nitrogenase, Legume root nodules, Respiration, Oxygen  相似文献   

8.
Ryle, G. J. A., Powell, C. E. and Gordon, A. J. 1988. Responsesof N2 fixation-linked respiration to host-plant energy statusin white clover acclimated to a controlled environment.—J.exp. Bot. 39: 879–887. Single plants of white clover, acclimated to a controlled environmentand dependent for nitrogen on N2 fixation in their root nodules,were darkened, defoliated or exposed to enhanced CO2 levelsto establish the quantitative relationships between the photosynthesisof the host plant and the N2 fixation metabolism of root nodules. The nodule respiration associated with N2 fixation (FLR) declinedrapidly to 10–15% of its normal rate following plant darkeningearly in the photoperiod. Darkening at progressively later intervalsduring the photoperiod demonstrated a positive, apparently linearrelationship between duration of illumination and total FLRduring the photoperiod and the following night period. Completeor partial defoliation reduced FLR according to the leaf arearemoved: again, there was a strong positive correlation betweencurrent rate of photosynthesis, whether of defoliated or undefoliatedplants and the FLR of root nodules. Doubling the current rateof photosynthesis, by enhancing CO2 levels around the shoots,promoted FLR within 1–2 h when plants were stressed bylack of light. However, enhanced CO2 levels increased FLR onlyslowly over a period of several hours in plants entrained tothe normal growing conditions. It is concluded that, in these plants acclimated to a uniformand favourable controlled environment, the supply and utilizationof photosynthetic assimilate in N2 fixation was finely balancedand quantitatively linked during a single diurnal period andthat nodule functioning was not depressed by lack of energysubstrate. Key words: White clover, N2 fixation, photosynthesis.  相似文献   

9.
Well-nodulated soya bean (Glycine max L.) plants were allowedto assimilate 13CO2 for 10 h in the light, under steady-stateconditions in which CO2 concentration and 13C abundance wereboth strictly controlled at constant levels. The respiratoryevolution of 13CO2 from roots and nodules and 13C incorporationinto various metabolic fractions were measured during the 13CO2feeding and subsequent 48 h chase period. CO2 respired from nodules was much more rapidly labelled with13C than that from roots. The level of labelling (percentageof carbon currently assimilated during the 13COM2 feeding period)of CO2 respired from nodules reached a maximum of about 87 percent after 4 h of steady-state l3CO2 assimilation and thereafterremained fairly constant. The absolute amount of labelled carbonevolved by the respiration of the nodules during the 10 h 13CO2feeding period was 1·5-fold that of root respiration.These results demonstrated that the currently assimilated (labelled)carbon was preferentially used to support nodule respiration,while root respiration relied considerably on earlier (non-labelled)carbon reserved in the roots. Sucrose pools were mostly composed of currently assimilatedcarbon in all tissues of the plants, since the levels of labellingaccounted for 86–91 per cent at the end of the 13CO2 feeding.In the nodules, the kinetics and levels of sucrose labellingwere in fairly good agreement with those of respired CO2, whilein the roots, the level of labelling of respired CO2 was significantlylower than that of sucrose. Succinate and malate were highly labelled in both roots andnodules but they were labelled much more slowly than sucroseand respired CO2. The kinetics and levels of labelling of theseKrebs cycle intermediates resembled those of major amino acidswhich are derived directly from Krebs cycle intermediates. Itis suggested that large fractions of organic acids in noduleswere physically separate from the respiration site. Glycine max L., Soya bean, 13CO2 assimilation, respiratory evolution of 13CO2, carbon metabolism in root nodules  相似文献   

10.
Molybdenum is thought to be of intermediate mobility in thephloem and this may limit N2-fixation by restricting the supplyof molybdenum to the nodules of legumes. When no molybdenumwas supplied to Phaseolus vulgaris nodule Mo content increasedat the expense of shoots and roots even when seed molybdenumcontent was large. Nodules sampled from plants receiving molybdenumin the feeding solution had a concentration of 21–78 µgMo g-1. In the absence of molybdenum and with deficient seedcontent (<0.5 µg Mo seed-1) nodule concentrations rangedfrom 1.9 to 3.5 fig Mo g-1 in a small seeded genotype and 8.7±0.48µg Mo g-1 in a large seeded genotype. N2-fixation in theseplants was not impaired except in one instance where noduleconcentration was 1.9 µg Mo g-1. Evidence that molybdenumis effectively translocated from leaves to roots and noduleswas obtained using foliar treatments. All of the 3.3 µgMo applied to a leaf was recovered in the plant after 10 d.Mo content of the nodules increased by 81%, whilst Mo contentof shoots increased by 56%. Root Mo content was eight timesgreater than that in plants not receiving a foliar treatmentof molybdenum. We conclude that when molybdenum was scarce inthe plant it was mobile and was translocated from roots andshoots to the nodules. As a result, nodule concentrations andcontents of molybdenum were frequently maintained at amountssufficient for N2-fixation even when the plant was entirelydependent on a small seed reserve of molybdenum.  相似文献   

