首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The hydrophobically guided complex formation between the Cu(A) fragment from Thermus thermophilus ba(3) terminal oxidase and its electron transfer substrate, cytochrome c(552), was investigated electrochemically. In the presence of the purified Cu(A) fragment, a clear downshift of the c(552) redox potential from 171 to 111mV±10mV vs SHE' was found. Interestingly, this potential change fully matches complex formation with this electron acceptor site in other oxidases guided by electrostatic or covalent interactions. Redox induced FTIR difference spectra revealed conformational changes associated with complex formation and indicated the involvement of heme propionates. This article is part of a Special Issue entitled: 17th European Bioenergetics Conference (EBEC 2012).  相似文献   

2.
The caa3-oxidase from Thermus thermophilus has been studied with a combined electrochemical, UV/VIS and Fourier-transform infrared (FT-IR) spectroscopic approach. In this oxidase the electron donor, cytochrome c, is covalently bound to subunit II of the cytochrome c oxidase. Oxidative electrochemical redox titrations in the visible spectral range yielded a midpoint potential of -0.01 +/- 0.01 V (vs. Ag/AgCl/3m KCl, 0.218 V vs. SHE') for the heme c. This potential differs for about 50 mV from the midpoint potential of isolated cytochrome c, indicating the possible shifts of the cytochrome c potential when bound to cytochrome c oxidase. For the signals where the hemes a and a3 contribute, three potentials, = -0.075 V +/- 0.01 V, Em2 = 0.04 V +/- 0.01 V and Em3 = 0.17 V +/- 0.02 V (0.133, 0.248 and 0.378 V vs. SHE', respectively) could be obtained. Potential titrations after addition of the inhibitor cyanide yielded a midpoint potential of -0.22 V +/- 0.01 V for heme a3-CN- and of Em2 = 0.00 V +/- 0.02 V and Em3 = 0.17 V +/- 0.02 V for heme a (-0.012 V, 0.208 V and 0.378 V vs. SHE', respectively). The three phases of the potential-dependent development of the difference signals can be attributed to the cooperativity between the hemes a, a3 and the CuB center, showing typical behavior for cytochrome c oxidases. A stronger cooperativity of CuB is discussed to reflect the modulation of the enzyme to the different key residues involved in proton pumping. We thus studied the FT-IR spectroscopic properties of this enzyme to identify alternative protonatable sites. The vibrational modes of a protonated aspartic or glutamic acid at 1714 cm-1 concomitant with the reduced form of the protein can be identified, a mode which is not present for other cytochrome c oxidases. Furthermore modes at positions characteristic for tyrosine vibrations have been identified. Electrochemically induced FT-IR difference spectra after inhibition of the sample with cyanide allows assigning the formyl signals upon characteristic shifts of the nu(C=O) modes, which reflect the high degree of similarity of heme a3 to other typical heme copper oxidases. A comparison with previously studied cytochrome c oxidases is presented and on this basis the contributions of the reorganization of the polypeptide backbone, of individual amino acids and of the hemes c, a and a3 upon electron transfer to/from the redox active centers discussed.  相似文献   

3.
4.
5.
Flavocytochrome c-sulfide dehydrogenases (FCSDs) are complexes of a flavoprotein with a c-type cytochrome performing hydrogen sulfide-dependent cytochrome c reduction in vitro. The amino acid sequence analysis revealed that the phylogenetic relationship of different flavoproteins reflected the relationship of sulfur-oxidizing bacteria. The flavoprotein SoxF of Paracoccus pantotrophus is 29-67% identical to the flavoprotein subunit of FCSD of phototrophic sulfur-oxidizing bacteria. Purification of SoxF yielded a homogeneous emerald-green monomeric protein of 42 797 Da. SoxF catalyzed sulfide-dependent horse heart cytochrome c reduction at the optimum pH of 6.0 with a k(cat) of 3.9 s(-1), a K(m) of 2.3 microM for sulfide, and a K(m) of 116 microM for cytochrome c, as determined by nonlinear regression analysis. The yield of 1.9 mol of cytochrome c reduced per mole of sulfide suggests sulfur or polysulfide as the product. Sulfide dehydrogenase activity of SoxF was inhibited by sulfur (K(i) = 1.3 microM) and inactivated by sulfite. Cyanide (1 mM) inhibited SoxF activity at pH 6.0 by 25% and at pH 8.0 by 92%. Redox titrations in the infrared spectral range from 1800 to 1200 cm(-1) and in the visible spectral range from 400 to 700 nm both yielded a midpoint potential for SoxF of -555 +/- 10 mV versus Ag/AgCl at pH 7.5 and -440 +/- 20 mV versus Ag/AgCl at pH 6.0 (-232 mV versus SHE') and a transfer of 1.9 electrons. Electrochemically induced FTIR difference spectra of SoxF as compared to those of free flavin in solution suggested a strong cofactor interaction with the apoprotein. Furthermore, an activation/variation of SoxF during the redox cycles is observed. This is the first report of a monomeric flavoprotein with sulfide dehydrogenase activity.  相似文献   

6.
There is a great need to predict the antioxidant properties of molecules such as carotenoids. These compounds are of great interest due to their contribution to various important biological and industrial processes, including toxicity and fate. In our study, redox potentials were compiled from several literature sources. Redox potential values ranged from 537.2 mV for zeaxanthin up to 691.5 mV for beta-carotene; they correspond to the formation of cation radicals, using the standard calomel electrode (SCE). The redox potential values were measured using conventional electrochemical techniques, cyclic voltammetry and Osteryoung square-wave voltammetry. A quantitative structure-activity relationship (QSAR) was developed to model and consequently to predict the values of redox potential. The predicted values of redox potential for four external carotenoids, namely beta-carotene, zeaxanthin, cantaxanthin and astaxanthin, are presented and discussed. They indicate the dependence of redox potential on structure, donor and acceptor groups and polarisability.  相似文献   

7.
The redox properties of the cofactors of NADH:ubiquinone oxidoreductase (complex I) from Escherichia coli were studied by following the changes in electron paramagnetic resonance (EPR) and optical spectra upon electrochemical redox titration of the purified protein. At neutral pH, the FMN cofactor had a midpoint redox potential ( E m) approximately -350 mV ( n = 2). Binuclear FeS clusters were well-characterized: N1a was titrated with a single ( n = 1) transition, and E m = -235 mV. In contrast, the titration of N1b can only be fitted with the sum of at least two one-electron Nernstian curves with E m values of -245 and -320 mV. The tetranuclear clusters can also be separated into two groups, either having a single, n = 1, or more complex redox titration curves. The titration curves of the EPR bands attributed to the tetranuclear clusters N2 ( g = 2.045 and g = 1.895) and N6b ( g = 2.089 and g = 1.877) can be presented by the sum of at least two components, each with E m (app) approximately -200/-300 mV and -235/-315 mV, respectively. The titration of the signals at g = 1.956-1.947 (N3 or N7, E m = -315 mV), g = 2.022, and g = 1.932 (Nx, -365 mV) and the low temperature signal at g = 1.929 (N4 or N5, -330 mV) followed Nernstian n = 1 curves. The observed redox titration curves are discussed in terms of intrinsic electrostatic interactions between FeS centers in complex I. A model showing shifts of E m due to the electrostatic interaction between the centers is presented.  相似文献   

8.
We report results of continuum electrostatics calculations of the cofactor redox potentials, and of the titratable group pK(a) values, in hydroxylamine oxidoreductase (HAO). A picture of a sophisticated multicomponent control of electron flow in the protein emerged from the studies. First, we found that neighboring heme cofactors strongly interact electrostatically, with energies of 50-100 mV. Thus, cofactor redox potentials depend on the oxidation state of other cofactors, and cofactor redox potentials in the active (partially oxidized) enzyme differ substantially from the values obtained in electrochemical redox titration experiments. We found that, together, solvent-exposed heme 1 (having a large negative redox potential) and heme 2 (having a large positive redox potential) form a lock for electrons generated during the oxidation reaction The attachment of HAO's physiological electron transfer partner cytochrome c(554) results in a positive shift in the redox potential of heme 1, and "opens the electron gate". Electrons generated as a result of hydroxylamine oxidation travel to heme 3 and heme 8, which have redox potentials close to 0 mV versus NHE (this result is in partial disagreement with an existing experimental redox potential assignment). The closeness of hemes 3 and 8 from different enzyme subunits allows redistribution of the four electrons generated as a result of hydroxylamine oxidation, among the three enzyme subunits. For the multielectron oxidation process to be maximally efficient, the redox potentials of the electron-accepting cofactors should be roughly equal, and electrostatic interactions between extra electrons on these cofactors should be minimal. The redox potential assignments presented in the paper satisfy this general rule.  相似文献   