11.
The nodule water potential (nod) of subterranean clover (Trifoliumsubterraneum L.) cv. Seaton Park incubated in a flow-throughgas-exchange system was induced to decline independently ofleaf water potential (1) by passing a continuous dry airstreamover the nodulated roots of intact well-watered plants. Reducedtranspiration by plants whose nodules had become dehydratedwas hypothesized to be related to the decline in nitrogen fixation.Whole-plant and nodule soluble carbohydrates increased as noddeclined. Throughout an 8 d period of continual nodule dehydration,the gaseous diffusion resistance of nodules increased and theoptimum pO2 for nitrogenase activity declined from 52 to 28kPa. Following rehydration of the nodulated roots between days4 and 5 and between days 7 and 8, nodulated root respirationincreased to or above pre-stress levels whereas nitrogenaseactivity did not recover. Re-establishment of initial ratesof nodulated root respiration was due to the stimulation ofgrowth and maintenance respiration, not to the respiration coupledto nitrogenase activity. Although no recovery of nitrogenaseactivity occurred, the elapsed time from the introduction ofacetylene into the gas stream flowing past the nodules untilmeasurement of the acetylene-induced decline in nitrogenaseactivity, decreased substantially. This was characteristic ofan increase in the permeability of the nodules to gaseous diffusionupon rehydration. However, calculated values of nodule diffusionresistance after the 24 h periods of rehydration did not indicateany recovery of gaseous diffusion resistance based on measurementsof the respiration coupled to nitrogenase activity. Hence, useof a diffusion analogue (i.e. Fick's Law) in conjunction withnodule respiratory CO2 efflux was unable to predict changesin permeability of the variable barrier of legume nodules followingnodule dehydration and recovery. Key words: Subterranean clover, gaseous diffusion, respiration, carbohydrates, drought  相似文献   

12.
Root nodules of Lupinus albus (L.) cv. Multolupa were subjectedto short- and medium-term stresses by lowering rhizosphere temperaturefrom 25 to 16°C (2 h), detopping plants (3 h), darkeningplants (21 h) or exposing roots to 20 mol m–3 KNO3 for4 d. All experimental treatments produced increases in oxygendiffusion resistance, compared with control plants. These correlatedwith structural changes in the nodule cortex, which is describedin detail for the first time. The most noticeable change isthe occlusion of intercellular spaces by a glycoprotein whichwas identified using the monoclonal antibody MAC236. This glycoproteinwas also found surrounding bacteria in intercellular spacesof the cortex of control nodules. Key words: Oxygen diffusion resistance, glycoprotein, nodules, nitrogen fixation, Lupinus albus  相似文献   

13.
14.
15.
An enzyme-linked immunosorbant assay (ELISA) method based ona monoclonal antibody (MAC236) is described in which relativeamounts of an intercellular glycoprotein were quantified inextracts of whole legume nodules. This glycoprotein has recentlybeen shown to be an important component of the cortical oxygendiffusion barrier. The ELISA method is demonstrated on threeexamples of soybean (Glycine max L. Merr.) nodule systems whichhave been the subject of previously published investigations:(a), cv. Clarke inoculated with Bradyrhizobium japonicum RCR3442,nodulated root systems of which were subject to 10, 21 or 40%oxygen continuously for 28 d; (b), cv. Bragg and its supernodulatingmutant derivative (nts382) inoculated with Bradyrhizobium japonicumUSDA110; (c), cv. Clarke inoculated with Bradyrhizobium japonicumRCR3442 or RCR3407. ELISA results are related to oxygen diffusioncharacteristics defined in previous publications and show thatincreases in the amount of glycoprotein present correlated withincreases in supra-ambient (40%) levels of rhizosphere pO2,in minimum gas diffusion resistance and in speed of diffusionbarrier response. Area data of component parts of nodule inner cortices suggestthat diffusion resistance control under sub-ambient (10%) oxygenlevels also involves cell expansion. The amount of MAC236 antigen in nodules is affected by bothhost plant genotype and rhizobial strain and the latter alsoappears to be involved in determining the morphological developmentof the nodule inner cortex.Copyright 1993, 1999 Academic Press Oxygen diffusion resistance, glycoprotein, nodules, Glycine max, ELISA  相似文献   

16.
Diffusion resistance to oxygen within nodules was calculatedusing the respiratory quotient (RQ) of nodules from intact plantsof subterranean clover (Trifolium subterraneum L.) cv. SeatonPark nodulated by Rhizobiun trifolii WU95. From 21 to 52% O2,the RQ remained between 0.94 and 1.04, whereas at 10% O2, theRQ was 1.65. When nodulated roots of intact plants were exposedto sub-ambient pO2 in a continuous flow-through system, respirationdeclined immediately, followed by a partial recovery within30 min. The magnitude of the final respiration rate was dependentupon the pO2 in the gas stream. Initial rates of respirationwere re-established after 24 h at sub-ambient pO2 as a resultof changes in the resistance of the variable barrier to oxygendiffusion within the nodules. Nitrogenase activity also decreasedlinearly with decreasing pO2 in the gas stream, but partialrecovery occurred after 24 h incubation at sub-ambient pO2.Maximum rates of nitrogenase activity occurred at rhizosphereoxygen concentrations between 21% and 36% O2. Resistance tothe diffusion of oxygen within the nodules increased at supra-ambientpO2 and at oxygen concentrations above 36% O2, resulted in adecrease in both nitrogenase activity and nodulated root respiration.The diffusion resistance of nodules to oxygen increased rapidlyin the presence of either supra-ambient pO2 or saturating pC2H2.Reductions in nodule diffusion resistance either during recoveryfrom exposure to 10% acetylene or to sub-ambient pO2 occurredmore slowly. It is concluded that subterranean clover is welladapted for maximum nitrogen fixation at ambient pO2. Key words: Nitrogenase activity, oxygen, subterranean clover, diffusion resistance  相似文献   

17.
《Plant science》1988,57(1):73-81
Agrobacterium rhizogenes wild type strain 8196 induced root growth at the site of stab-wounding on 5-day-old seedlings of red clover (Trifolium pratense), siratro (Macroptilium atropurpureum, a tropical forage legume), and alfalfa (Medicago sativa). Excised roots grew rapidly on hormone-free medium, were highly branched, and lacked geotropism. Paper electrophoresis of the root extracts confirmed the presence of opines. Confirmed transformed roots still proliferating from the wound site, were inoculated with Rhizobium and compared with inoculated non-transformed roots on seedlings raised under identical conditions. Nodulation was inhibited in the transformed roots. Control experiments using mixed inoculation of Rhizobium and Agrobacterium even at a ratio of 1:1000 on control seedlings showed no inhibition of nodulation, suggesting that the observed inhibition of nodulation on transformed roots was a result of the Ri T-DNA rather than the Agrobacterium rhizogenes in the tissue.  相似文献   

18.
Faba bean (Vicia faba L. cv. Fiord) plants were raised in agrowth room for 5 weeks and then transplanted to a hydroponicsystem. After 48 h for acclimation, nine plants were removed(day 0) for the measurement of nitrogenase activity by acetylenereduction (AR), for determination of nodule number and noduleweight, volume of the active N2 fixing region (VAR), and volumeof the senescent N2, fixing region (VSR). Half the nodule populationon a further 18 plants was excised, and nine of these plantswere assayed for AR. The nine plants from which the noduleshad been removed (treated plants) and nine control plants witha full complement of nodules, were left to grow for 5 d, afterwhich they were all harvested and assayed. The average weight of nodules and VAR remained constant in thecontrol plants between day 0 and day 5, whereas the nodulesleft on the treated plants increased in weight by 1.2 timesand VAR by 2.2 times. By day 5, VAR per plant was the same inthe control plants as in the treated, whereas VSR of controland treated plants increased by 4.6 and 2.2 times, respectively.Removal of half of the nodules at day 0 halved the AR activityper plant, but specific activity remained the same. After 5d, however, the nodules of the treated plants showed the sametotal activity as those of the control. Thus the specific activityof the nodules left on the treated plants doubled after 5 din response to excision. The indeterminate nodule of faba bean appears to be able toincrease its specific activity substantially in response toincrease in the demand for fixed N. N2 fixation per nodule wasresponsive to substrate supply, in that halving the number ofnodules on a plant induced the remaining nodules to increaseactivity, presumably because they could use the assimilate previouslydistributed over a larger number of nodules. Victa faba, faba bean, nodule number, nodule activity, acetylene reduction, volumes of active and senescent N2 fixing regions of nodules, hydroponic system  相似文献   