9.
Guo H  Ye C  He H  Chen Z  Hu J  Hu G  Li A 《Biosensors & bioelectronics》2012,33(1):204-210
Neodymium (Nd) substituted bismuth titanate (Bi(4-x)Nd(x)Ti(3)O(12), BNTO-x) nanoplates inlaid one another were prepared by sol-gel hydrothermal method, which was explored for protein immobilization and biosensor fabrication. Comparative experiments witnessed that Bi(3+) ions in bismuth titanate (Bi(4)Ti(3)O(12), BTO) were successfully substituted with Nd(3+) ions, and the electrochemical properties of the Hb-Chi-BNTO biosensors closely depended on the Nd(3+) ion content. With increasing the Nd(3+) doping content, the electrochemical performance of the Hb-Chi-BNTO-x biosensors showed regularly variable. Moreover, compared with the Hb-Chi-BTO and other Hb-Chi-BNTO-x biosensors, the Hb-Chi-BNTO-0.85 biosensor had more excellent electrochemical and electrocatalytic properties such as stronger redox peak currents (approximately three-fold), smaller peak-to-peak separation (50 mV), larger heterogeneous electron transfer rate (14.1 ± 3.8s(-1)), higher surface concentration of electroactive redox protein (about 8.16 × 10(-11)mol/cm(2)), and better reproducibility and stability. The Nd-depended electrochemical properties of the Hb-Chi-BNTO biosensors may open up a new idea for designing third-generation electrochemical biosensors, and the BNTO-0.85-based biosensor is also expected to find potential applications in many areas such as biomedical, food, and environmental detection.  相似文献   

10.
Ribonucleotide reductase is a heterodimeric (alpha(2)beta(2)) allosteric enzyme that catalyzes the conversion of ribonucleotides to deoxyribonucleotides, an essential step in DNA biosynthesis and repair. In the enzymatically active form aerobic Escherichia coli ribonucleotide reductase is a complex of homodimeric R1 and R2 proteins. We use electrochemical studies of the dinuclear center to clarify the interplay of subunit interaction, the binding of allosteric effectors and substrate selectivity. Our studies show for the first time that electrochemical reduction of active R2 generates a distinct Met form of the diiron cluster, with a midpoint potential (-163 +/- 3 mV) different from that of R2(Met) produced by hydroxyurea (-115 +/- 2 mV). The redox potentials of both Met forms experience negative shifts when measured in the presence of R1, becoming -223 +/- 6 and -226 +/- 3 mV, respectively, demonstrating that R1-triggered conformational changes favor one configuration of the diiron cluster. We show that the association of a substrate analog and specificity effector (dGDP/dTTP or GMP/dTTP) with R1 regulates the redox properties of the diiron centers in R2. Their midpoint potential in the complex shifts to -192 +/- 2 mV for dGDP/dTTP and to -203 +/- 3 mV for GMP/dTTP. In contrast, reduction potential measurements show that the diiron cluster is not affected by ATP (0.35-1.45 mm) and dATP (0.3-0.6 mm) binding to R1. Binding of these effectors to the R1-R2 complex does not perturb the normal docking modes between R1 and R2 as similar redox shifts are observed for ATP or dATP associated with the R1-R2 complex.  相似文献   

11.
This is the first report of the direct electrochemistry of the reductase (PHR) and oxygenase (PHO) components of phenol hydroxylase from Acinetobacter radioresistens S13 studied by cyclic and differential pulse voltammetry. The PHR contains one 2Fe2S cluster and one FAD that mediate the transfer of electrons from NAD(P)H to the non-heme diiron cluster of PHO. Cyclic and differential pulse voltammetry (CV and DPV) on glassy carbon showed two redox pairs with midpoint potentials at +131.5 ± 13 mV and -234 ± 3 mV versus normal hydrogen electrode (NHE). The first redox couple is attributed to the FeS centre, while the second one corresponds to free FAD released by the protein. DPV scans on native and guanidinium chloride treated PHR highlighted the presence of a split signal (ΔE ≈ 100 mV) attributed to heterogeneous properties of the 2Fe2S cluster interacting with the electrode, possibly due to the presence of two protein conformers and consistently with the large peak-to-peak separation and the peak broadening observed in CV. DPV experiments on gold electrodes performed on PHO confirm a consistently higher reduction potential at +396 mV vs. NHE. The positive redox potentials measured by direct electrochemistry for the FeS cluster in PHR and for the non-heme diiron cluster of PHO show that the entire phenol hydroxylase system works at higher potentials than those reported for structurally similar enzymes, for example methane monooxygenases.  相似文献   

12.
Copper electrochemistry at modified gold electrodes was investigated with two different states of the metal ion: first bound in azurin from Pseudomonas aeruginosa and second introduced via metal ion uptake in metallothionein (MT) from rabbit liver. Azurin was immobilised on a mercaptosuccinic acid (MSA) layer self-assembled on gold. The redox behaviour in the adsorbed as well as in the covalently immobilised state was found to be quasi-reversible with a formal potential of +198 mV versus Ag/AgCl. The pH variation suggests an optimal pH range for efficient electrode communication in the neutral range. MT was fixed at electrochemically cleaned gold using the accessible cysteins of the protein. Copper was found to bind to the MT-modified gold electrode. The electrochemical behaviour of the bound copper was characterised in copper-free solution with a formal potential of +245 mV versus Ag/AgCl. Stability and potential use is discussed.  相似文献   

13.
Redox properties of cytochrome b559 (Cyt b559) and cytochrome c550 (Cyt c550) have been studied by using highly stable photosystem II (PSII) core complex preparations from a mutant strain of the thermophilic cyanobacterium Thermosynechococcus elongatus with a histidine tag on the CP43 protein of PSII. Two different redox potential forms for Cyt b559 are found in these preparations, with a midpoint redox potential ( E'(m)) of +390 mV in about half of the centers and +275 mV in the other half. The high-potential form, whose E'(m)is pH independent, can be converted into the lower potential form by Tris washing, mild heating or alkaline pH incubation. The E'(m) of the low-potential form is significantly higher than that found in other photosynthetic organisms and is not affected by pH. The possibility that the heme of Cyt b559 in T. elongatus is in a more hydrophobic environment is discussed. Cyt c550 has a higher E'(m)when bound to the PSII core (-80 mV at pH 6.0) than after its extraction from the complex (-240 mV at pH 6.0). The E'(m) of Cyt c550 bound to PSII is pH independent, while in the purified state an increase of about 58 mV/pH unit is observed when the pH decreases below pH 9.0. Thus, Cyt c550 seems to have a single protonateable group which influences the redox properties of the heme. From these electrochemical measurements and from EPR controls it is proposed that important changes in the solvent accessibility to the heme and in the acid-base properties of that protonateable group could occur upon the release of Cyt c550 from PSII.  相似文献   

14.
SoxR from Escherichia coli and related enterobacteria is activated by a broad range of redox‐active compounds through oxidation or nitrosylation of its [2Fe–2S] cluster. Activated SoxR then induces SoxS, which subsequently activates more than 100 genes in response. In contrast, non‐enteric SoxRs directly activate their target genes in response to redox‐active compounds that include endogenously produced metabolites. We compared the responsiveness of SoxRs from Streptomyces coelicolor (ScSoxR), Pseudomonas aeruginosa (PaSoxR) and E. coli (EcSoxR), all expressed in S. coelicolor, towards natural or synthetic redox‐active compounds. EcSoxR responded to all compounds examined, whereas ScSoxR was insensitive to oxidants such as paraquat (Eh ?440 mV) and menadione sodium bisulphite (Eh ?45 mV) and to NO generators. PaSoxR was insensitive only to some NO generators. Whole‐cell EPR analysis of SoxRs expressed in E. coli revealed that the [2Fe–2S]1+ of ScSoxR was not oxidizable by paraquat, differing from EcSoxR and PaSoxR. The mid‐point redox potential of purified ScSoxR was determined to be ?185 ± 10 mV, higher by ~ 100 mV than those of EcSoxR and PaSoxR, supporting its limited response to paraquat. The overall sensitivity profile indicates that both redox potential and kinetic reactivity determine the differential responses of SoxRs towards various oxidants.  相似文献   