19.
Bean (Phaseolus vulgaris L. var. Tacarigua) plants were grownin sterilized Leonard jars under controlled conditions. Beforesowing, 1 g of gamma irradiated peat containing the Rhizobiumtropici strain CIAT899 was placed at either 2 or 10 cm belowthe sand surface. Mechanical infection of bean rugose mosaicvirus (BRMV) was carried out in 3-d-old seedlings. Thus, theearly events of nodulation occurred before the arrival of virusparticles to roots. Rhizobium inoculation at 2 cm deep resultedin the formation of nodule clusters close to the crown, in contrastto the homogeneous nodulation along the roots observed in plantsinoculated with Rhizobium at a depth of 10 cm. The uniform arrangementof nodules on the roots enhanced the plant shoot biomass, althoughthe total nodule mass per plant did not differ between Rhizobiuminoculation treatments. Nodules located on deeper roots resultedin higher ureide concentrations in shoots and leaves and inreduced carbohydrate concentrations in leaves. In healthy plants,nodules formed on deeper roots had higher allantoinase activityand a greater carbohydrate concentration when compared to thatof nodules located close to the crown. Deeper nodules had ureideconcentrations similar to those of upper nodules, probably asa consequence of increased translocation of N-compounds to aerialorgans. A similar pattern of nodule formation and response toinoculum position was observed in BRMV-infected plants at allharvests. However, virus infection resulted in reduced totalnodule mass, shoot biomass, total leaf area and induced transitoryalterations in the ureide, -amino-N and carbohydrate concentrationin the different plant compartments. The effect of BRMV infectionon plant parameters was more evident during the vegetative stagesof growth. Nevertheless, the magnitude of the effect was alwaysmore pronounced in plants inoculated with Rhizobium at a depthof 2 cm compared to those Inoculated at 10 cm due to a greateractivity of deeper nodules despite virus infection. Deeper nodulesin BRMV-infected plants showed higher carbohydrate concentrationas well as higher allantoinase and uricase activity than thosedeveloped close to the crown, at all harvests. This observationwas further supported by ultrastructural analysis of virus-infectednodules, since virus replication took place in cells containingbacteroids of upper and lower nodules, but only in the interstitialcells of the latter. BRMV infection did not hinder the allantoinaseactivity and the chlorophyll content of uppermost mature leavesregardless of inoculum position. At the flowering and fruitingstages, healthy and BRMV-infected plants did not differ withregard to any of the tested parameters. Only inoculum positionhad an effect. The nearly normal functioning of the symbioticprocess at these stages of growth was attributed to the formationof a new generation of nodules in BRMV-infected plants subjectedto each of the Rhlzobium inoculation treatments. Key words: Bean rugose mosaic virus, symbiotic nitrogen fixation, bean, Rhizobium inoculum position, nodule ultrastructure  相似文献   

20.
Chickpea cultivar ILC 482 was inoculated with salt-tolerantRhizobium strain Ch191 in solution culture with different saltconcentrations added either immediately with inoculation or5 d later. The inhibitory effect of salinity on nodulation ofchickpea occurred at 40 dS m–1 (34.2 mol m–3 NaCl)and nodulation was completely inhibited at 7 dS m–1 (61.6mol m–3 NaCl); the plants died at 8 dS m–1 (71.8mol m–3 NaCl). Chickpea cultivar ILC 482 inoculated with Rhizobium strain Ch191spcstrwas grown in two pot experiments and irrigated with saline water.Salinity (NaCl equivalent to 1–4 dS m–1) significantlydecreased shoot and root dry weight, total nodule number perplant, nodule weight and average nodule weight. The resultsindicate that Rhizobium strain Ch191 forms an infective andeffective symbiosis with chickpea under saline and non-salineconditions; this legume was more salt-sensitive compared tothe rhizobia, the roots were more sensitive than the shoots,and N2 fixation was more sensitive to salinity than plant growth. Key words: Cicer arietinum, nodulation, N2 fixation, Rhizobium, salinity  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号