15.
A blue copper protein was purified together with a type II quinohemoprotein alcohol dehydrogenase (ADH IIB) from the soluble fraction of Pseudomonas putida HK5 grown on n-butanol. The purified blue copper protein was shown to be azurin, on the basis of several properties such as its absorption maximum (623 nm), its low molecular mass (17 500 Da), its acidic nature (pI of 4.1), its relatively high redox potential (306 mV), the presence of an intramolecular disulfide bond, and N-terminal amino acid sequence homology with respect to azurins from other sources, especially from P. putida NCIB 9869 and Pseudomonas fluorescens. Direct electron transfer from ADH IIB to azurin was shown to occur at a rate of 48-70 s-1. The apparent Km value of ADH IIB for azurin, determined by steady-state kinetics, was decreased several-fold by increasing the ionic strength. Furthermore, the extent of fluorescence quenching of ADH IIB due to the interaction with azurin was increased by increasing the ionic strength, but the binding constant for binding between ADH IIB and azurin was unchanged. The redox potential of azurin was increased 12 mV by incubation with ADH but not vice versa. Furthermore, the redox potential gap between ADH and azurin was increased from 102 to 126 mV by increasing the ionic strength. It is conceivable that a hydrophobic interaction is involved in the electron transfer between both proteins, and it is also suggested that the electron transfer may occur by a freely reversible on and off binding process but may not be related to the global binding process of both proteins. Thus, the results presented here strongly suggest that azurin works as an electron-transfer mediator in a PQQ-dependent alcohol oxidase respiratory chain in P. putida HK5.  相似文献   

16.
The facultative aerobic bacterium Geobacter sulfurreducens produces a small periplasmic c-type triheme cytochrome with 71 residues (PpcA) under anaerobic growth conditions, which is involved in the iron respiration. The thermodynamic properties of the PpcA redox centers and of a protonatable center were determined using NMR and visible spectroscopy techniques. The redox centers have negative and different reduction potentials (-162, -143, and -133 mV for heme I, III, and IV, respectively, for the fully reduced and protonated protein), which are modulated by redox interactions among the hemes (covering a range from 10 to 36 mV) and by redox-Bohr interactions (up to -62 mV) between the hemes and a protonatable center located in the proximity of heme IV. All the interactions between the four centers are dominated by electrostatic effects. The microscopic reduction potential of heme III is the one most affected by the oxidation of the other hemes, whereas heme IV is the most affected by the protonation state of the molecule. The thermodynamic properties of PpcA showed that pH strongly modulates the redox behavior of the individual heme groups. A preferred electron transfer pathway at physiologic pH is defined, showing that PpcA has the necessary thermodynamic properties to perform e-/H+ energy transduction, contributing to a H+ electrochemical potential gradient across the periplasmic membrane that drives ATP synthesis. PpcA is 46% identical in sequence to and shares a high degree of structural similarity with a periplasmic triheme cytochrome c7 isolated from Desulfuromonas acetoxidans, a bacterium closely related to the Geobacteracea family. However, the results obtained for PpcA are quite different from those published for D. acetoxidans c7, and the physiological consequences of these differences are discussed.  相似文献   

17.
A formal kinetic treatment of the autocatalytic activation cycle of the NAD-dependent hydrogenase from Alcaligenes eutrophus Z1 is presented. The value for the enzyme first-order activation rate constant is estimated to be (2.0 +/- 0.6) s-1 (pH 7.8, 25 degrees C). The effect of the redox potential on the activation properties of the NAD-dependent hydrogenase is studied. Hydrogenase activation is controlled by a midpoint redox potential of approximately -100 mV (pH 7.8). Once activated the enzyme is not immediately transformed back into an inactive state on rapid reoxidation and is able to preserve its catalytic properties for at least 3-4 h of intense oxigenation. Several lines of evidence show that the reductive activation of the NAD-dependent hydrogenase is accompanied by a structural reorganization of the protein. A possible origin of the -100 mV transition is discussed. A model for the activation process of the NAD-dependent hydrogenase is suggested.  相似文献   

18.
The properties of two redox quenchers of chlorophyll fluorescence in chloroplasts at room temperature have been investigated. (1) Redox titration of the fluorescence yield reveals two n = 1 components with Em7.8 at--45 and --247 mV, accounting for approx. 70 and 30% of the total yield, respectively. (2) Neutral red, a redox mediator often used at redox potentials below --300 mV, preferentially quenches the fluorescence controlled by the --247 mV component. Titrations using neutral red artifactually create an n = 2 quenching component with Em7.8 = --375 mV. (3) Analysis of fluorescence induction curves recorded at different redox potentials indicates that both the --45 and --247 mV components can be photochemically reduced. The reduction of the --247 mV component corresponds to a fast phase of the induction curve whilst the slower reduction of the 45 mV component accounts for the tail phase. (4) The excitation spectra for the fluorescence controlled by the two quenchers show small differences in the ratio of chlorophyll a and b. (5) Whereas the --247 mV component readily shows a 60 mV per pH unit dependency on solution pH, the ability of the --45 mV component to respond to pH change is restricted. (6) Triton Photosystem II particles contain both quenchers but the --247 mV component accounts for approx. 70% of the fluorescence and the high component has an Em7.8 of +48 mV. The relative merits of sequential and parallel models in explaining the presence of the two quenchers are considered.  相似文献   

19.
We present a new examination of the EPR redox titration data for the tetraheme cytochrome c3 from Desulfovibrio vulgaris Miyazaki. Our analysis includes the contribution of the interaction potentials between the four redox sites and is based on the model previously developed for the study of cytochrome c3 from Desulfovibrio desulfuricans Norway. We observed, as for D. desulfuricans Norway cytochrome c3, that the conformation of the heme with the lowest redox potential, heme 4, is sensitive to the redox state of the heme with the highest potential, heme 1. However in D. vulgaris Miyazaki cytochrome c3 spectral simulations show that heme 4 is present in two conformational states which interconvert partially when heme 1 is reduced. The sets of redox parameters which satisfy the fitting procedure of the titration curves are in the following domain: -250 mV less than or equal to e41 less than or equal to -220 mV, -325 mV less than or equal to e2 less than or equal to -320 mV, -335 mV less than or equal to e3 less than or equal to -330 mV, -360 mV less than or equal to e4 less than or equal to -355 mV, -5 mV less than or equal to I12 less than or equal to 20 mV, -10 mV less than or equal to I13 less than or equal to 5 mV, -15 mV less than or equal to I23 less than or equal to -5 mV, -15 mV less than or equal to I24 less than or equal to -10 mV, -25 mV, less than or equal to I34 less than or equal to -15 mV. As in D. desulfuricans Norway cytochrome c3 the interactions are moderate. Simple electrostatic considerations suggest that these moderate values could be related to the large accessibility of the hemes to the solvent. Our work does not confirm the existence of a cooperative interaction between heme 2 and heme 3 which has been proposed on the basis of electrochemical measurements.  相似文献   

20.
Abstract-Molluscicidal bioassays and electrochemical studies (measurement of first wave reduction potential, Epcl) were performed on several synthetic nitroaromatics, in relation to possible correlation between biological activity, redox potential and structural effects. Five of them presented a significant molluscicidal activity on Biomphalaria glabrata (LD50 < 20 ppm). The Epc1 values ranged from -0.532 to -0.857 V versus Ag/AgCl (0.1 M) (-0.260 to -0.585 V versus NHE), all of them, in the favorable range for reduction in vivo. Data comparison between Epc1 and molluscicidal activity indicates that the presence of the electroactive nitro group is important for the biological activity. Correlation with redox potential, however, was not evident. Structural effects seem to be the most important parameter. Higher activity is noticeable for phenols, including the para-nitro azo or hydrazo-containing compounds. No activity was observed for compounds having the benzylic substituent in meta position to the nitro group. These results suggest that activity undoubtedly involves more than reduction characteristics and that the possible formation of electrophilic species, after nitro reduction, can play an important role in molluscicidal activity against B. glabrata.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号